Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81700
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊淑怡(Shu-Yi Yang)
dc.contributor.authorYi-Hsien Weien
dc.contributor.author魏禕嫺zh_TW
dc.date.accessioned2022-11-24T09:25:55Z-
dc.date.available2022-11-24T09:25:55Z-
dc.date.copyright2022-02-21
dc.date.issued2022
dc.date.submitted2022-01-27
dc.identifier.citationAbenavoli, M.R., Longo, C., Lupini, A., Miller, A.J., Araniti, F., Mercati, F., Princi, M.P., and Sunseri, F. (2016). Phenotyping two tomato genotypes with different nitrogen use efficiency. Plant Physiol. Biochem. 107, 21-32. Aggarwal, S., Kumar, A., Jain, M., Sudan, J., Singh, K., Kumari, S., and Mustafiz, A. (2020). C-terminally encoded peptides (CEPs) are potential mediators of abiotic stress response in plants. Physiol. Mol. Biol. Plants 26, 2019-2033. Akiyama, K., Matsuzaki, K.-i., and Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824-827. Araya, T., Kubo, T., von Wirén, N., and Takahashi, H. (2016). Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana. J. Integr. Plant Biol. 58, 254-265. Augé, R.M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11, 3-42. Bücking, H., and Kafle, A. (2015). Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: Current knowledge and research gaps. Agronomy 5, 587-612. Bago, B., Pfeffer, P.E., Abubaker, J., Jun, J., Allen, J.W., Brouillette, J., Douds, D.D., Lammers, P.J., and Shachar-Hill, Y. (2003). Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol. 131, 1496-1507. Beeckman, T., Burssens, S., and Inzé, D. (2001). The peri-cell-cycle in Arabidopsis. J. Exp. Bot. 52, 403-411. Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., and Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591-602. Bennett, T., and Scheres, B. (2010). Root development-two meristems for the price of one? Curr. Top. Dev. Biol. 91, 67-102. Besserer, A., Puech-Pagès, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A., Roy, S., Portais, J.-C., Roux, C., Bécard, G., and Séjalon-Delmas, N. (2006). Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLOS Biol. 4, e226. Bidartondo, M.I., Read, D.J., Trappe, J.M., Merckx, V., Ligrone, R., and Duckett, J.G. (2011). The dawn of symbiosis between plants and fungi. Biol. Lett. 7, 574-577. Borch, K., Bouma, T.J., Lynch, J.P., and Brown, K.M. (1999). Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ. 22, 425-431. Brundrett, M.C., and Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108-1115. Bustos, R., Castrillo, G., Linhares, F., Puga, M.I., Rubio, V., Pérez-Pérez, J., Solano, R., Leyva, A., and Paz-Ares, J. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLOS Genet. 6, e1001102. Chandler, J.W. (2009). Local auxin production: a small contribution to a big field. BioEssays 31, 60-70. Chapman, K., Ivanovici, A., Taleski, M., Sturrock, C.J., Ng, J.L.P., Mohd-Radzman, N.A., Frugier, F., Bennett, M.J., Mathesius, U., and Djordjevic, M.A. (2020). CEP receptor signalling controls root system architecture in Arabidopsis and Medicago. New Phytol. 226, 1809-1821. Charpentier, M., Bredemeier, R., Wanner, G., Takeda, N., Schleiff, E., and Parniske, M. (2008). Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell 20, 3467-3479. Chen, A., Gu, M., Wang, S., Chen, J., and Xu, G. (2018). Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis. Semin. Cell Dev. Biol. 74, 80-88. Chen, A., Gu, M., Sun, S., Zhu, L., Hong, S., and Xu, G. (2011). Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species. New Phytol. 189, 1157-1169. Chen, W., Li, J., Zhu, H., Xu, P., Chen, J., and Yao, Q. (2017). Arbuscular mycorrhizal fungus enhances lateral root formation in Poncirus trifoliata (L.) as revealed by RNA-Seq analysis. Front. Plant. Sci. 8, 2039. Chen, Y., Su, D., Li, J., Ying, S., Deng, H., He, X., Zhu, Y., Li, Y., Chen, Y., Pirrello, J., Bouzayen, M., Liu, Y., and Liu, M. (2020). Overexpression of bHLH95, a basic helix–loop–helix transcription factor family member, impacts trichome formation via regulating gibberellin biosynthesis in tomato. J. Exp. Bot. 71, 3450-3462. Czyzewicz, N., Yue, K., Beeckman, T., and De Smet, I. (2013). Message in a bottle: small signalling peptide outputs during growth and development. J. Exp. Bot. 64, 5281-5296. De Rybel, B., Vassileva, V., Parizot, B., Demeulenaere, M., Grunewald, W., Audenaert, D., Van Campenhout, J., Overvoorde, P., Jansen, L., Vanneste, S., Möller, B., Wilson, M., Holman, T., Van Isterdael, G., Brunoud, G., Vuylsteke, M., Vernoux, T., De Veylder, L., Inzé, D., Weijers, D., Bennett, M.J., and Beeckman, T. (2010). A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr. Biol. 20, 1697-1706. De Smet, I., and Beeckman, T. (2011). Asymmetric cell division in land plants and algae: the driving force for differentiation. Nat. Rev. Mol. Cell Biol. 12, 177-188. De Smet, I., Tetsumura, T., De Rybel, B., Frei dit Frey, N., Laplaze, L., Casimiro, I., Swarup, R., Naudts, M., Vanneste, S., Audenaert, D., Inzé, D., Bennett, M.J., and Beeckman, T. (2007). Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134, 681-690. Delay, C., Imin, N., and Djordjevic, M.A. (2013). CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. J. Exp. Bot. 64, 5383-5394. Delay, C., Chapman, K., Taleski, M., Wang, Y., Tyagi, S., Xiong, Y., Imin, N., and Djordjevic, M.A. (2019). CEP3 levels affect starvation-related growth responses of the primary root. J. Exp. Bot. 70, 4763-4774. Devaiah, B.N., Madhuvanthi, R., Karthikeyan, A.S., and Raghothama, K.G. (2009). Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Mol. Plant 2, 43-58. Dröge-Laser, W., Snoek, B.L., Snel, B., and Weiste, C. (2018). The Arabidopsis bZIP transcription factor family—an update. Curr. Opin. Plant Biol. 45, 36-49. Drew, M.C., and Saker, L.R. (1975). Nutrient supply and the growth of the seminal root system in barley: II. Localized, compensatory increases in lateral root growth and rates op nitrate uptake when nitrate supply is restricted to only part of the root system. J. Exp. Bot. 26, 79-90. Du, C., Jiang, J., Zhang, H., Zhao, T., Yang, H., Zhang, D., Zhao, Z., Xu, X., and Li, J. (2020). Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita. BMC Genom. 21, 250. Dubrovsky, J.G., Sauer, M., Napsucialy-Mendivil, S., Ivanchenko, M.G., Friml, J., Shishkova, S., Celenza, J., and Benková, E. (2008). Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc. Natl. Acad. Sci. U. S. A. 105, 8790-8794. Endre, G., Kereszt, A., Kevei, Z., Mihacea, S., Kaló, P., and Kiss, G.B. (2002). A receptor kinase gene regulating symbiotic nodule development. Nature 417, 962-966. Feng, G., Zhang, F., Li, X., Tian, C., Tang, C., and Rengel, Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12, 185-190. Ferrol, N., Tamayo, E., and Vargas, P. (2016). The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J. Exp. Bot. 67, 6253-6265. Floss, D.S., Levy, J.G., Lévesque-Tremblay, V., Pumplin, N., and Harrison, M.J. (2013). DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. U. S. A. 110, E5025-5034. Foo, E., Ross, J.J., Jones, W.T., and Reid, J.B. (2013). Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann. Bot. 111, 769-779. Foo, E., McAdam, E.L., Weller, J.L., and Reid, J.B. (2016). Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea. J. Exp. Bot. 67, 2413-2424. Fukaki, H., and Tasaka, M. (2009). Hormone interactions during lateral root formation. Plant Mol. Biol. 69, 437-449. Fusconi, A. (2014). Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Ann. Bot. 113, 19-33. Gangappa, S.N., and Botto, J.F. (2016). The multifaceted roles of HY5 in plant growth and development. Mol. Plant 9, 1353-1365. Garrido, J.M.G., Morcillo, R.J.L., Rodríguez, J.Á.M., and Bote, J.A.O. (2010). Variations in the mycorrhization characteristics in roots of wild-type and ABA-deficient tomato are accompanied by specific transcriptomic alterations. Mol. Plant Microbe. Interact. 23, 651-664. Gaude, N., Bortfeld, S., Duensing, N., Lohse, M., and Krajinski, F. (2012). Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J. 69, 510-528. Gautrat, P., Laffont, C., and Frugier, F. (2020). Compact Root Architecture 2 promotes root competence for nodulation through the mir2111 systemic effector. Curr. Biol. 30, 1339-1345.e1333. Ge, S., He, L., Jin, L., Xia, X., Li, L., Ahammed, G.J., Qi, Z., Yu, J., and Zhou, Y. (2021). Light-dependent activation of HY5 promotes mycorrhizal symbiosis in tomato by systemically regulating strigolactone biosynthesis. Manuscript submitted for publication. Genre, A., and Bonfante, P. (2007). Check-in procedures for plant cell entry by biotrophic microbes. Mol. Plant Microbe. Interact. 20, 1023-1030. Genre, A., Chabaud, M., Timmers, T., Bonfante, P., and Barker, D.G. (2005). Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17, 3489-3499. Genre, A., Chabaud, M., Faccio, A., Barker, D.G., and Bonfante, P. (2008). Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20, 1407-1420. Goh, T., Joi, S., Mimura, T., and Fukaki, H. (2012). The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. Development 139, 883-893. Govindarajulu, M., Pfeffer, P.E., Jin, H., Abubaker, J., Douds, D.D., Allen, J.W., Bücking, H., Lammers, P.J., and Shachar-Hill, Y. (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435, 819-823. Grobbelaar, N., Clarke, B., and Hough, M.C. (1971). The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L. Plant Soil 35, 215-223. Gruber, B.D., Giehl, R.F.H., Friedel, S., and von Wirén, N. (2013). Plasticity of the arabidopsis root system under nutrient deficiencies. Plant Physiol. 163, 161-179. Guether, M., Balestrini, R., Hannah, M., He, J., Udvardi, M.K., and Bonfante, P. (2009). Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol. 182, 200-212. Gutjahr, C., and Paszkowski, U. (2013). Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front. Plant. Sci. 4, 204. Gutjahr, C., Casieri, L., and Paszkowski, U. (2009). Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytol. 182, 829-837. Hanlon, M.T., and Coenen, C. (2011). Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytol. 189, 701-709. Hause, B., Mrosk, C., Isayenkov, S., and Strack, D. (2007). Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68, 101-110. Hawkins, H.-J., and George, E. (1999). Effect of plant nitrogen status on the contribution of arbuscular mycorrhizal hyphae to plant nitrogen uptake. Physiol. Plant. 105, 694-700. Hernandez-Garcia, C.M., and Finer, J.J. (2014). Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 217-218, 109-119. Herrera-Medina, M.J., Steinkellner, S., Vierheilig, H., Ocampo Bote, J.A., and García Garrido, J.M. (2007). Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol. 175, 554-564. Hildebrandt, U., Schmelzer, E., and Bothe, H. (2002). Expression of nitrate transporter genes in tomato colonized by an arbuscular mycorrhizal fungus. Physiol. Plant. 115, 125-136. Ho-Plágaro, T., Huertas, R., Tamayo-Navarrete, M.I., Ocampo, J.A., and García-Garrido, J.M. (2018). An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis. Plant Methods 14, 34. Horváth, B., Yeun, L.H., Domonkos, Á., Halász, G., Gobbato, E., Ayaydin, F., Miró, K., Hirsch, S., Sun, J., Tadege, M., Ratet, P., Mysore, K.S., Ané, J.-M., Oldroyd, G.E.D., and Kaló, P. (2011). Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol. Plant Microbe. Interact. 24, 1345-1358. Hsieh, Y.-H. (2021). Studying the role of SlCEP2 peptide hormone in arbuscular mycorrhizal fungi-mediated lateral root induction in tomato. In Unpublished master’s thesis (National Taiwan University, Institute of Plant Biology), pp. 1-104. Hu, C., Wei, C., Ma, Q., Dong, H., Shi, K., Zhou, Y., Foyer, C.H., and Yu, J. (2021). Ethylene response factors 15 and 16 trigger jasmonate biosynthesis in tomato during herbivore resistance. Plant Physiol. 185, 1182-1197. Huang, C.-F., Yu, C.-P., Wu, Y.-H., Lu, M.-Y.J., Tu, S.-L., Wu, S.-H., Shiu, S.-H., Ku, M.S.B., and Li, W.-H. (2017). Elevated auxin biosynthesis and transport underlie high vein density in C4 leaves. Proc. Natl. Acad. Sci. U. S. A. 114, E6884. Huault, E., Laffont, C., Wen, J., Mysore, K.S., Ratet, P., Duc, G., and Frugier, F. (2014). Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase. PLOS Genet. 10, e1004891. Imaizumi-Anraku, H., Takeda, N., Charpentier, M., Perry, J., Miwa, H., Umehara, Y., Kouchi, H., Murakami, Y., Mulder, L., Vickers, K., Pike, J., Allan Downie, J., Wang, T., Sato, S., Asamizu, E., Tabata, S., Yoshikawa, M., Murooka, Y., Wu, G.-J., Kawaguchi, M., Kawasaki, S., Parniske, M., and Hayashi, M. (2005). Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433, 527-531. Imin, N., Mohd-Radzman, N.A., Ogilvie, H.A., and Djordjevic, M.A. (2013). The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J. Exp. Bot. 64, 5395-5409. Ivanchenko, M.G., Napsucialy-Mendivil, S., and Dubrovsky, J.G. (2010). Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana. Plant J. 64, 740-752. Ivanov, S., Austin, J., Berg, R.H., and Harrison, M.J. (2019). Extensive membrane systems at the host–arbuscular mycorrhizal fungus interface. Nat. Plants 5, 194-203. Jakobsen, I., Abbott, L.K., and Robson, A.D. (1992a). External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytol. 120, 509-516. Jakobsen, I., Abbott, L.K., and Robson, A.D. (1992b). External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol. 120, 371-380. Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., and Parcy, F. (2002). bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106-111. Jeon, B.W., Kim, M.-J., Pandey, S.K., Oh, E., Seo, P.J., and Kim, J. (2021). Recent advances in peptide signaling during Arabidopsis root development. J. Exp. Bot. 72, 2889-2902. Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D., Zhang, X., Yang, C., Chen, X., Tang, D., and Wang, E. (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172-1175. Johnson, N.C., Wilson, G.W.T., Wilson, J.A., Miller, R.M., and Bowker, M.A. (2015). Mycorrhizal phenotypes and the law of the minimum. New Phytol. 205, 1473-1484. Kajala, K., Gouran, M., Shaar-Moshe, L., Mason, G.A., Rodriguez-Medina, J., Kawa, D., Pauluzzi, G., Reynoso, M., Canto-Pastor, A., Manzano, C., Lau, V., Artur, M.A.S., West, D.A., Gray, S.B., Borowsky, A.T., Moore, B.P., Yao, A.I., Morimoto, K.W., Bajic, M., Formentin, E., Nirmal, N.A., Rodriguez, A., Pasha, A., Deal, R.B., Kliebenstein, D.J., Hvidsten, T.R., Provart, N.J., Sinha, N.R., Runcie, D.E., Bailey-Serres, J., and Brady, S.M. (2021). Innovation, conservation, and repurposing of gene function in root cell type development. Cell 184, 3333-3348.e3319. Kaldorf, M., and Ludwig-Müller, J. (2000). AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol. Plant. 109, 58-67. Klap, C., Yeshayahou, E., Bolger, A.M., Arazi, T., Gupta, S.K., Shabtai, S., Usadel, B., Salts, Y., and Barg, R. (2017). Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnol. J. 15, 634-647. Lévy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., Journet, E.P., Ané, J.M., Lauber, E., Bisseling, T., Dénarié, J., Rosenberg, C., and Debellé, F. (2004). A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303, 1361-1364. Laffont, C., Ivanovici, A., Gautrat, P., Brault, M., Djordjevic, M.A., and Frugier, F. (2020). The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically. Nat. Commun. 11, 3167. Laffont, C., Huault, E., Gautrat, P., Endre, G., Kalo, P., Bourion, V., Duc, G., and Frugier, F. (2019). Independent regulation of symbiotic nodulation by the SUNN negative and CRA2 positive systemic pathways. Plant Physiol. 180, 559-570. Lanfranco, L., Fiorilli, V., and Gutjahr, C. (2018). Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytol. 220, 1031-1046. Laskowski, M., Biller, S., Stanley, K., Kajstura, T., and Prusty, R. (2006). Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. Plant Cell Physiol. 47, 788-792. Lavenus, J., Goh, T., Roberts, I., Guyomarc'h, S., Lucas, M., De Smet, I., Fukaki, H., Beeckman, T., Bennett, M., and Laplaze, L. (2013). Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci. 18, 450-458. Lee, H. (2021). Identification of the CEP1 peptide receptor in Medicago truncatula (The Australian National University (Australia)). Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X.W. (2007). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19, 731-749. Lee, J.M., Joung, J.G., McQuinn, R., Chung, M.Y., Fei, Z., Tieman, D., Klee, H., and Giovannoni, J. (2012). Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J. 70, 191-204. Li, Y., Zhu, B., Xu, W., Zhu, H., Chen, A., Xie, Y., Shao, Y., and Luo, Y. (2007). LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep. 26, 1999-2008. Liao, D., Wang, S., Cui, M., Liu, J., Chen, A., and Xu, G. (2018). Phytohormones regulate the development of arbuscular mycorrhizal symbiosis. Int. J. Mol. Sci. 19. Limpens, E., Franken, C., Smit, P., Willemse, J., Bisseling, T., and Geurts, R. (2003). LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302, 630-633. Linkohr, B.I., Williamson, L.C., Fitter, A.H., and Leyser, H.M.O. (2002). Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J. 29, 751-760. Liu, M., Zhi, X., Wang, Y., and Wang, Y. (2021). Genome-wide survey and expression analysis of NIN-like Protein (NLP) genes reveals its potential roles in the response to nitrate signaling in tomato. BMC Plant Biol. 21, 347-347. Liu, M., Pirrello, J., Chervin, C., Roustan, J.P., and Bouzayen, M. (2015). Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol. 169, 2380-2390. Liu, M., Gomes, B.L., Mila, I., Purgatto, E., Peres, L.E.P., Frasse, P., Maza, E., Zouine, M., Roustan, J.-P., Bouzayen, M., and Pirrello, J. (2016). Comprehensive profiling of ethylene response factor expression identifies ripening-associated ERF genes and their link to key regulators of fruit ripening in tomato. Plant Physiol. 170, 1732-1744. Lota, F., Wegmüller, S., Buer, B., Sato, S., Bräutigam, A., Hanf, B., and Bucher, M. (2013). The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. Plant J. 74, 280-293. Ludwig-Müller, J., and Güther, M. (2007). Auxins as signals in arbuscular mycorrhiza formation. Plant Signal. Behav. 2, 194-196. Lupini, A., Araniti, F., Sunseri, F., and Abenavoli, M.R. (2014). Coumarin interacts with auxin polar transport to modify root system architecture in Arabidopsis thaliana. Plant Growth Regul. 74, 23-31. Madsen, E.B., Madsen, L.H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczyglowski, K., Sato, S., Kaneko, T., Tabata, S., Sandal, N., and Stougaard, J. (2003). A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals. Nature 425, 637-640. Maillet, F., Poinsot, V., André, O., Puech-Pagès, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., Formey, D., Niebel, A., Martinez, E.A., Driguez, H., Bécard, G., and Dénarié, J. (2011). Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469, 58-63. Mano, Y., and Nemoto, K. (2012). The pathway of auxin biosynthesis in plants. J. Exp. Bot. 63, 2853-2872. Marchant, A., Bhalerao, R., Casimiro, I., Eklöf, J., Casero, P.J., Bennett, M., and Sandberg, G. (2002). AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14, 589-597. Marhavý, P., Vanstraelen, M., De Rybel, B., Zhaojun, D., Bennett, M.J., Beeckman, T., and Benková, E. (2013). Auxin reflux between the endodermis and pericycle promotes lateral root initiation. Embo j. 32, 149-158. Martin, L.B.B., Romero, P., Fich, E.A., Domozych, D.S., and Rose, J.K.C. (2017). Cuticle biosynthesis in tomato leaves is developmentally regulated by abscisic acid. Plant Physiol. 174, 1384-1398. Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., Hanada, A., Yaeno, T., Shirasu, K., Yao, H., McSteen, P., Zhao, Y., Hayashi, K.-i., Kamiya, Y., and Kasahara, H. (2011). The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 108, 18512. Matthys, C., Walton, A., Struk, S., Stes, E., Boyer, F.D., Gevaert, K., and Goormachtig, S. (2016). The whats, the wheres and the hows of strigolactone action in the roots. Planta 243, 1327-1337. Mayzlish-Gati, E., De-Cuyper, C., Goormachtig, S., Beeckman, T., Vuylsteke, M., Brewer, P.B., Beveridge, C.A., Yermiyahu, U., Kaplan, Y., Enzer, Y., Wininger, S., Resnick, N., Cohen, M., Kapulnik, Y., and Koltai, H. (2012). Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol. 160, 1329-1341. Mitra, R.M., Gleason, C.A., Edwards, A., Hadfield, J., Downie, J.A., Oldroyd, G.E.D., and Long, S.R. (2004). A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. Proc. Natl. Acad. Sci. U. S. A. 101, 4701. Mohd-Radzman, N.A., Binos, S., Truong, T.T., Imin, N., Mariani, M., and Djordjevic, M.A. (2015). Novel MtCEP1 peptides produced in vivo differentially regulate root development in Medicago truncatula. J. Exp. Bot. 66, 5289-5300. Mohd-Radzman, N.A., Laffont, C., Ivanovici, A., Patel, N., Reid, D., Stougaard, J., Frugier, F., Imin, N., and Djordjevic, M.A. (2016). Different pathways act downstream of the CEP peptide receptor CRA2 to regulate lateral root and nodule development. Plant Physiol. 171, 2536-2548. Moreno-Risueno, M.A., Van Norman, J.M., Moreno, A., Zhang, J., Ahnert, S.E., and Benfey, P.N. (2010). Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329, 1306-1311. Mukherjee, A., and Ané, J.M. (2011). Germinating spore exudates from arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene. Mol. Plant Microbe. Interact. 24, 260-270. Nacry, P., Canivenc, G.v., Muller, B., Azmi, A., Van Onckelen, H., Rossignol, M., and Doumas, P. (2005). A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol. 138, 2061-2074. Nanjareddy, K., Blanco, L., Arthikala, M.-K., Affantrange, X.A., Sánchez, F., and Lara, M. (2014). Nitrate regulates rhizobial and mycorrhizal symbiosis in common bean (Phaseolus vulgaris L.). J. Integr. Plant Biol. 56, 281-298. Normanly, J. (2010). Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb. Perspect. Biol. 2, a001594. Ogilvie, H.A., Imin, N., and Djordjevic, M.A. (2014). Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes. BMC Genom. 15, 870. Ohkubo, Y., Tanaka, M., Tabata, R., Ogawa-Ohnishi, M., and Matsubayashi, Y. (2017). Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat. Plants 3, 17029. Ohyama, K., Ogawa, M., and Matsubayashi, Y. (2008). Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. Plant J. 55, 152-160. Oldroyd, G.E.D. (2013). Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11, 252-263. Oláh, B., Brière, C., Bécard, G., Dénarié, J., and Gough, C. (2005). Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J. 44, 195-207. Péret, B., Middleton, A.M., French, A.P., Larrieu, A., Bishopp, A., Njo, M., Wells, D.M., Porco, S., Mellor, N., Band, L.R., Casimiro, I., Kleine-Vehn, J., Vanneste, S., Sairanen, I., Mallet, R., Sandberg, G., Ljung, K., Beeckman, T., Benkova, E., Friml, J., Kramer, E., King, J.R., De Smet, I., Pridmore, T., Owen, M., and Bennett, M.J. (2013). Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Mol. Syst. Biol. 9, 699. Parapunova, V., Busscher, M., Busscher-Lange, J., Lammers, M., Karlova, R., Bovy, A.G., Angenent, G.C., and de Maagd, R.A. (2014). Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biol. 14, 157. Parizot, B., Roberts, I., Raes, J., Beeckman, T., and De Smet, I. (2012). In silico analyses of pericycle cell populations reinforce their relation with associated vasculature in Arabidopsis. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367, 1479-1488. Parizot, B., Laplaze, L., Ricaud, L., Boucheron-Dubuisson, E., Bayle, V., Bonke, M., De Smet, I., Poethig, S.R., Helariutta, Y., Haseloff, J., Chriqui, D., Beeckman, T., and Nussaume, L. (2008). Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol. 146, 140-148. Paszkowski, U., and Boller, T. (2002). The growth defect of lrt1, a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Planta 214, 584-590. Patel, N., Mohd-Radzman, N.A., Corcilius, L., Crossett, B., Connolly, A., Cordwell, S.J., Ivanovici, A., Taylor, K., Williams, J., Binos, S., Mariani, M., Payne, R.J., and Djordjevic, M.A. (2018). Diverse peptide hormones affecting root growth identified in the Medicago truncatula secreted peptidome. Mol. Cell. Proteomics 17, 160-174. Peñalva, M.A. (2005). Tracing the endocytic pathway of Aspergillus nidulans with FM4-64. Fungal Genet. Biol. 42, 963-975. Penmetsa, R.V., and Cook, D.R. (1997). A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275, 527-530. Pilet, P.E., and Saugy, M. (1987). Effect on root growth of endogenous and applied IAA and ABA: A critical reexamination. Plant Physiol. 83, 33-38. Pimprikar, P., and Gutjahr, C. (2018). Transcriptional regulation of arbuscular mycorrhiza development. Plant Cell Physiol. 59, 678-695. Pozo, M.J., and Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10, 393-398. Pumplin, N., and Harrison, M.J. (2009). Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol. 151, 809-819. Qiao, H., Shen, Z., Huang, S.-s.C., Schmitz, R.J., Urich, M.A., Briggs, S.P., and Ecker, J.R. (2012). Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338, 390-393. Radutoiu, S., Madsen, L.H., Madsen, E.B., Felle, H.H., Umehara, Y., Grønlund, M., Sato, S., Nakamura, Y., Tabata, S., Sandal, N., and Stougaard, J. (2003). Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425, 585-592. Redecker, D., Kodner, R., and Graham Linda, E. (2000). Glomalean Fungi from the Ordovician. Science 289, 1920-1921. Reed, R.C., Brady, S.R., and Muday, G.K. (1998). Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol. 118, 1369-1378. Remy, W., Taylor, T.N., Hass, H., and Kerp, H. (1994). Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl. Acad. Sci. U. S. A. 91, 11841-11843. Roberts, I., Smith, S., De Rybel, B., Van Den Broeke, J., Smet, W., De Cokere, S., Mispelaere, M., De Smet, I., and Beeckman, T. (2013). The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development. J. Exp. Bot. 64, 5371-5381. Roberts, I., Smith, S., Stes, E., De Rybel, B., Staes, A., van de Cotte, B., Njo, M.F., Dedeyne, L., Demol, H., Lavenus, J., Audenaert, D., Gevaert, K., Beeckman, T., and De Smet, I. (2016). CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis. J. Exp. Bot. 67, 4889-4899. Scheres, B. (2007). Stem-cell niches: nursery rhymes across kingdoms. Nat. Rev. Mol. Cell Biol. 8, 345-354. Shaul-Keinan, O., Gadkar, V., Ginzberg, I., Grünzweig, J.M., Chet, I., Elad, Y., Wininger, S., Belausov, E., Eshed, Y., Atzmon, N., Ben-Tal, Y., and Kapulnik, Y. (2002). Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol. 154, 501-507. Shi, X., Gupta, S., and Rashotte, A.M. (2012). Solanum lycopersicum cytokinin response factor (SlCRF) genes: characterization of CRF domain-containing ERF genes in tomato. J. Exp. Bot. 63, 973-982. Smith, S., Zhu, S., Joos, L., Roberts, I., Nikonorova, N., Vu, L.D., Stes, E., Cho, H., Larrieu, ………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81700-
dc.description.abstract植物的側根經常會在與叢枝菌根菌( arbuscular mycorrhizal fungi)共生的時候增加。在我們過去的研究中已經發現,菌根菌共生會使番茄中的C-terminally encoded peptides (CEPs),SlCEP2,表現量下降。外源施用於根部的生長素會減輕由脯胺酸上具有羥基化修飾的CEP2 (CEP2Hyp)胜肽處理所造成的側根形成缺陷,顯示CEP2會通過影響根部生長素相關的路徑來負調控側根形成。SlCEPR1 (CEP receptor 1)可能為CEP2的受體。同樣的,菌根菌共生可能會減輕CEP2胜肽的負面影響來增加側根形成。本研究的主旨在於更進一步探討CEP2、CEPR1以及另一個也會被菌根菌共生負調節的CEP3,在菌根菌共生促進的側根生長中的作用。本研究發現CEP2的表現會可能受到由菌根菌所提供的氮源影響。成熟CEP2胜肽表現在細胞核、細胞質與細胞膜,並且CEP2胜肽可能並不會被運輸到植物的地上部。菌根菌共生與CEP2Hyp胜肽在側根原基形成上具有相反的功能。在根部施用IAA可以減輕CEP2Hyp所造成的側根形成缺陷。相反的,在地上部施用NAA卻不能恢復因CEP2Hyp處理而下降的植物側根密度,表示CEP2Hyp胜肽主要影響是在側根發育扮演重要角色且是來自根部的生長素。與病毒誘導的CEP2基因靜默 (CEP2-VIGS) 植物相反,CEPR1-VIGS植物的側根密度仍會被菌根菌共生誘導增加,顯示CEP2的基因表現量對菌根菌共生促進的側根形成可能更為重要。大量表現CEP3會抑制菌根菌增加側根形成的能力,雖然其確切機制仍然未知。在我們的系統中,CEP2、CEPR1和CEP3對於菌根菌的生長發育非常微弱或無明顯影響。這些結果有助於了解菌根菌共生是如何通過調節CEP胜肽來增進番茄側根形成。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:25:55Z (GMT). No. of bitstreams: 1
U0001-2701202214472000.pdf: 4163230 bytes, checksum: 7a4d0b81748e3eea5faf147dcf0e32ce (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents"摘要 iii Abstract iv List of abbreviation vi Table of Contents ix List of Tables xii List of Figures xiii List of Supplemental Figures xiv List of Appendixes xv Chapter 1 Introduction 1 1.1 The importance of arbuscular mycorrhizal (AM) symbiosis 1 1.2 Lateral root growth is enhanced during AM symbiosis 2 1.3 The potential role of auxin in AM symbiosis-stimulated lateral root growth 6 1.4 C-terminally encoded peptide (CEP) involves symbiosis regulation and lateral root growth 9 1.5 AM symbiosis may enhance tomato lateral root formation through modulating the expression of SlCEP2 peptide 14 1.6 The aim of the research 14 Chapter 2 Materials and methods 16 2.1 Plant materials and growth conditions 16 2.2 Synthetic CEP2Hyp peptide, IAA and shoot NAA treatment 16 2.3 Measurement of lateral root density and length 17 2.4 Observation of unemerged lateral root primordia 18 2.5 Imaging of auxin distribution 18 2.6 Construct generation 19 2.7 Amplification of CEP2 promoter by FPNI-PCR 20 2.8 Promoter sequence analysis for potential cis-elements 21 2.9 Subcellular localization of CEP2 21 2.10 Root staining and quantification of AM fungal colonization level 22 2.11 RNA extraction, cDNA synthesis, and qRT-PCR analysis 22 2.12 Western blot 23 2.13 Virus-mediated transient expression 24 2.14 Accession numbers 25 Chapter 3 Results 26 3.1 High nitrate induced the expression of CEP2 in tomato roots 26 3.2 The cis-elements in CEP2 promoter region 28 3.3 Subcellular localization of CEP2 30 3.4 Lateral root formation altered by AM symbiosis and CEP2Hyp 31 3.5 IAA application on roots restored the LR phenotype affected by CEP2Hyp treatment 32 3.6 CEP2Hyp-caused LR defect was not mitigated by application of NAA on shoot apex 34 3.7 The role of CEPR1 in AM-enhanced LR formation 35 3.8 Transcription factor binding sites on CEPR1 promoter 37 3.9 CEP3 may have a potential contribution to CEP2-leaded LR defects 39 Chapter 4 Discussion 41 4.1 AM fungi-provided nitrate might influence CEP2 expression 41 4.2 The potential regulator of CEP2 remains to be clarified 42 4.3 Subcellular localization of CEP2 is detected on nuclear, cytoplasm and plasma membrane 43 4.4 CEP2 shows an opposite effect on LR formation compared to AM symbiosis 45 4.5 CEP2-mediated LR defect in response to exogenous auxin 46 4.6 The role of CEPR1 in AM symbiosis-enhanced LR formation 47 4.7 The regulation of CEPR1 is still unclear 49 4.8 More evidence is required to understand the function of CEP3 50 4.9 Overall conclusion of this study 52 Tables 53 Figures 62 Supplemental Figures 78 Appendixes 83 References 85 Table 1. Recipe of 1/2 Hoagland solution. 53 Table 2. Primers used in vector construction 55 Table 3. Gene specific primers (GSPs) used in 3’RACE. 56 Table 4. Fusion primers (FPs), FP-specific primers (FSPs) and gene specific primers (GSPs) used in FPNI-PCR 57 Table 5. Primers used in qRT-PCR. 58 Table 6. Information of CEP genes in tomato 60 Figure 1. Fungal colonization and gene expression in response to different nitrate concentrations and R. irregularis. 62 Figure 2. CEP2 promoter cloning results using fusion primer and nested integrated PCR (FPNI-PCR). 63 Figure 3. Prediction of putative cis-elements in the promoter analysis of SlCEP2.. 64 Figure 4. Investigating EGFP-tagged CEP2 fusion protein in CEP2-EGFP overexpressed hairy root tomatoes by western blot. 65 Figure 5. Subcellular localization of CEP2 in tomato root cells 66 Figure 6. Undetectable CEP2-EGFP signal in tomato leaves 67 Figure 7. LR and unemerged LRP phenotype in roots under AM symbiosis. 68 Figure 8. LR and unemerged LRP phenotype in roots in response to CEP2Hyp treatment. 69 Figure 9. Tomato LR growth in response to CEP2Hyp peptide and IAA treatment. 70 Figure 10. Effects of CEP2Hyp treatment and shoot NAA application on tomato LR development. 71 Figure 11. Expression of CEPR1 in response to different nitrate conditions and AM colonization. 72 Figure 12. LR development, colonization level and gene expression of CEPR1 knock-down plants in response to AM symbiosis. 73 Figure 13. Prediction of putative cis-elements in the promoter analysis of CEPR1. 74 Figure 14. Gene structure of CEP3, and its expression under inoculation of AM fungi. 75 Figure 15. Effects of CEP3 overexpression on root phenotype and gene expression. 76 Figure 16. Overall model of this study. 77 Supplemental Figure 1. CEP2 gene expression in response to R. irregularis (Ri) and different phosphate conditions in tomato roots (Provide by Yu-Heng Hsieh). 78 Supplemental Figure 2. Subcellular localization of CEP2 in N. benthamiana cells (Provide by Yu-Heng Hsieh). 79 Supplemental Figure 3. Tomato LR development under CEP2Hyp peptide, IBA and NAA treatment (Provide by Yu-Heng Hsieh). 80 Supplemental Figure 4. Effects of CEP2 expression level on LR phenotype, fungal colonization level and gene expression (Provide by Yu-Heng Hsieh). 81 Supplemental Figure 5. Root phenotype and CEPR1 expression of CEPR1-VIGS tomato root in response to CEP2Hyp treatment (Provide by Yu-Heng Hsieh). 82 Appendix 1. Schematic summary of IAA biosynthesis pathway 83 Appendix 2. Recent research about CEPs in Arabidopsis and M.truncatula 84"
dc.language.isoen
dc.subject生長素zh_TW
dc.subject叢枝菌根菌zh_TW
dc.subject胜肽荷爾蒙zh_TW
dc.subject胜肽受體zh_TW
dc.subject側根形成zh_TW
dc.subjectarbuscular mycorrhizal symbiosisen
dc.subjectC-terminally encoded peptide (CEP)en
dc.subjectauxinen
dc.subjectlateral root formationen
dc.subjectpeptide hormoneen
dc.title探討番茄的CEP2/3胜肽參與叢枝菌根菌促進側根形成之作用zh_TW
dc.titleDeciphering the role of tomato CEP2/3 peptides involved in AM-enhanced lateral root formationen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee謝旭亮(Chien-Hua Huang),鄭秋萍(Nien-Tzu Chang),陳賢明(Ssu-Yuan Chen),林雅芬(Chin-Hao Chang)
dc.subject.keyword叢枝菌根菌,胜肽荷爾蒙,胜肽受體,側根形成,生長素,zh_TW
dc.subject.keywordarbuscular mycorrhizal symbiosis,C-terminally encoded peptide (CEP),lateral root formation,peptide hormone,auxin,en
dc.relation.page100
dc.identifier.doi10.6342/NTU202200230
dc.rights.note未授權
dc.date.accepted2022-01-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2701202214472000.pdf
  未授權公開取用
4.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved