請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81663完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 藍俊宏(Jakey Blue) | |
| dc.contributor.author | Yi-Fung Chen | en |
| dc.contributor.author | 陳誼峰 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:25:27Z | - |
| dc.date.available | 2022-11-24T09:25:27Z | - |
| dc.date.copyright | 2021-07-23 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-14 | |
| dc.identifier.citation | [1] Emarketer. (2020, December 9). 10 Key Digital Trends for 2021: What Marketers Need to Know in the Year Ahead. EMarketer. https://www.emarketer.com/content/10-key-digital-trends-2021 [2] Ian dodson. (2020). 數位行銷的10堂課:SEO x 廣告 x 社群媒體 x Facebook洞察報告 x Google Analytics. 碁峰資訊股份有限公司. http://books.gotop.com.tw/v_ACN031600 [3] 台灣數位媒體應用行銷協會. (2020, June 9). 2019台灣數位廣告量統計報告. 台灣數位媒體應用行銷協會. https://drive.google.com/file/d/1W_Aq64aiK5-FVb3Tc3l_ua7SzGLDhAr0/view [4] Google. (2021, June 10). Cookies and User Identification. Google Developers. https://developers.google.com/analytics/devguides/collection/analyticsjs/cookies-user-id [5] Clifton, B. (2013, July 20). 完全透視流量的祕密. 數位時代-巨思文化. https://www.bnext.com.tw/ [6] Treasure data. (n.d.). The Data-Driven Marketer’s Guide to Multi-Touch Attribution. Treasure Data. https://www.treasuredata.com/wp-content/uploads/multitouch-attribution-guide-arm-treasure-data.pdf [7] Jayawardane, C. H. W., Halgamuge, S. K., Kayande, U. (2015, December). Attributing conversion credit in an online environment: An analysis and classification. In 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI) (pp. 68-73). IEEE. [8] Berman, R. (2018). Beyond the last touch: Attribution in online advertising. Marketing Science, 37(5), 771-792. [9] Kireyev, P., Pauwels, K., Gupta, S. (2016). Do display ads influence search? Attribution and dynamics in online advertising. International Journal of Research in Marketing, 33(3), 475-490. [10] Chatterjee, P., Hoffman, D. L., Novak, T. P. (2003). Modeling the clickstream: Implications for web-based advertising efforts. Marketing Science, 22(4), 520-541. [11] Moe, W. W., Fader, P. S. (2004). Dynamic conversion behavior at e-commerce sites. Management Science, 50(3), 326-335. [12] Pappas, I. O., Kourouthanassis, P. E., Giannakos, M. N., Lekakos, G. (2017). The interplay of online shopping motivations and experiential factors on personalized e-commerce: A complexity theory approach. Telematics and Informatics, 34(5), 730-742. [13] Shao, X., Li, L. (2011, August). Data-driven multi-touch attribution models. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 258-264). [14] Dalessandro, B., Perlich, C., Stitelman, O., Provost, F. (2012, August). Causally motivated attribution for online advertising. In Proceedings of the sixth international workshop on data mining for online advertising and internet economy (pp. 1-9). [15] Zhao, K., Mahboobi, S. H., Bagheri, S. R. (2018). Shapley value methods for attribution modeling in online advertising. arXiv preprint arXiv:1804.05327. [16] Google. (n.d.). Google Ads Data-Driven Attribution Methodology. Google Support. https://support.google.com/google-ads/answer/6394265?hl=zh-Hant. [17] Michalak, T. P., Aadithya, K. V., Szczepanski, P. L., Ravindran, B., Jennings, N. R. (2013). Efficient computation of the Shapley value for game-theoretic network centrality. Journal of Artificial Intelligence Research, 46, 607-650. [18] Butler, P., Peppard, J. (1998). Consumer purchasing on the Internet: Processes and prospects. European management journal, 16(5), 600-610. [19] Shrikumar, A., Greenside, P., Kundaje, A. (2017, July). Learning important features through propagating activation differences. In International Conference on Machine Learning (pp. 3145-3153). PMLR. [20] Emarketer. (n.d.). Global Ecommerce 2020. Ecommerce Decelerates amid Global Retail Contraction but Remains a Bright Spot. EMarketer. https://www.emarketer.com/content/global-ecommerce-2020 [21] 經濟部統計處. (n.d.). 批發、零售及餐飲業動態調查結果. 經濟部. https://www.moea.gov.tw/Mns/dos/content/Content.aspx?menu_id=6831 [22] Katawetawaraks, C., Wang, C. (2011). Online shopper behavior: Influences of online shopping decision. Asian journal of business research, 1(2). [23] Puspitasari, N. B., WP, S. N., Amyhorsea, D. N., Susanty, A. (2018). Consumer’s Buying Decision-Making Process in E-Commerce. In E3S Web of Conferences (Vol. 31, p. 11003). EDP Sciences. [24] 台灣尼爾森市調公司. (n.d.). 網路購物新時代-日趨複雜的消費者旅程. 台灣尼爾森市調公司. https://www.nielsen.com/tw/zh/ [25] Voorveld, H. A., Valkenburg, S. (2013). Cross-media synergy: Exploring the role of the integration of ads in cross-media campaigns. In Advances in Advertising Research (Vol. IV) (pp. 187-200). Springer Gabler, Wiesbaden. [26] Yoon, R. sung, lim, J. soo, egan, B. D. (2015). The Cross-Media Synergy Effect for Mobile and Internet Advertising. Conference: The Cross-Media Synergy Effect for Mobile and Internet Advertising At: Auckland, New Zealand. https://www.researchgate.net/publication/347517547_The_Cross-Media_Synergy_Effect_for_Mobile_and_Internet_Advertising [27] Naik, P. A., Raman, K. (2003). Understanding the impact of synergy in multimedia communications. Journal of marketing research, 40(4), 375-388. [28] Jansen, B. J., Schuster, S. (2011). Bidding on the buying funnel for sponsored search and keyword advertising. Journal of Electronic Commerce Research, 12(1), 1. [29] Zhang, Z., Zhang, J., Wei, Z., Ren, H., Song, W., Pan, J., Liu, J., Zhang, Y., Qiu, L. (2019). Application of tabu search-based Bayesian networks in exploring related factors of liver cirrhosis complicated with hepatic encephalopathy and disease identification. Scientific reports, 9(1), 1-8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81663 | - |
| dc.description.abstract | 隨著現今消費者已經將線上購物當作主要的購物管道之一,加上數位廣告媒體在近10年的大幅興起,使得電子商務成為近年來零售業的顯學,知名品牌廠商以及產品零售商皆陸續建立自有電子商務網站,提供消費者線上購買的選擇。隨著2020年新冠肺炎對於實體零售業的影響,其年對年的成長率降至最近5年的新低點,儘管如此,台灣市場的整體零售業仍小幅攀升0.24%,主因為以電子商務為首的非實體店面零售業,其年對年的成長率已經創下有史以來的新高,高達了12.4%。由此可見,電子商務已儼然成為現在零售廠商必有的佈局。 然而,電子商務招攬客戶的方式與實體零售業不同,會大幅依賴數位媒體的訊息傳播,帶來進店客戶,但現在數位媒體類型眾多,同時因手機的快速發展,消費者使用媒體的時間過於破碎,消費者因為使用裝置,使用時間,媒體類型等不同,以及消費意願高低等質化因素,在網路上進行產品購買行為前,會進行一連串的線上消費者購買決策流程後,多次藉由不同媒體道進出電子商務網站,才會完成一次的購買轉換。加上現在網路技術突破,消費者在網站中的所有行為都可被記錄追蹤,所以應用數位媒體以及消費者的相關資料,建立基於資料驅動,以提高電子商務交易的決策方式,成為現今電子商務人員最重要的討論議題。 本研究先回顧數位行銷及多管道電子商務歸因模型的當前發展,消費者購買決策流程理論及其與跨媒體廣告活動的關係,將被整合成一因果影響推論架構,透過建立一貝氏網路,發展以資料驅動的電子商務歸因模型,應用貝氏網路能夠結合過去的成效資料以及領域知識來建立分析模型,使預測結果符合行銷人員在做策略規劃的思維。相較於其他基於規則或是純以數據計算、難以解釋的機器學習演算法,貝氏網路更具解釋性且容易應用在行銷實務當中。同時,貝氏網路也可以根據任何已知結果來推理發生的原因,利用視覺化的圖形網路結構,了解每個流量管道對於電子商務交易數的影響,讓我們更容易解釋模型分析結果,進而協助電子行銷人員完善優化下一階段的數位媒體行銷策略規劃,逐步提升電子商務銷售成效。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:25:27Z (GMT). No. of bitstreams: 1 U0001-1407202120510600.pdf: 6155456 bytes, checksum: 9bbcd3623da5fd3d0a638c4535698b36 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 i Abstract iii 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 論文架構 4 第二章 文獻探討 5 2.1 數位行銷簡介 5 2.2 多管道電子商務歸因模型簡介 12 2.3 線上消費者購買決策流程簡介 20 2.4 跨媒體廣告活動綜效對消費者購買決策之影響 26 第三章 發展結合消費者決策流程以及因果推論的電子商務歸因模型 28 3.1 消費者決策流程分析及流量管道資料預處理 31 3.2 利用互相關係數演算法確認流量管道相關程度 34 3.3 貝氏網路理論 35 3.4 貝氏網路實驗架構設計 37 3.5 形成數位媒體成效洞見 40 第四章 研究結果分析與探討 41 4.1實驗資料結果分析 41 4.2現有方法比較討論 50 第五章 結論與未來展望 60 參考文獻 61 附錄 A 互相關矩陣熱點圖 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 數位廣告 | zh_TW |
| dc.subject | 數位媒體 | zh_TW |
| dc.subject | 數位行銷 | zh_TW |
| dc.subject | 電子商務 | zh_TW |
| dc.subject | 決策支援 | zh_TW |
| dc.subject | 歸因模型 | zh_TW |
| dc.subject | 貝氏網路 | zh_TW |
| dc.subject | 消費者購買決策流程 | zh_TW |
| dc.subject | 因果推論 | zh_TW |
| dc.subject | consumer purchase decision process | en |
| dc.subject | causal-effect inference | en |
| dc.subject | Bayesian network | en |
| dc.subject | attribution models | en |
| dc.subject | decision support | en |
| dc.subject | e-commerce | en |
| dc.subject | digital marketing | en |
| dc.subject | digital media | en |
| dc.subject | digital advertising | en |
| dc.title | 結合消費者購買決策流程與因果推論的最佳化電子商務銷售轉換歸因模型 | zh_TW |
| dc.title | Optimal Decision Attribution Modeling on the E-Commerce Sales Conversion Integrating Consumer Decision-Making Process and Casual Inference | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡易霖(Hsin-Tsai Liu),黃奎隆(Chih-Yang Tseng) | |
| dc.subject.keyword | 消費者購買決策流程,因果推論,貝氏網路,歸因模型,決策支援,電子商務,數位行銷,數位媒體,數位廣告, | zh_TW |
| dc.subject.keyword | consumer purchase decision process,causal-effect inference,Bayesian network,attribution models,decision support,e-commerce,digital marketing,digital media,digital advertising, | en |
| dc.relation.page | 75 | |
| dc.identifier.doi | 10.6342/NTU202101472 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-07-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1407202120510600.pdf 未授權公開取用 | 6.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
