請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81659完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳俊傑(Chun-Chieh Wu) | |
| dc.contributor.author | Chien-Hsuan Yen | en |
| dc.contributor.author | 顏建軒 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:25:23Z | - |
| dc.date.available | 2022-11-24T09:25:23Z | - |
| dc.date.copyright | 2021-08-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-21 | |
| dc.identifier.citation | Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 135, 1715-1731. Chan, K. T. F., and J. C. L. Chan, 2012: Size and Strength of Tropical Cyclones as Inferred from QuikSCAT Data. Monthly Weather Review, 140, 811-824. ——, 2013: Angular Momentum Transports and Synoptic Flow Patterns Associated with Tropical Cyclone Size Change. Monthly Weather Review, 141, 3985-4007. Chang, C.-C., and C.-C. Wu, 2017: On the processes leading to the rapid intensification of Typhoon Megi (2010). Journal of the Atmospheric Sciences, 74, 1169-1200. Chen, S., R. L. Elsberry, and P. A. Harr, 2017: Modeling Interaction of a Tropical Cyclone with Its Cold Wake. Journal of the Atmospheric Sciences, 74, 3981-4001. Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. Journal of the Atmospheric Sciences, 60, 366-376. Demaria, M., and J. Kaplan, 1994: Sea Surface Temperature and the Maximum Intensity of Atlantic Tropical Cyclones. Journal of Climate, 7, 1324-1334. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of Atmospheric Sciences, 46, 3077-3107. Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophysica Norvegica, 5, 19. Emanuel, K., 2000: A Statistical Analysis of Tropical Cyclone Intensity. Monthly Weather Review, 128, 1139-1152. Emanuel, K. A., 1986: An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance. Journal of Atmospheric Sciences, 43, 585-605. ——, 1989: The Finite-Amplitude Nature of Tropical Cyclogenesis. Journal of Atmospheric Sciences, 46, 3431-3456. Fudeyasu, H., and Y. Wang, 2011: Balanced Contribution to the Intensification of a Tropical Cyclone Simulated in TCM4: Outer-Core Spinup Process*. Journal of the Atmospheric Sciences, 68, 430-449. Hill, K. A., and G. M. Lackmann, 2009: Influence of Environmental Humidity on Tropical Cyclone Size. Monthly Weather Review, 137, 3294-3315. Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly weather review, 122, 927-945. Kain, J. S., 2004: The Kain–Fritsch convective parameterization: an update. Journal of applied meteorology, 43, 170-181. Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. Journal of Atmospheric Sciences, 47, 2784-2802. Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. Journal of Climate, 17, 3555-3575. Lee, C.-Y., and S. S. Chen, 2014: Stable Boundary Layer and Its Impact on Tropical Cyclone Structure in a Coupled Atmosphere–Ocean Model. Monthly Weather Review, 142, 1927-1944. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Monthly weather review, 138, 1587-1612. Lin, I.-I., I.-F. Pun, and C.-C. Wu, 2009: Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part II: Dependence on Translation Speed. Monthly Weather Review, 137, 3744-3757. Lin, I.-I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I.-F. Pun, 2005: The Interaction of Supertyphoon Maemi (2003) with a Warm Ocean Eddy. Monthly Weather Review, 133, 2635-2649. Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons’ Intensification. Monthly Weather Review, 136, 3288-3306. Ma, Z., J. Fei, L. Liu, X. Huang, and X. Cheng, 2013: Effects of the Cold Core Eddy on Tropical Cyclone Intensity and Structure under Idealized Air–Sea Interaction Conditions. Monthly Weather Review, 141, 1285-1303. Maclay, K. S., M. DeMaria, and T. H. Vonder Haar, 2008: Tropical Cyclone Inner-Core Kinetic Energy Evolution. Monthly Weather Review, 136, 4882-4898. Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Monthly Weather Review, 112, 1408-1418. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research: Atmospheres, 102, 16663-16682. Moyer, A. C., J. L. Evans, and M. Powell, 2007: Comparison of observed gale radius statistics. Meteorology and Atmospheric physics, 97, 41-55. Price, J. F., 1981: Upper Ocean Response to a Hurricane. Journal of Physical Oceanography, 11, 153-175. Pun, I.-F., L. I-I, L. Chun-Chi, and C.-C. Wu, 2018: Influence of the Size of Supertyphoon Megi (2010) on SST Cooling. Monthly Weather Review, 146, 661-677. Radu, R., R. Toumi, and J. Phau, 2014: Influence of atmospheric and sea surface temperature on the size of hurricane Catarina. Quarterly Journal of the Royal Meteorological Society, 140, 1778-1784. Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. Journal of the Atmospheric Sciences, 67, 44-70. Rotunno, R., and K. A. Emanuel, 1987: An Air–Sea Interaction Theory for Tropical Cyclones. Part II: Evolutionary Study Using a Nonhydrostatic Axisymmetric Numerical Model. Journal of Atmospheric Sciences, 44, 542-561. Schade, L. R., and K. A. Emanuel, 1999: The Ocean’s Effect on the Intensity of Tropical Cyclones: Results from a Simple Coupled Atmosphere–Ocean Model. Journal of the Atmospheric Sciences, 56, 642-651. Shen, L.-Z., C.-C. Wu, and F. Judt, 2021: The Role of Surface Heat Fluxes on the Size of Typhoon Megi (2016). Journal of the Atmospheric Sciences. Steiner, M., R. A. Houze Jr, and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. Journal of Applied Meteorology and Climatology, 34, 1978-2007. Tsuji, H., H. Itoh, and K. Nakajima, 2016: Mechanism Governing the Size Change of Tropical Cyclone-Like Vortices. Journal of the Meteorological Society of Japan. Ser. II, 94, 219-236. Wang, H., C.-C. Wu, and Y. Wang, 2016: Secondary eyewall formation in an idealized tropical cyclone simulation: Balanced and unbalanced dynamics. Journal of the Atmospheric Sciences, 73, 3911-3930. Weatherford, C. L., and W. M. Gray, 1988a: Typhoon Structure as Revealed by Aircraft Reconnaissance. Part I: Data Analysis and Climatology. Monthly Weather Review, 116, 1032-1043. ——, 1988b: Typhoon Structure as Revealed by Aircraft Reconnaissance. Part II: Structural Variability. Monthly Weather Review, 116, 1044-1056. Wu, C.-C., C.-Y. Lee, and I. I. Lin, 2007: The Effect of the Ocean Eddy on Tropical Cyclone Intensity. Journal of the Atmospheric Sciences, 64, 3562-3578. Wu, C.-C., W.-T. Tu, I.-F. Pun, I.-I. Lin, and M. S. Peng, 2016: Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. Journal of Geophysical Research: Atmospheres, 121, 153-167. Xu, J., and Y. Wang, 2010a: Sensitivity of the Simulated Tropical Cyclone Inner-Core Size to the Initial Vortex Size. Monthly Weather Review, 138, 4135-4157. ——, 2010b: Sensitivity of Tropical Cyclone Inner-Core Size and Intensity to the Radial Distribution of Surface Entropy Flux. Journal of the Atmospheric Sciences, 67, 1831-1852. Zhu, Z., and P. Zhu, 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. Journal of Geophysical Research: Atmospheres, 119, 8049-8072. 李宗勇, 2019: 中等風切環境下颱風強度的演變-低層環境風風向的角色, 大氣科學研究所, 國立臺灣大學, 1-112 pp. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81659 | - |
| dc.description.abstract | 本研究使用Advanced Research core of the Weather Research and Forecasting Model (WRF-ARW) ver. 4.3.1大氣模式與WRF內建的Price-Weller-Pinkle (PWP) 海洋模式進行理想模擬,在不同海洋上部熱力結構下,颱風大小的演變。在本研究中,設計有5個成員,其中4個是有考慮海洋耦合過程的成員 (OCP),在海洋初始場中植入不同海溫26 ℃ 深度─D26的水平均值的溫度剖面;以及僅考慮大氣過程的成員 (UCP)。 結果顯示,擁有較深厚暖水層較深厚的成員,會發展成較大的颱風,而沒有開啟海洋耦合模式的UCP,其颱風大小則是所有成員中最大的。D26愈淺的OCP成員,其上部海溫冷卻的程度愈大,而SST冷卻的量值與cold wake的範圍也愈大。SST的冷卻造成海表焓通量的減少,且SST冷卻愈顯著的成員,海表焓通量減少愈明顯。此外,海表焓通量的減少呈現出不對稱的分佈,會影響其上的颱風的對流發展。由於颱風大小主要受到外圍雨帶影響,因此我們特別關注在颱風的外核區域。在OCP成員中,處在cold wake下游的右後象限與右前象限颱風雨帶的對流活動明顯降低,非絕熱加熱減少。透過雲種分析,我們發現OCP成員中外核的積雲受到SST冷卻的影響較為顯著,在右後象限出現頻率較低。另一方面,層雲在外核的右後象限並未顯著地減少,顯示層雲對於SST冷卻較不敏感。而非絕熱加熱的減少,則會影響到颱風的次環流以及絕對角動量的輸入。從絕對角動量分析,我們發現在外核地區的邊界層內,由於地表磨擦會抵消掉大部分絕對角動量的平均徑向平流,因此在這個高度層內擾動項所帶來的正貢獻是不能忽略的。而在邊界層頂以上,由於遠離了海表的影響,平均徑向平流成為角動量趨勢的主要正貢獻項。而D26愈深的OCP成員,其量值也愈大,能夠將外圍更大的角動量帶進來,使風場進一步擴張。最後,我們透過Sawyer-Eliassen診斷,進一步分析雨帶的非絕熱加熱對外核絕對角動量趨勢的貢獻。D26愈深的OCP成員,雨帶加熱所貢獻的平均項的角動量平流愈大,有利於風場的擴張,最終形成較大的颱風。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:25:23Z (GMT). No. of bitstreams: 1 U0001-2007202115285000.pdf: 5636152 bytes, checksum: 5ff9271bfa3776bb6908216dffdf310e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 I 摘要 II Abstract III 目錄 V 表目錄 VII 圖目錄 VIII 第一章 前言 1 1.1 颱風海洋交互作用 1 1.1.1 海洋冷卻過程 1 1.1.2 海洋冷卻對颱風結構的影響 2 1.1.3 海洋冷卻對颱風大小的影響 3 1.2 影響颱風大小的因子 3 1.2.1 海表熱通量對颱風大小的影響 4 1.2.2 大氣環境條件對颱風大小的影響 4 1.2.3 颱風次環流與颱風大小的關係 5 1.3 研究動機與目的 6 第二章 研究工具與方法 7 2.1 三維全物理海洋與大氣模式 7 2.1.1 大氣模式介紹 7 2.1.2 海洋模式介紹 7 2.1.3 模式設定 8 2.2 實驗設計 9 2.2.1 海洋耦合實驗 9 2.2.2 未耦合實驗(UCP) 9 2.2.3 實驗流程 9 第三章 實驗結果 11 3.1 強度與大小演變 11 3.2 海表面溫度變化 12 3.3 上層海洋結構變化 12 3.4 焓通量變化-軸對稱分析 13 3.5 焓通量變化-非軸對稱性探討 13 3.6 颱風外核對流的非軸對稱特徵 14 3.7 雲種分析-各象限的比較 15 3.8 絕對角動量的分析 16 3.9 Sawyer-Eliassen診斷 18 第四章 總結與未來工作 21 4.1 總結 21 4.2 未來工作 23 參考文獻 24 表格 29 圖片 30 | |
| dc.language.iso | zh-TW | |
| dc.subject | 颱風大小 | zh_TW |
| dc.subject | 雨帶 | zh_TW |
| dc.subject | 海表焓通量 | zh_TW |
| dc.subject | 非絕熱加熱 | zh_TW |
| dc.subject | SST冷卻 | zh_TW |
| dc.subject | 絕對角動量 | zh_TW |
| dc.subject | tropical cyclone size | en |
| dc.subject | absolute angular momentum | en |
| dc.subject | rainband | en |
| dc.subject | diabatic heating | en |
| dc.subject | surface enthalpy flux | en |
| dc.subject | SST cooling | en |
| dc.title | 海洋上部熱力結構對颱風大小的影響 | zh_TW |
| dc.title | The Impact of Upper Ocean Thermal Structure on Tropical Cyclone Size | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖宇慶(Hsin-Tsai Liu),林依依(Chih-Yang Tseng) | |
| dc.subject.keyword | 颱風大小,SST冷卻,海表焓通量,非絕熱加熱,雨帶,絕對角動量, | zh_TW |
| dc.subject.keyword | tropical cyclone size,SST cooling,surface enthalpy flux,diabatic heating,rainband,absolute angular momentum, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU202101597 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-07-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2007202115285000.pdf 未授權公開取用 | 5.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
