請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81640完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鐘嘉德(Char-Dir Chung) | |
| dc.contributor.author | Jy-Chin Liao | en |
| dc.contributor.author | 廖芝青 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:25:04Z | - |
| dc.date.available | 2022-11-24T09:25:04Z | - |
| dc.date.copyright | 2021-08-10 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-01 | |
| dc.identifier.citation | [1] L. J. Cimini, Jr., “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing, “IEEE Trans. Commun., vol. COM-33, no.7, pp. 665-675, July 1985. [2] R. V. Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Artech House, 2000. [3] A. R. S. Bahai and B. R. Saltzberg, Multi-Carrier Digital Communications: Theory and Applications of OFDM. Kluwer Academic/Plenum Publishers, 1999. [4] B. Muquet, M. de courville, and P. Duhamel, “Subspace-based blind and semi-blind channel estimation for OFDM systems,” IEEE Trans. Signal Process., vol. 50, no. 7, pp. 1699-1712, Jul. 2002. [5] S. Zhou and G. B. Giannakis, “Subspace-based blind and semi-blind channel estimation for OFDM systems,” IEEE Trans Commun., vol. 49, no. 8, pp. 1402-1414, Aug. 2001. [6] M.-X. Chang and Y. T. Su, “Model-based channel estimation for OFDM signals in Rayleigh fading,” IEEE Trans. Commun., vol. 50, no. 4, pp. 540-544, Apr. 2002. [7] K. Hung and D. W. Lin, “Pilot-based LMMSE channel estimation for OFDM systems with power-delay profile approximation,” IEEE Trans. Veh. Technol., vol. 59, no. 1, pp. 150-159, Jan. 2010. [8] M.-H. Hsieh and C.-H. Wei, “Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels,” IEEE Trans. Consum. Electron., vol. 44, no. 1, pp. 217-225, Feb. 1998. [9] J. W. Choi and Y. H. Lee, “Design of 2-D channel estimation filters for OFDM systems,” Proc. IEEE Intl. Conf. on Commun., vol. 4, pp. 2568–2572, May 2005. [10] K. J. Kim, H. G. Hwang, K. J. Choi, and K. S. Kim, “Low-complexity DFT-based channel estimation with leakage nulling for OFDM systems,” IEEE Commun. Lett., vol. 18, no. 3, pp. 415-418, Mar. 2014. [11] F. Gu, Y. Fan, L. Wang, X. Tan, and J. Wei, “A universal channel estimation algorithm based on DFT smoothing filtering,” IEEE Access, vol. 7, pp. 129883-129891, 2019. [12] J. Seo, S. Jang, J. Yang, W. Jeon and D. K. Kim, “Analysis of pilot-aided channel estimation with optimal leakage suppression for OFDM systems,” IEEE Commun. Lett., vol. 14, no. 9, pp. 809-811, Sep. 2010. [13] M. Morelli and U. Mengali, “A comparison of pilot-aided channel estimation methods for OFDM systems,” IEEE Trans. Sig. Process., vol. 49, no. 12, pp. 3065-3073, Dec. 2001 [14] J.-W. Choi and Y.-H. Lee, “Optimum pilot pattern for channel estimation in OFDM systems,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2083-2088, Sep. 2005. [15] S. Tong, B. M. Sadler, and M. Dong, “Optimal training and redundant precoding for block transmissions with application to wireless OFDM,” IEEE Trans. Commun., vol. 50, no. 12, pp. 2113-2123, Dec. 2002. [16] R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile OFDM system,” IEEE Trans. Consumer Electron., vol. 44, no. 3, pp. 1122-1128, Aug. 1998. [17] W.-C. Chen and C.-D. Chung, “Spectrally efficient OFDM pilot waveform for channel estimation,” IEEE Trans. Commun., vol. 65, no. 1, pp. 387-402, Jan. 2017. [18] C.-D. Chung and W.-C. Chen, “Preamble sequence design for spectral compactness and initial synchronization in OFDM,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1428-1443, Feb. 2018. [19] C.-D. Chung, W.-C. Chen, and C.-K. Yang, “Constant-amplitude sequences for spectrally compact OFDM training waveforms,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 12974-12991, Nov. 2020. [20] S. Adireddy, L. Tong, and H. Viswanathan, “Optimal placement of training for frequency-selective block-fading channels,” IEEE Trans. Inform. Theory, vol. 48, no. 8, pp. 2338-2353, Aug. 2002. [21] M.-X. Chang and Y. T. Su, “Performance analysis of equalized OFDM systems in Rayleigh fading,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 721-732, Oct. 2002. [22] W. Zhang, X. Xia, and P.-C. Ching, “Optimal training and pilot pattern design for OFDM systems in Rayleigh fading,” IEEE Trans. Broadcast., vol. 52, no. 4, pp. 505-514, Dec. 2006. [23] X. Cai and G. B. Giannakis, “Error probability minimizing pilots for OFDM with M-PSK modulation over Rayleigh-fading channels,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 146-155, Jan. 2004. [24] P. Tan and N. C. Beaulieu, “Effect of channel estimation error on bit error probability in OFDM systems over. Rayleigh and Rician fading channels,” IEEE Trans. Commun., vol. 56, no. 4, pp. 675-685, Apr. 2008. [25] 3GPP TS 36.211 V12.3.0, LTE; Evolved universal terrestrial radio access (E-UTRA): Physical channels and modulation, Oct. 2014. [26] IEEE Standard 802.22-2011, Part 22: Cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands, Jul. 2011. [27] 3GPP TS 38.211 V15.4, 5G NR: Physical channels and modulation, Dec. 2018. [28] M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels, John Wiley Sons, Inc., 2005. [29] M. K. Simon and M. Alouini, “A unified approach to the probability of error for noncoherent and differentially coherent modulations over generalized fading channels,” IEEE Trans. Commun., vol. 46, no. 12, pp. 1625-1638, Dec. 1998. [30] R. A. Horn and C. R. Johnson, Matrix Analysis., Cambridge Univ. Press, 1985. [31] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York: McGraw-Hill, 2008. [32] M. Schwartz, W. R. Bennett, and S. Stein, Communication Systems and Techniques. New York: McGraw-Hill, 1966. [33] M. K. Simon, S. M. Hinedi, and W. C. Lindsey, Digital Communication Techniques: Signal Design and Detection. Englewood Cliffs, N.J.: Prentice Hall, 1995. [34] H. L. Van Trees, Detection, Estimation, and Modulation Theory. John Wiley Sons Inc., 1968. [35] R.-Y. Yen, H. Liu and W.-K. Tsai, “QAM symbol error rate in OFDM systems over frequency-selective fast Ricean-fading channels,” IEEE Trans. Veh. Technol., vol. 57, no. 2, pp. 1322-1325, Mar. 2008. [36] R. J. Muirhead, Aspects of Multivariate Statical Theory. John Wiley Sons Inc., 2005. [37] A. A. M. Saleh, A. J. Rustako, and R. S. Roman, “Distributed antennas for indoor radio communications,” IEEE Trans. Commun., vol. 35, no. 12, pp. 1245-1251, Dec. 1987. [38] L. Arevalo, R. C. de Lamare, M. Haardt, and R. Sampaio-Neto, “Uplink block diagonalization for massive MIMO-OFDM systems with distributed antennas,” in Proc. IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Process., pp. 389-392, Dec. 2015. [39] H. Arslan and T. Yucek, “Delay spread estimation for wireless communication systems,” in Proc. IEEE 8th Int. Symp. Comput. and Commun., pp. 282-287, Kemer-Antalya, Turkey, Jul. 2003. [40] J.H. Mathews and K.K. Fink, Numerical Methods Using Matlab, 4th edition. Prentice Hall Inc. New Jersey, USA, 2004. [41] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81640 | - |
| dc.description.abstract | "在現行的正交分頻多工(OFDM)系統中做數據解調時,領導信號(pilot symbols)經常穿插到均勻分布的子載波中以促進通道估測(channel estimation)。當分段頻散通道的衰減程度加劇時,基於廣義概度比檢定(GLRT)的原理,由等間隔擺放的領導符號輔助的通道估測能夠實現在同一個正交分頻多工塊中逐個符號的數據解調。為了進一步對抗更加衰減更加劇烈的分段頻散通道,採用單輸入多輸出(SIMO)天線分集系統可以增強基於廣義概度比檢定的解調性能。在本文中,對於所考慮的基於廣義概度比檢定的正交分頻多工單輸入多輸出系統解調,在固定和隨機分段頻散通道上採用各種二維的調變方式,分析推導出位元錯誤率(bit error rate, BEP)的上界和近似值,並通過模擬驗證其緊密性。數值分析顯示,當通道的衰減程度較小或單輸入多輸出系統的接收天線數足夠多時,位元錯誤率的上界表現出良好的緊密性,反之可以採用近似主導界線。透過推導出的界線,針對信號雜訊比、數據與領導信號功率比、天線分集、通道條件和領導信號長度等不同參數,分析且研究所考慮的基於廣義概度比檢定的正交分頻多工單輸入多輸出系統之錯誤性能特徵。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:25:04Z (GMT). No. of bitstreams: 1 U0001-2707202123521000.pdf: 4150280 bytes, checksum: 86116ae167f42c0bf3ea5b333380fbe5 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "中文摘要 i Abstract ii Contents iii List of Figures v List of Tables xiii 1 Introduction 1 1.1 Review of OFDM Systems 1 1.2 Review of Channel Estimation 2 1.2.1 Review of Pilot Patterns 3 1.2.2 Reviews of Channel Estimation Methods 3 1.3 Thesis Motivation, Overview, and Contributions 4 1.4 Notations 6 2 Pilot-¬Aided OFDM System Model 7 2.1 Introduction 7 2.2 System Model 7 2.3 GLRT¬-based Decision Rule 10 2.3.1 Decision Rule with Constant Amplitude Pilot Sequence 13 3 Performance Analysis 15 3.1 Introduction15 3.2 Conditional BEP Upper Bound 15 3.2.1 Pairwise Error Probability for MPSK 17 3.3 Average BEP Upper Bound 18 4 Performance Results 23 4.1 Introduction 23 4.2 ZC Sequences 23 4.3 BEP Characteristics in Fixed Block Dispersive Channel 24 4.3.1 Fixed Block Dispersive Channel 24 4.3.2 Conditional BEP Upper Bound Performance 25 4.4 Average BEP Characteristics in Random Block Dispersive Channel 34 4.4.1 Random Block Dispersive Channel 34 4.4.2 Unconditional BEP Upper Bound Performance 36 5 Conclusion 50 Bibliography 51 Appendix A Derivation of (3.2) 56 Appendix B Derivation of (3.10) 60" | |
| dc.language.iso | en | |
| dc.subject | 分段頻散通道 | zh_TW |
| dc.subject | 正交分頻多工 | zh_TW |
| dc.subject | 領導式通道估測 | zh_TW |
| dc.subject | 廣義概度比檢定 | zh_TW |
| dc.subject | 單出入多輸出 | zh_TW |
| dc.subject | Orthogonal frequency division multiplexing | en |
| dc.subject | block dispersive channel | en |
| dc.subject | single-input multiple-output | en |
| dc.subject | generalized likelihood ratio test | en |
| dc.subject | pilot-aided channel estimation | en |
| dc.title | 基於廣義概度比檢定和領導式通道估測的正交分頻多工單輸入多輸出系統之解調性能分析 | zh_TW |
| dc.title | Performance Analysis of GLRT-Based OFDM SIMO Demodulation System With Pilot-Aided Channel Estimation | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳維昌(Wei-Chang Chen) | |
| dc.contributor.oralexamcommittee | 李穎(Hsin-Tsai Liu),林茂昭(Chih-Yang Tseng),蘇育德 | |
| dc.subject.keyword | 正交分頻多工,領導式通道估測,廣義概度比檢定,單出入多輸出,分段頻散通道, | zh_TW |
| dc.subject.keyword | Orthogonal frequency division multiplexing,pilot-aided channel estimation,generalized likelihood ratio test,single-input multiple-output,block dispersive channel, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU202101827 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2707202123521000.pdf 未授權公開取用 | 4.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
