Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81630Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 劉貞佑(Chen-Yu Liu) | |
| dc.contributor.author | Yun-Siang Jhang | en |
| dc.contributor.author | 張芸湘 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:24:56Z | - |
| dc.date.available | 2022-11-24T09:24:56Z | - |
| dc.date.copyright | 2021-08-18 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-04 | |
| dc.identifier.citation | Environmental Protection Agency, U.S., Furniture flame retardancy partnership: Environmental profiles of chemical flame-retardant alternatives for low-density polyurethane foam. Environmental Protection Agency, Sep, http://www.epa.gov/dfe (last access: 24 September 2013), 2005. Marklund, A., B. Andersson, and P. Haglund, Screening of organophosphorus compounds and their distribution in various indoor environments. Chemosphere, 2003. 53(9): p. 1137-46. Wei, G.L., et al., Organophosphorus flame retardants and plasticizers: sources, occurrence, toxicity and human exposure. Environ Pollut, 2015. 196: p. 29-46. Sugai, H., Crud in solvent washing process for nuclear fuel reprocessing. Journal of Nuclear Science and Technology, 1992. 29(5): p. 445-453. Abbasi, G., et al., Product screening for sources of halogenated flame retardants in Canadian house and office dust. Sci Total Environ, 2016. 545-546: p. 299307. van der Veen, I. and J. de Boer, Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere, 2012. 88(10): p. 1119-53. Wang, R., et al., Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, north China. Environ Pollut, 2015. 198: p. 172-8. Ma, S., et al., Occurrence and distribution of typical semi-volatile organic chemicals (SVOCs) in paired indoor and outdoor atmospheric fine particle samples from cities in southern China. Environ Pollut, 2021. 269: p. 116123. Li, J., et al., Occurrence of organophosphate flame retardants in drinking water from China. Water Res, 2014. 54: p. 53-61. Zeng, X., et al., Occurrence and distribution of organophosphorus flame retardants/plasticizers in coastal sediments from the Taiwan Strait in China. Mar Pollut Bull, 2020. 151: p. 110843. 李振華, 室內粉塵中內分泌干擾活性 , 磷系阻燃劑 , 溴化阻燃劑 , 與多環芳香烴之檢測 . 成功大學環境工程學系學位論文, 2017: p. 1-107. Mizouchi, S., et al., Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses. Chemosphere, 2015. 123: p. 17-25. Cristale, J., et al., Sorption and desorption of organophosphate esters with different hydrophobicity by soils. Environ Sci Pollut Res Int, 2017. 24(36): p.27870-27878. Luo, Q., et al., Distribution, source apportionment and ecological risks of organophosphate esters in surface sediments from the Liao River, Northeast China. Chemosphere, 2020. 250: p. 126297. McGoldrick, D.J., et al., Organophosphate flame retardants and organosiloxanes in predatory freshwater fish from locations across Canada. Environ Pollut, 2014. 193: p. 254-261. Giulivo, M., et al., Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European river basins. Sci Total Environ, 2017. 586: p. 782-791. He, C., et al., Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure. Environ Pollut, 2018. 235: p. 670-679. Suzuki, T., et al., Metabolism of tributyl phosphate in male rats. Journal of Agricultural and Food Chemistry, 1984. 32(3): p. 603-610. Society of Chemical Manufacturers and Affiliates (SOCMA), E.C.H.A. Tributyl phosphate (ECHA, EC number: 204-800-2). Available from: https://echa.europa.eu/registration-dossier/-/registered-dossier/13548/7/2/1# Volkel, W., et al., Toxicokinetic of tris(2-butoxyethyl) phosphate (TBOEP) in humans following single oral administration. Arch Toxicol, 2018. 92(2): p. 651660. Zhao, F., et al., Levels of Blood Organophosphorus Flame Retardants and Association with Changes in Human Sphingolipid Homeostasis. Environ Sci Technol, 2016. 50(16): p. 8896-903. Sundkvist, A.M., U. Olofsson, and P. Haglund, Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk. J Environ Monit, 2010. 12(4): p. 943-51. LeBel, G.L. and D.T. Williams, Determination of organic phosphate triesters in human adipose tissue. J Assoc Off Anal Chem, 1983. 66(3): p. 691-9. Liu, Y.E., et al., Organophosphorus flame retardants in a typical freshwater food web: Bioaccumulation factors, tissue distribution, and trophic transfer. Environmental Pollution, 2019. 255. An, J., et al., The cytotoxicity of organophosphate flame retardants on HepG2, A549 and Caco-2 cells. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2016. 51(11): p. 980-8. Ren, G., et al., Tributylphosphate (TBP) and tris (2-butoxyethyl) phosphate (TBEP) induced apoptosis and cell cycle arrest in HepG2 cells. Toxicol Res (Camb), 2017. 6(6): p. 902-911. Kojima, H., et al., In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors. Toxicology, 2013. 314(1): p. 7683. Oishi, H., S. Oishi, and K. Hiraga, Toxicity of tri-n-butyl phosphate, with special reference to organ weights, serum components and cholinesterase activity in male rats. Toxicol Lett, 1980. 6(2): p. 81-5. Saitoh, M., et al., Subchronic toxicity study of tributoxyethyl phosphate in Wistar rats. Eisei Shikenjo hokoku. Bulletin of National Institute of Hygienic Sciences, 1994(112): p. 27-39. TSUDA, M., et al., A 14-WEEK ORAL TOXICITY STUDY OF TRIBUTOXYETHYL PHOSPHATE (TBEP) IN RATS. Journal of toxicological sciences, 1993. 18(4): p. 421. Ma, Z., et al., Effects of tris (2-butoxyethyl) phosphate (TBOEP) on endocrine axes during development of early life stages of zebrafish (Danio rerio). Chemosphere, 2016. 144: p. 1920-7. Araki, A., et al., Phosphorus flame retardants in indoor dust and their relation to asthma and allergies of inhabitants. Indoor Air, 2014. 24(1): p. 3-15. Hao, Z., et al., Organophosphorus Flame Retardants Impair Intracellular Lipid Metabolic Function in Human Hepatocellular Cells. Chem Res Toxicol, 2019. 32(6): p. 1250-1258. Yan, S., et al., Comparison of the Toxicity Effects of Tris(1,3-dichloro-2propyl)phosphate (TDCIPP) with Tributyl Phosphate (TNBP) Reveals the Mechanism of the Apoptosis Pathway in Asian Freshwater Clams (Corbicula fluminea). Environ Sci Technol, 2020. 54(11): p. 6850-6858. Krivoshiev, B.V., et al., Toxicogenomics of the flame retardant tris (2butoxyethyl) phosphate in HepG2 cells using RNA-seq. Toxicol In Vitro, 2018. 46: p. 178-188. Zhou, L., et al., Tributyl phosphate impairs the urea cycle and alters liver pathology and metabolism in mice after short-term exposure based on a metabonomics study. Sci Total Environ, 2017. 603-604: p. 77-85. Salovsky, P., V. Shopova, and V. Dancheva, Antioxidant defense mechanisms in the lung toxicity of tri-n-butyl phosphate. Am J Ind Med, 1998. 33(1): p. 11-5. Arnold, L.L., et al., Tributyl phosphate effects on urine and bladder epithelium in male Sprague-Dawley rats. Fundamental and Applied Toxicology, 1997. 40(2): p. 247-255. Auletta, C.S., M.L. Weiner, and W.R. Richter, A dietary toxicity/oncogenicity study of tributyl phosphate in the rat. Toxicology, 1998. 128(2): p. 125-134. Chen, T.H., et al., Community-based multiple screening model: design, implementation, and analysis of 42,387 participants. Cancer, 2004. 100(8): p. 1734-43. Yeh, Y.P., et al., Evaluation of abdominal ultrasonography mass screening for hepatocellular carcinoma in Taiwan. Hepatology, 2014. 59(5): p. 1840-9. Haggar, F.A. and R.P. Boushey, Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg, 2009. 22(4): p. 191-7. Zhang, L., Q. Lu, and C. Chang, Epigenetics in Health and Disease. Adv Exp Med Biol, 2020. 1253: p. 3-55. Moore, L.D., T. Le, and G. Fan, DNA methylation and its basic function. Neuropsychopharmacology, 2013. 38(1): p. 23-38. Martin, E.M. and R.C. Fry, Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annu Rev Public Health, 2018. 39: p. 309-333. Pop, S., et al., Phytochemicals in cancer prevention: modulating epigenetic alterations of DNA methylation. Phytochemistry Reviews, 2019. 18(4): p. 10051024. Bukowski, K., et al., DNA damage and methylation induced by organophosphate flame retardants: Tris(2-chloroethyl) phosphate and tris(1-chloro-2-propyl) phosphate in human peripheral blood mononuclear cells. Hum Exp Toxicol, 2019. 38(6): p. 724-733. Soubry, A., et al., Human exposure to flame-retardants is associated with aberrant DNA methylation at imprinted genes in sperm. Environ Epigenet, 2017. 3(1): p. dvx003. Horvath, S. and K. Raj, DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet, 2018. 19(6): p. 371-384. Quach, A., et al., Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY), 2017. 9(2): p. 419-446. Durso, D.F., et al., Acceleration of leukocytes' epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer. Oncotarget, 2017. 8(14): p. 23237-23245. Zheng, Y., et al., Blood Epigenetic Age may Predict Cancer Incidence and Mortality. EBioMedicine, 2016. 5: p. 68-73. Horvath, S., DNA methylation age of human tissues and cell types. Genome Biol, 2013. 14(10): p. R115. Hannum, G., et al., Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell, 2013. 49(2): p. 359-367. Weidner, C.I., et al., Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol, 2014. 15(2): p. R24. Daunay, A., et al., Evaluation of six blood-based age prediction models using DNA methylation analysis by pyrosequencing. Sci Rep, 2019. 9(1): p. 8862. Bacalini, M.G., et al., Systemic Age-Associated DNA Hypermethylation of ELOVL2 Gene: In Vivo and In Vitro Evidences of a Cell Replication Process. J Gerontol A Biol Sci Med Sci, 2017. 72(8): p. 1015-1023. Wang, J., et al., Suppression of FHL2 expression induces cell differentiation and inhibits gastric and colon carcinogenesis. Gastroenterology, 2007. 132(3): p. 1066-76. Amann, T., et al., FHL2 suppresses growth and differentiation of the colon cancer cell line HT-29. Oncol Rep, 2010. 23(6): p. 1669-74. 何采築, 以超高效液相層析搭配飛行時間串聯式質譜儀篩查人體血清中之環境汙染物 . 臺灣大學環境衛生研究所學位論文, 2019: p. 1-131. Chen, J.-Y., 以超高效能液相層析 / 串聯式飛行時間質譜術篩查血漿中環境汙染物 . 臺灣大學環境與職業健康科學研究所學位論文, 2020: p. 1-83. Garagnani, P., et al., Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell, 2012. 11(6): p. 1132-4. Tian, Y., et al., ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics, 2017. 33(24): p. 3982-3984. Zhou, W., P.W. Laird, and H. Shen, Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res, 2017. 45(4): p. e22. Chen, C.H., et al., Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum Mol Genet, 2016. 25(24): p. 5321-5331. Nordlund, J., et al., Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol, 2013. 14(9): p. r105. Cheung, K., et al., Correlation of Infinium HumanMethylation450K and MethylationEPIC BeadChip arrays in cartilage. Epigenetics, 2020. 15(6-7): p. 594-603. Du, P., et al., Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics, 2010. 11: p. 587. Mani, S., et al., DNA methylation changes associated with risk factors in tumors of the upper aerodigestive tract. Epigenetics, 2012. 7(3): p. 270-7. Macrae, F.A., Colorectal cancer: Epidemiology, risk factors, and protective factors. Uptodate com [ažurirano 9. lipnja 2017, 2016. Chou, C.L., et al., Role for gender in colorectal cancer risk: a Taiwan population-based study. Int J Colorectal Dis, 2013. 28(7): p. 1001-8. Gao, X., et al., DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies. Clin Epigenetics, 2015. 7: p. 113. Hannan, L.M., E.J. Jacobs, and M.J. Thun, The association between cigarette smoking and risk of colorectal cancer in a large prospective cohort from the United States. Cancer Epidemiol Biomarkers Prev, 2009. 18(12): p. 3362-7. Barrow, T.M., et al., Smoking is associated with hypermethylation of the APC 1A promoter in colorectal cancer: the ColoCare Study. J Pathol, 2017. 243(3): p. 366-375. Chen, H., et al., Metabolic syndrome, metabolic comorbid conditions and risk of early-onset colorectal cancer. Gut, 2021. 70(6): p. 1147-1154. Butcher, L.M. and S. Beck, Probe Lasso: a novel method to rope in differentially methylated regions with 450K DNA methylation data. Methods, 2015. 72: p. 218. Fennell, L., et al., Integrative Genome-Scale DNA Methylation Analysis of a Large and Unselected Cohort Reveals 5 Distinct Subtypes of Colorectal Adenocarcinomas. Cell Mol Gastroenterol Hepatol, 2019. 8(2): p. 269-290. Milutin Gasperov, N., et al., DNA Methylome Distinguishes Head and Neck Cancer from Potentially Malignant Oral Lesions and Healthy Oral Mucosa. Int J Mol Sci, 2020. 21(18). Boormans, J.L., et al., Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer. Int J Cancer, 2013. 133(2): p. 335-45. Hou, B., et al., Tumor suppressor LHPP regulates the proliferation of colorectal cancer cells via the PI3K/AKT pathway. Oncol Rep, 2020. 43(2): p. 536-548. Basile, M.S., et al., KCNMA1 Expression is Downregulated in Colorectal Cancer via Epigenetic Mechanisms. Cancers (Basel), 2019. 11(2). Hla, T. and A.J. Dannenberg, Sphingolipid signaling in metabolic disorders. Cell Metab, 2012. 16(4): p. 420-34. Ogretmen, B., Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer, 2018. 18(1): p. 33-50. Hou, M., et al., Organophosphate esters and their metabolites in paired human whole blood, serum, and urine as biomarkers of exposure. Environ Int, 2020. 139: p. 105698. Environmental Protection Agency, U.S., Provisional Peer-Reviewed Toxicity Values for Tributyl phosphate. 2010. Laham, S., B.R. Broxup, and G.W. Long, Subchronic oral toxicity of tributoxyethyl phosphate in the Sprague-Dawley rat. Arch Environ Health, 1985. 40(1): p. 12-7. Chen, R., et al., Organophosphate flame retardants (OPFRs) induce genotoxicity in vivo: A survey on apoptosis, DNA methylation, DNA oxidative damage, liver metabolites, and transcriptomics. Environ Int, 2019. 130: p. 104914. Yamada, J., et al., Purification, molecular cloning, and genomic organization of human brain long-chain acyl-CoA hydrolase. J Biochem, 1999. 126(6): p. 10139. Jung, S.H., et al., Acyl-CoA thioesterase 7 is involved in cell cycle progression via regulation of PKC ζ–p53–p21 signaling pathway. Cell death disease, 2017. 8(5): p. e2793-e2793. Feng, H. and X. Liu, Interaction between ACOT7 and LncRNA NMRAL2P via methylation regulates gastric cancer progression. Yonsei Medical Journal, 2020. 61(6): p. 471. Ellis, J.M., G.W. Wong, and M.J. Wolfgang, Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity. Mol Cell Biol, 2013. 33(9): p. 1869-82. Tubb, B., et al., Testis fascin (FSCN3): a novel paralog of the actin-bundling protein fascin expressed specifically in the elongate spermatid head. Exp Cell Res, 2002. 275(1): p. 92-109. Lacey, M., et al., Data showing atherosclerosis-associated differentially methylated regions are often at enhancers. Data Brief, 2019. 23: p. 103812. Kim, H.T., et al., Myh10 deficiency leads to defective extracellular matrix remodeling and pulmonary disease. Nat Commun, 2018. 9(1): p. 4600. Yang, Q., et al., Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet, 2010. 3(6): p. 523-30. Fernandez-Torres, J., et al., Common gene variants interactions related to uric acid transport are associated with knee osteoarthritis susceptibility. Connect Tissue Res, 2019. 60(3): p. 219-229. Vega-Benedetti, A.F., et al., Clustered protocadherins methylation alterations in cancer. Clin Epigenetics, 2019. 11(1): p. 100. Yu, J., et al., DNA microarray and signal transduction analysis in pulmonary artery smooth muscle cells from heritable and idiopathic pulmonary arterial hypertension subjects. J Cell Biochem, 2015. 116(3): p. 386-97. Li, W., et al., Mutations of CNTNAP1 led to defects in neuronal development. JCI Insight, 2020. 5(21). Henegar, C., et al., Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol, 2008. 9(1): p. R14. Chang, Y., et al., Comparative assessment of neurotoxicity impacts induced by alkyl tri-n-butyl phosphate and aromatic tricresyl phosphate in PC12 cells. Environ Toxicol, 2020. 35(12): p. 1326-1333. Honda, T. and M. Inui, PDZRN3 protects against apoptosis in myoblasts by maintaining cyclin A2 expression. Sci Rep, 2020. 10(1): p. 1140. Lucito, R., et al., Copy-number variants in patients with a strong family history of pancreatic cancer. Cancer Biol Ther, 2007. 6(10): p. 1592-9. Yang, N., et al., ZNF521 which is downregulated by miR-802 suppresses malignant progression of Hepatocellular Carcinoma through regulating Runx2 expression. J Cancer, 2020. 11(19): p. 5831-5839. Chiarella, E., et al., ZNF521 Represses Osteoblastic Differentiation in Human Adipose-Derived Stem Cells. Int J Mol Sci, 2018. 19(12). Hindupur, S.K., et al., The protein histidine phosphatase LHPP is a tumour suppressor. Nature, 2018. 555(7698): p. 678-682. Zheng, J., et al., Down-regulation of LHPP in cervical cancer influences cell proliferation, metastasis and apoptosis by modulating AKT. Biochem Biophys Res Commun, 2018. 503(2): p. 1108-1114. Yadav, K., et al., MSN, MWCNT and ZnO nanoparticle-induced CHO-K1 cell polarisation is linked to cytoskeleton ablation. J Nanobiotechnology, 2021. 19(1): p. 45. Lee, K., et al., Precursor miR-886, a novel noncoding RNA repressed in cancer, associates with PKR and modulates its activity. RNA, 2011. 17(6): p. 1076-89. Yu, M.C., et al., Differential hypermethylation of the VTRNA2-1 promoter in hepatocellular carcinoma as a prognostic factor: Tumor marker prognostic study. Int J Surg, 2020. 79: p. 282-289. Kang, K., et al., A Genome-Wide Methylation Approach Identifies a New Hypermethylated Gene Panel in Ulcerative Colitis. Int J Mol Sci, 2016. 17(8). Klein, J. and A. Sato, The HLA system. First of two parts. N Engl J Med, 2000. 343(10): p. 702-9. Deng, X., et al., Analysis of whole genome-wide methylation and gene expression profiles in visceral omental adipose tissue of pregnancies with gestational diabetes mellitus. J Chin Med Assoc, 2018. 81(7): p. 623-630. Katrinli, S., et al., PTSD is associated with increased DNA methylation across regions of HLA-DPB1 and SPATC1L. Brain Behav Immun, 2021. 91: p. 429436. Thavarajah, T., et al., The plasma peptides of sepsis. Clin Proteomics, 2020. 17: p. 26. Decker, C.E., et al., Tmem178 acts in a novel negative feedback loop targeting NFATc1 to regulate bone mass. Proc Natl Acad Sci U S A, 2015. 112(51): p. 15654-9. Rosmarin, D., et al., A candidate gene study of capecitabine-related toxicity in colorectal cancer identifies new toxicity variants at DPYD and a putative role for ENOSF1 rather than TYMS. Gut, 2015. 64(1): p. 111-20. Garcia-Gonzalez, X., et al., Variants in CDA and ABCB1 are predictors of capecitabine-related adverse reactions in colorectal cancer. Oncotarget, 2015. 6(8): p. 6422-30. Ruiz-Llorente, S., et al., Genome-wide analysis of Pax8 binding provides new insights into thyroid functions. BMC Genomics, 2012. 13: p. 147. Martin-Montalvo, A., et al., Transient PAX8 Expression in Islets During Pregnancy Correlates With beta-Cell Survival, Revealing a Novel Candidate Gene in Gestational Diabetes Mellitus. Diabetes, 2019. 68(1): p. 109-118. Mukhopadhyay, D., et al., Thyroid hormone regulates hepatic triglyceride mobilization and apolipoprotein B messenger ribonucleic Acid editing in a murine model of congenital hypothyroidism. Endocrinology, 2003. 144(2): p. 711-9. Chen, S., et al., Fibromodulin regulates collagen fibrillogenesis during peripheral corneal development. Dev Dyn, 2010. 239(3): p. 844-54. Meng, Q., et al., Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders. EBioMedicine, 2016. 7: p. 157-66. Jazi, M.F., et al., Recombinant fibromodulin has therapeutic effects on diabetic nephropathy by down-regulating transforming growth factor-beta1 in streptozotocin-induced diabetic rat model. Iran J Basic Med Sci, 2016. 19(3): p. 265-71. Khan, F.U., et al., Wnt/beta-Catenin Pathway-Regulated Fibromodulin Expression Is Crucial for Breast Cancer Metastasis and Inhibited by Aspirin. Front Pharmacol, 2019. 10: p. 1308. Wu, D. and P. Yotnda, Production and detection of reactive oxygen species (ROS) in cancers. J Vis Exp, 2011(57). Wu, W.S., The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev, 2006. 25(4): p. 695-705. Giraudo, M., et al., Multigenerational effects evaluation of the flame retardant tris(2-butoxyethyl) phosphate (TBOEP) using Daphnia magna. Aquat Toxicol, 2017. 190: p. 142-149. Fuller, C.M., Time for TMEM? J Physiol, 2012. 590(23): p. 5931-2. Pathak, G.A., et al., Genome-Wide Methylation of Mild Cognitive Impairment in Mexican Americans Highlights Genes Involved in Synaptic Transport, Alzheimer's Disease-Precursor Phenotypes, and Metabolic Morbidities. J Alzheimers Dis, 2019. 72(3): p. 733-749. Acevedo, N., et al., DNA Methylation Levels in Mononuclear Leukocytes from the Mother and Her Child Are Associated with IgE Sensitization to Allergens in Early Life. Int J Mol Sci, 2021. 22(2). Zhi, Q., et al., Podocalyxin-like protein promotes gastric cancer progression through interacting with RUN and FYVE domain containing 1 protein. Cancer Sci, 2019. 110(1): p. 118-134. Barral, J.M., et al., Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science, 2002. 295(5555): p. 669-71. Jilani, Y., et al., UNC45A localizes to centrosomes and regulates cancer cell proliferation through ChK1 activation. Cancer Lett, 2015. 357(1): p. 114-120. Bazzaro, M., et al., Myosin II co-chaperone general cell UNC-45 overexpression is associated with ovarian cancer, rapid proliferation, and motility. Am J Pathol, 2007. 171(5): p. 1640-9. Cardenas, A., et al., Controlled human exposures to diesel exhaust: a human epigenome-wide experiment of target bronchial epithelial cells. Environ Epigenet, 2021. 7(1): p. dvab003. Levin, A., et al., PSMD5 Inactivation Promotes 26S Proteasome Assembly during Colorectal Tumor Progression. Cancer Res, 2018. 78(13): p. 3458-3468. Tsvetkov, P., et al., Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers. Proc Natl Acad Sci U S A, 2017. 114(2): p. 382-387. Kim, C., et al., Vascular RhoJ is an effective and selective target for tumor angiogenesis and vascular disruption. Cancer Cell, 2014. 25(1): p. 102-17. Ferretti, R., et al., Morgana/chp-1, a ROCK inhibitor involved in centrosome duplication and tumorigenesis. Dev Cell, 2010. 18(3): p. 486-95. Urabe, F., et al., miR-26a regulates extracellular vesicle secretion from prostate cancer cells via targeting SHC4, PFDN4, and CHORDC1. Sci Adv, 2020. 6(18): p. eaay3051. Gibbs, G.M., et al., Glioma pathogenesis-related 1-like 1 is testis enriched, dynamically modified, and redistributed during male germ cell maturation and has a potential role in sperm-oocyte binding. Endocrinology, 2010. 151(5): p. 2331-42. Ren, C., et al., Identification and characterization of RTVP1/GLIPR1-like genes, a novel p53 target gene cluster. Genomics, 2006. 88(2): p. 163-72. Bolund, A.C.S., et al., Lung function discordance in monozygotic twins and associated differences in blood DNA methylation. Clin Epigenetics, 2017. 9: p. 132. Quenneville, S., et al., In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell, 2011. 44(3): p. 361-72. Bak, M., et al., Genome-wide DNA methylation analysis of transient neonatal diabetes type 1 patients with mutations in ZFP57. BMC Med Genet, 2016. 17: p. 29. Dhingra, R., et al., Evaluating DNA methylation age on the Illumina MethylationEPIC Bead Chip. PLoS One, 2019. 14(4): p. e0207834. Pidsley, R., et al., Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol, 2016. 17(1): p. 208. Du, J., et al., A review of organophosphorus flame retardants (OPFRs): occurrence, bioaccumulation, toxicity, and organism exposure. Environ Sci Pollut Res Int, 2019. 26(22): p. 22126-22136. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81630 | - |
| dc.description.abstract | "前言:磷酸三丁酯(TBP)和磷酸三(2-丁氧基乙基)酯(TBEP)多應用於阻燃劑上。由於用途廣泛、易於釋放,已在環境甚至人體中被發現。雖然 TBP 和TBEP 半衰期短,因有可能在脂質中積累的特性,使大眾關注它們對健康所帶來的危害。現今對於 TBP 和 TBEP 對人體的相關研究仍不足,先前的研究顯示 TBP和 TBEP 會導致代謝紊亂、神經毒性、內分泌干擾和致癌等影響。特別是,TBP和 TBEP 可以影響基因表達,它們誘導 Caco-2 結腸癌細胞損傷,而 TBP 有可能通過非基因毒性機制誘導膀胱癌。這些證據讓我們想深入研究 TBP、TBEP 和結直腸癌之間的關聯。本研究目的為 (1) 找出與暴露 TBP 和 TBEP 有關 DNA 甲基化水平會改變的潛在基因,以及 (2) 基因 DNA 甲基化的改變是否與 TBP 和TBEP 暴露相關的健康危害有關。 研究方法:本研究是於彰化市的一項巢式病例對照研究(包含結直腸癌組、腺瘤組與對照組), 並使用社區整合式篩檢數據進行分析。被診斷患有其他癌症或診斷日期在篩查日期之前的樣本將被排除在我們的研究之外。暴露物濃度分析由陳家揚教授實驗室進行測量。我們使用 Illumina MethylationEPIC BeadChip 微陣列測量血液樣本中 DNA 甲基化水平。晶片分析包括過濾、標準化以及針對細胞類型和批次效應做校正。研究人群將被分為兩組已進行後續分析,包含癌症相關研究人群(排除腺瘤組樣本)和代謝合併症相關研究人群(排除結直腸癌組樣本),暴露物濃度將進行對數轉換。差異甲基化探針分析(DMP)會應用三個回歸模型做分析,包括模型一是單變量,模型二針對性別和年齡進行校正,模型三則是針對性別、年齡和吸煙狀況進行校正。會選擇 p 值小於 5E-05、有對應到基因名並且出現在三個模型中的重複基因進行討論。p 值小於 0.005 且在未分組模型三找到的基因將進行 KEGG 路徑分析。我們利用 Bumhunter 方法中的置換(permutation)步驟來分析 742,496 個探針中的差異甲基化區域 (DMR)。將選擇每組中 p 值小於 0.05 的前三個 DMR 和於三組間重疊的 DMR 進行討論。表觀遺傳年齡的計算有五種方法,包括 Horvath、Hannum、Weidner、ELOVL2、FHL2。使用 SAS 9.4 和 R 3.6.3 軟體進行統計分析和繪圖。 研究結果:暴露與代謝合併症相關參數間的關聯性沒有統計顯著發現。在癌症研究人口的 DMP 分析裡,TBP 分析的模型 1 中發現 2 個基因(MYH10 、R3HDM2), 而 TBEP 分析中則在三個模型間共同發現 5 個重疊基因(PDZRN3、ZNF521、TDRD1、 LHPP 、 LOC100128253)。 值得注意的是,TBEP 分析中發現 KCNMA1(cg23533270,β= 0.25,p 值= 3.14E-05(模型一)) 與 UBXN11(cg00852783,β= -0.77,p 值= 4.69E-05(模型三)),它們的 DNA 甲基化水平在結直腸癌與對照組間具有顯著差異(p 值= 0.045(KCNMA1); p 值= 0.040(UBXN11))。在代謝合併症的研究人群裡,TBP 的分析中發現兩個重疊基因(PCDHGA2 和 CNTNAP1)。 在沒有校正暴露變相的回歸模型結果顯示 CNTNAP1 (cg21946667,β= -0.60,p 值= 2.67E-05 (模型一)) 的 DNA 甲基化水平與三酸甘油酯(p 值= 0.031(模型一))呈負相關,然而在回歸模型中調整暴露變項後,沒有 DMPs 達到統計顯著性。在 TBP 的 DMR 分析中。MIR886 和 RIBC2 在三個研究人群中被共同發現。在 TBEP 的分析則沒有重疊的 DMR 於三個不同的研究人群間。此外,癌症研究人群的 DMR 分析顯示 CAT(TBP:β= 0.042,p 值= 8.84E-04;TBEP:β= 0.033,p 值= 4.21E-03)在 TBP 和 TBEP 中均有發現且與致癌作用有關。路徑分析顯示大多數基因參與的途徑為致癌作用。在表觀遺傳年齡的分析裡,我們沒有發現暴露與年齡加速間有顯著相關。 討論與結論:我們的研究表明,有些基因甲基化水平與暴露(TBP 和 TBEP)有關。但由於暴露濃度較低,本研究並無發現暴露與代謝合併症參數之間有顯著關聯性,雖然在 DMPs 或 DMRs 中有找到一些基因與致癌作用或是與發炎、神經系統相關疾病有關。然而,有些基因的 DNA 甲基化改變與我們假設不一致且所造成的健康效應與我們研究試圖探索的健康影響無關。為了確認暴露對於健康的影響,未來仍須進一步探索暴露、DNA 甲基化水平和健康影響間之關聯性。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:24:56Z (GMT). No. of bitstreams: 1 U0001-0408202110595000.pdf: 2593110 bytes, checksum: e10e158fe36627ea8a702c968d67e909 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii Abstract vi Contents ix List of Figures xii List of Tables xiii Chapter 1 Introduction 1 1.1 Tributyl phosphate and tris(2-butoxyethyl) phosphate 1 1.1.1 Usage 1 1.1.2 Environmental distribution 1 1.1.3 Metabolism 3 1.1.4 Health effects 4 1.2 Colorectal cancer 6 1.2.1 The incidence of colorectal cancer in Changhua community 6 1.2.2 The association between exposure and colorectal cancer 7 1.3 DNA methylation 8 1.4 DNA methylation age 9 1.5 Study aims 11 Chapter 2 Materials and methods 12 2.1 Study population 12 2.1.1 Study design 12 2.1.2 Data collection 13 2.2 Exposure measurement of TBP and TBEP 14 2.2.1 Qualitative exposure assessment 14 2.2.2 Quantitative exposure assessment 14 2.2.3 Validation testing 15 2.3 Analysis of DNA methylation 16 2.3.1 DNA extraction and quality control 16 2.3.2 Microarray for DNA methylation analysis 17 2.4 DNA methylation age 17 2.5 Statistical analysis 18 2.5.1 ChAMP analysis 20 Chapter 3 Results 29 3.1 Descriptive statistics 29 3.2 The potential health effects were associated with exposure 31 3.3 ChAMP data analysis 32 3.3.1. Differential methylated probes (DMPs) 33 3.3.2. Pathway analysis 37 3.3.3. Differentially methylated regions (DMRs) 38 3.4 DNA methylation age 40 Chapter 4 Discussion 42 4.1 The comparison of exposure concentration with other studies 42 4.2 The genes related to exposure in previous studies 43 4.3 The function of differential methylated probes (DMPs) found in our study 46 4.3.1. Tributyl phosphate 46 4.3.2. Tris(2-butoxyethyl) phosphate 50 4.4 The function differential methylated region found in our study 54 4.4.1. Tributyl phosphate 54 4.4.2. Tris(2-butoxyethyl) phosphate 59 4.5 The association between exposure and DNA methylation age acceleration 63 4.6 Strengths and limitations 64 Chapter 5 Conclusions 67 Reference 68 Supplements 101 | |
| dc.language.iso | en | |
| dc.subject | 磷酸三丁酯(TBP) | zh_TW |
| dc.subject | 彰化 | zh_TW |
| dc.subject | DNA 甲基化 | zh_TW |
| dc.subject | 磷酸三(2-丁氧基乙基)酯(TBEP) | zh_TW |
| dc.subject | 表觀遺傳學 | zh_TW |
| dc.subject | Changhua | en |
| dc.subject | Epigenetics | en |
| dc.subject | tris(2-butoxyethyl) phosphate (TBEP) | en |
| dc.subject | Tributyl phosphate (TBP) | en |
| dc.subject | DNA methylation | en |
| dc.title | 暴露磷酸三正丁酯與磷酸三(2-正丁氧乙基) 酯對彰化地區民眾基因甲基化與健康效應的影響 | zh_TW |
| dc.title | Effects of Tributyl Phosphate (TBP) and Tris(2-butoxyethyl) Phosphate (TBEP) on DNA Methylation Levels and Health Effects in the Changhua Communities | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳美蓮(Hsin-Tsai Liu),潘文驥(Chih-Yang Tseng),盧子彬 | |
| dc.subject.keyword | 磷酸三丁酯(TBP),磷酸三(2-丁氧基乙基)酯(TBEP),表觀遺傳學,DNA 甲基化,彰化, | zh_TW |
| dc.subject.keyword | Tributyl phosphate (TBP),tris(2-butoxyethyl) phosphate (TBEP),Epigenetics,DNA methylation,Changhua, | en |
| dc.relation.page | 109 | |
| dc.identifier.doi | 10.6342/NTU202102068 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-08-05 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
| Appears in Collections: | 環境與職業健康科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-0408202110595000.pdf Restricted Access | 2.53 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
