Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81614
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳亘承(Hsuan-Chen Wu)
dc.contributor.authorWen-Chia Chenen
dc.contributor.author陳玟嘉zh_TW
dc.date.accessioned2022-11-24T09:24:46Z-
dc.date.copyright2021-11-09
dc.date.issued2021
dc.date.submitted2021-08-27
dc.identifier.citationAcord, J., Masters, M. (2004). Expression from the Escherichia coli dapA promoter is regulated by intracellular levels of diaminopimelic acid. FEMS microbiology letters, 235(1), 131-137. Ahmed, O. B., Lage, H. (2019). Bacteria-mediated delivery of RNAi effector molecules against viral HPV16-E7 eradicates oral squamous carcinoma cells (OSCC) via apoptosis. Cancer gene therapy, 26(5), 166-173. Araki, N., Johnson, M. T., Swanson, J. A. (1996). A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. The Journal of cell biology, 135(5), 1249-1260. Barbé, S., Van Mellaert, L., Anné, J. (2006). The use of clostridial spores for cancer treatment. Journal of applied microbiology, 101(3), 571-578. Blaese, R. M., Culver, K. W., Miller, A. D., Carter, C. S., Fleisher, T., Clerici, M., . . . Tolstoshev, P. (1995). T lymphocyte-directed gene therapy for ADA− SCID: initial trial results after 4 years. science, 270(5235), 475-480. Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8), 2551-2561. Bone, R. C. (1992). Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome). Jama, 268(24), 3452-3455. Retrieved from https://jamanetwork.com/journals/jama/articlepdf/402195/jama_268_24_037.pdf Carrero, J. A., Calderon, B., Unanue, E. R. (2004). Listeriolysin O from Listeria monocytogenes is a lymphocyte apoptogenic molecule. The Journal of immunology, 172(8), 4866-4874. Cathomen, T., Joung, J. K. (2008). Zinc-finger nucleases: the next generation emerges. Molecular Therapy, 16(7), 1200-1207. Chandrasekaran, A. P., Song, M., Kim, K.-S., Ramakrishna, S. (2018). Different methods of delivering CRISPR/Cas9 into cells. Progress in molecular biology and translational science, 159, 157-176. Chang, W.-W., Lee, C.-H. (2014). Salmonella as an innovative therapeutic antitumor agent. International journal of molecular sciences, 15(8), 14546-14554. Choi, J., Dang, Y., Abraham, S., Ma, H., Zhang, J., Guo, H., . . . Shankar, P. (2016). Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene therapy, 23(7), 627-633. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., . . . Marraffini, L. A. (2013). Multiplex genome engineering using CRISPR/Cas systems. science, 339(6121), 819-823. Conner, S. D., Schmid, S. L. (2003). Regulated portals of entry into the cell. Nature, 422(6927), 37-44. Cox, D. B. T., Platt, R. J., Zhang, F. (2015). Therapeutic genome editing: prospects and challenges. Nature medicine, 21(2), 121-131. Dinarello, C. A., Gelfand, J. A., Wolff, S. M. (1993). Anticytokine strategies in the treatment of the systemic inflammatory response syndrome. Jama, 269(14), 1829-1835. Duan, F. F., Liu, J. H., March, J. C. (2015). Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes. Diabetes, 64(5), 1794-1803. Duong, M. T.-Q., Qin, Y., You, S.-H., Min, J.-J. (2019). Bacteria-cancer interactions: bacteria-based cancer therapy. Experimental molecular medicine, 51(12), 1-15. Eid, A., Mahfouz, M. M. (2016). Genome editing: the road of CRISPR/Cas9 from bench to clinic. Experimental molecular medicine, 48(10), e265-e265. Forbes, N. S. (2010). Engineering the perfect (bacterial) cancer therapy. Nature Reviews Cancer, 10(11), 785-794. Gericke, D., Engelbart, K. (1964). Oncolysis by clostridia. II. Experiments on a tumor spectrum with a variety of clostridia in combination with heavy metal. Cancer research, 24(2 Part 1), 217-221. Gravekamp, C., Paterson, Y. (2010). Harnessing Listeria monocytogenes to target tumors. Cancer biology therapy, 9(4), 257-265. Grillot-Courvalin, C., Goussard, S., Huetz, F., Ojcius, D. M., Courvalin, P. (1998). Functional gene transfer from intracellular bacteria to mammalian cells. Nature biotechnology, 16(9), 862-866. Grozdanov, L., Raasch, C., Schulze, J., Sonnenborn, U., Gottschalk, G., Hacker, J., Dobrindt, U. (2004). Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. Journal of bacteriology, 186(16), 5432-5441. Gurbatri, C. R., Lia, I., Vincent, R., Coker, C., Castro, S., Treuting, P. M., . . . Danino, T. (2020). Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Science translational medicine, 12(530). Harrington, L. B., Paez-Espino, D., Staahl, B. T., Chen, J. S., Ma, E., Kyrpides, N. C., Doudna, J. A. (2017). A thermostable Cas9 with increased lifetime in human plasma. Nature communications, 8(1), 1-8. He, L., Yang, H., Liu, F., Chen, Y., Tang, S., Ji, W., . . . Hu, S. (2017). Escherichia coli Nissle 1917 engineered to express Tum-5 can restrain murine melanoma growth. Oncotarget, 8(49), 85772. Hoffman, R. M., Zhao, M. (2014). Methods for the development of tumor-targeting bacteria. Expert opinion on drug discovery, 9(7), 741-750. Hosseinidoust, Z., Mostaghaci, B., Yasa, O., Park, B.-W., Singh, A. V., Sitti, M. (2016). Bioengineered and biohybrid bacteria-based systems for drug delivery. Advanced drug delivery reviews, 106, 27-44. Hu, Y.-B., Dammer, E. B., Ren, R.-J., Wang, G. (2015). The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Translational neurodegeneration, 4(1), 1-10. Isberg, R. R., Falkow, S. (1985). A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature, 317(6034), 262-264. Ishida, Y., Agata, Y., Shibahara, K., Honjo, T. (1992). Induced expression of PD‐1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. The EMBO journal, 11(11), 3887-3895. Jaumouillé, V., Waterman, C. M. (2020). Physical constraints and forces involved in phagocytosis. Frontiers in immunology, 11, 1097. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science, 337(6096), 816-821. Juliano, R., Carver, K. (2015). Cellular uptake and intracellular trafficking of oligonucleotides. Advanced drug delivery reviews, 87, 35-45. Köster, S., Van Pee, K., Hudel, M., Leustik, M., Rhinow, D., Kühlbrandt, W., . . . Yildiz, Ö. (2014). Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation. Nature communications, 5(1), 1-14. Kalderon, D., Richardson, W. D., Markham, A. F., Smith, A. E. (1984). Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature, 311(5981), 33-38. Kalderon, D., Roberts, B. L., Richardson, W. D., Smith, A. E. (1984). A short amino acid sequence able to specify nuclear location. Cell, 39(3), 499-509. Keir, M. E., Francisco, L. M., Sharpe, A. H. (2007). PD-1 and its ligands in T-cell immunity. Current opinion in immunology, 19(3), 309-314. Khan, S. A., Everest, P., Servos, S., Foxwell, N., Zähringer, U., Brade, H., . . . Maskell, D. J. (1998). A lethal role for lipid A in Salmonella infections. Molecular microbiology, 29(2), 571-579. Kumar, A., Vimal, A., Kumar, A. (2016). Why Chitosan? From properties to perspective of mucosal drug delivery. International journal of biological macromolecules, 91, 615-622. Laner, A., Goussard, S., Ramalho, A., Schwarz, T., Amaral, M., Courvalin, P., . . . Grillot-Courvalin, C. (2005). Bacterial transfer of large functional genomic DNA into human cells. Gene therapy, 12(21), 1559-1572. Lange, A., Mills, R. E., Lange, C. J., Stewart, M., Devine, S. E., Corbett, A. H. (2007). Classical nuclear localization signals: definition, function, and interaction with importin α. Journal of Biological Chemistry, 282(8), 5101-5105. Lee, Y.-W., Luther, D. C., Kretzmann, J. A., Burden, A., Jeon, T., Zhai, S., Rotello, V. M. (2019). Protein delivery into the cell cytosol using non-viral nanocarriers. Theranostics, 9(11), 3280. Leventhal, D. S., Sokolovska, A., Li, N., Plescia, C., Kolodziej, S. A., Gallant, C. W., . . . Abin-Fuentes, A. (2020). Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nature communications, 11(1), 1-15. Li, H., Yang, Y., Hong, W., Huang, M., Wu, M., Zhao, X. (2020). Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal transduction and targeted therapy, 5(1), 1-23. Liang, X., Potter, J., Kumar, S., Zou, Y., Quintanilla, R., Sridharan, M., . . . Ranganathan, S. (2015). Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Journal of biotechnology, 208, 44-53. Lino, C. A., Harper, J. C., Carney, J. P., Timlin, J. A. (2018). Delivering CRISPR: a review of the challenges and approaches. Drug delivery, 25(1), 1234-1257. Liu, L., Chen, P., Wang, M., Li, X., Wang, J., Yin, M., Wang, Y. (2017). C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Molecular cell, 65(2), 310-322. Low, K. B., Ittensohn, M., Le, T., Platt, J., Sodi, S., Amoss, M., . . . Fischer, J. (1999). Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nature biotechnology, 17(1), 37-41. Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., . . . Haft, D. H. (2015). An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 13(11), 722-736. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., . . . Church, G. M. (2013). RNA-guided human genome engineering via Cas9. science, 339(6121), 823-826. Montagna, C., Petris, G., Casini, A., Maule, G., Franceschini, G. M., Zanella, I., . . . Zentilin, L. (2018). VSV-G-enveloped vesicles for traceless delivery of CRISPR-Cas9. Molecular Therapy-Nucleic Acids, 12, 453-462. Murugan, K., Babu, K., Sundaresan, R., Rajan, R., Sashital, D. G. (2017). The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit. Molecular cell, 68(1), 15-25. Nguyen, H. N., Romero Jovel, S., Nguyen, T. H. K. (2017). Nanosized minicells generated by lactic acid bacteria for drug delivery. Journal of Nanomaterials, 2017. P. Gopalakrishnakone., V. V. (2018). Microbial Toxins. Paine, P. L., Moore, L. C., Horowitz, S. B. (1975). Nuclear envelope permeability. Nature, 254(5496), 109-114. Patzer, S., Baquero, M., Bravo, D., Moreno, F., Hantke, K. (2003). The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology, 149(9), 2557-2570. Radu, A., Blobel, G., Moore, M. S. (1995). Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins. Proceedings of the National Academy of Sciences, 92(5), 1769-1773. Robbins, J., Dilwortht, S. M., Laskey, R. A., Dingwall, C. (1991). Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell, 64(3), 615-623. Schlee, M., Wehkamp, J., Altenhoefer, A., Oelschlaeger, T. A., Stange, E. F., Fellermann, K. (2007). Induction of human β-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infection and immunity, 75(5), 2399-2407. Schultz, M. (2008). Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. Inflammatory bowel diseases, 14(7), 1012-1018. Shmakov, S., Abudayyeh, O. O., Makarova, K. S., Wolf, Y. I., Gootenberg, J. S., Semenova, E., . . . Severinov, K. (2015). Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Molecular cell, 60(3), 385-397. Shmakov, S., Sitnik, V., Makarova, K., Wolf, Y., Severinov, K., Koonin, E. (2017). The CRISPR spacer space is dominated by sequences from speciesspecific mobilomes. mBio 8: e01397-17. In. Somerville, J. E., Cassiano, L., Bainbridge, B., Cunningham, M. D., Darveau, R. P. (1996). A novel Escherichia coli lipid A mutant that produces an antiinflammatory lipopolysaccharide. The Journal of clinical investigation, 97(2), 359-365. Strack, R. L., Strongin, D. E., Bhattacharyya, D., Tao, W., Berman, A., Broxmeyer, H. E., . . . Glick, B. S. (2008). A noncytotoxic DsRed variant for whole-cell labeling. Nature methods, 5(11), 955-957. Strecker, J., Jones, S., Koopal, B., Schmid-Burgk, J., Zetsche, B., Gao, L., . . . Zhang, F. (2019). Engineering of CRISPR-Cas12b for human genome editing. Nature communications, 10(1), 1-8. Stritzker, J., Weibel, S., Hill, P. J., Oelschlaeger, T. A., Goebel, W., Szalay, A. A. (2007). Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. International journal of medical microbiology, 297(3), 151-162. Sun, J., Gunzer, F., Westendorf, A. M., Buer, J., Scharfe, M., Jarek, M., . . . Zeng, A.-P. (2005). Genomic peculiarity of coding sequences and metabolic potential of probiotic Escherichia coli strain Nissle 1917 inferred from raw genome data. Journal of biotechnology, 117(2), 147-161. Teng, F., Cui, T., Feng, G., Guo, L., Xu, K., Gao, Q., . . . Li, W. (2018). Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell discovery, 4(1), 1-15. Tsien, R. Y. (1998). The green fluorescent protein. Annual review of biochemistry, 67(1), 509-544. Veiga, E., Cossart, P. (2006). The role of clathrin-dependent endocytosis in bacterial internalization. Trends in cell biology, 16(10), 499-504. Wang, H., La Russa, M., Qi, L. S. (2016). CRISPR/Cas9 in genome editing and beyond. Annual review of biochemistry, 85, 227-264. Wang, S.-R., Wu, L.-Y., Huang, H.-Y., Xiong, W., Liu, J., Wei, L., . . . Zhou, X. (2020). Conditional control of RNA-guided nucleic acid cleavage and gene editing. Nature communications, 11(1), 1-10. Wang, S., Payne, G. F., Bentley, W. E. (2018). Repurposing E. coli by Engineering Quorum Sensing and Redox Genetic Circuits. In Gene Expression and Control: IntechOpen. Wei, T., Cheng, Q., Min, Y.-L., Olson, E. N., Siegwart, D. J. (2020). Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nature communications, 11(1), 1-12. Wente, S. R., Rout, M. P. (2010). The nuclear pore complex and nuclear transport. Cold Spring Harbor perspectives in biology, 2(10), a000562. Wu, S.-S., Li, Q.-C., Yin, C.-Q., Xue, W., Song, C.-Q. (2020). Advances in CRISPR/Cas-based gene therapy in human genetic diseases. Theranostics, 10(10), 4374. Xiang, S., Fruehauf, J., Li, C. J. (2006). Short hairpin RNA–expressing bacteria elicit RNA interference in mammals. Nature biotechnology, 24(6), 697-702. Yin, J., Wang, Q., Hou, S., Bao, L., Yao, W., Gao, X. (2018). Potent protein delivery into mammalian cells via a supercharged polypeptide. Journal of the American Chemical Society, 140(49), 17234-17240. You, H. S., Ok, Y. J., Lee, E. J., Kang, S. S., Hyun, S. H. (2019). Development of a novel DsRed-NLS vector with a monopartite classical nuclear localization signal. 3 Biotech, 9(6), 1-10. Yu, X., Liang, X., Xie, H., Kumar, S., Ravinder, N., Potter, J., . . . Chesnut, J. D. (2016). Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. Biotechnology letters, 38(6), 919-929. Zacharski, L., Sukhatme, V. (2005). Coley's toxin revisited: immunotherapy or plasminogen activator therapy of cancer? Journal of Thrombosis and Haemostasis, 3(3), 424-427. Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G. M., Arlotta, P. (2011). Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature biotechnology, 29(2), 149-153. Zhang, S., Shen, J., Li, D., Cheng, Y. (2021). Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics, 11(2), 614. Zhang, Y., Ji, W., He, L., Chen, Y., Ding, X., Sun, Y., . . . Zhang, Y. (2018). E. coli Nissle 1917-derived minicells for targeted delivery of chemotherapeutic drug to hypoxic regions for cancer therapy. Theranostics, 8(6), 1690. Zhang, Y., Zhang, Y., Xia, L., Zhang, X., Ding, X., Yan, F., Wu, F. (2012). Escherichia coli Nissle 1917 targets and restrains mouse B16 melanoma and 4T1 breast tumors through expression of azurin protein. Applied and environmental microbiology, 78(21), 7603-7610.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81614-
dc.description.abstract"基因編輯系統CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated Proteins)能夠精準且有效的編輯基因組,提供未來治療疾病與細胞編輯的新方向。然而截至目前,基因編輯系統仍缺乏適當與安全的傳輸方式將CRISPR/Cas傳輸至宿主體內。常用的病毒相關CRISPR載體有外源基因隨機插入宿主基因體的風險,並且無法長期控制Cas內切脢表達量,易造成脫靶效應; 另一個方式則是直接遞送已組裝之CRISPR 核酸蛋白質至宿主體內,雖然限制蛋白質總量使其較具安全性,但組裝之CRISPR藥物難以脫離細胞之胞內體 (endosome),導致載體運送CIRSPR藥物仍為一道難題。為了改善目前傳遞蛋白質的困境,本研究欲透過合成生物學,編輯益生菌作為一種CRISPR 核酸蛋白質之傳遞系統,除了可在益生菌內高效率的生產、組裝CRISPR核酸蛋白質,同時益生菌本身也被改造為具有保護、傳輸功能的載體。 具體來說,我們以合成生物學改造probiotic E. coli Nissle 1917 (EcN) 表達誘發細胞胞吞的invasin與脫離胞內體的listeriolysin O (LLO) ,藉以釋放細菌表達的CRISPR 核酸蛋白質進入細胞質,接著核酸蛋白質藉由核定位序列 (nucleus localization signal, NLS) 的輔助進入細胞核中編輯基因 (knockout)。目前,本研究證實EcN運輸系統可透過invasin與LLO將螢光蛋白質送入細胞的細胞質中; 同時EcN組裝之核酸蛋白質具有in vitro 與 in vivo基因剪輯能力,亦即我們以HCT116-EGFP做為剔除細胞基因模式,以EcN傳輸系統傳遞CRISPR 核酸蛋白質剔除細胞內EGFP基因之後,觀察到HCT116細胞族群的GFP螢光細胞數量降低,表達證實EcN可傳遞CRISPR 核酸蛋白質進行編輯基因。期望此系統未來可做為一種經濟、安全、有效的蛋白質傳輸載體,並提供基因編輯新的應用方式。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:24:46Z (GMT). No. of bitstreams: 1
U0001-2208202116212800.pdf: 3962176 bytes, checksum: cc971dcefc0e8000efa1fb4a7a228912 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 I 致謝 II 中文摘要 III 英文摘要 IV 第1章 緒論 1 1.1. 基因編輯發展 1 1.1.1. 基因編輯工具 - CRISPR/Cas9 2 1.1.2. 基因編輯工具 - CRISPR/Cas12b 3 1.1.3. 基因編輯後細胞修復 3 1.2. CRISPR/Cas在基因治療的方式 4 1.2.1. CRISPR/Cas RNP在基因治療的方式 4 1.2.2. CRISPR/Cas 缺乏合適傳遞載體進入細胞編輯 5 1.3. 細菌作為新型運輸載體的可能性 6 1.4. 益生菌E. coli Nissle 1917 (EcN) 7 1.4.1. EcN作為傳遞藥物載體的潛力 8 1.5. 細菌載體透過細胞胞吞進入細胞內部 9 1.6. 細胞胞吞分解過程與細菌脫離機制 10 1.6.1. 目標蛋白質之細胞核運輸 10 1.7. 研究策略 12 1.8. 研究目標 14 第2章 材料與方法 15 2.1. 實驗菌株與培養方式 15 2.1.1. 細菌株 15 2.1.2. 細胞株 15 2.2. 培養基與藥品 16 2.2.1. 細菌相關培養藥品 16 2.2.2. 細胞相關培養藥品 17 2.3. 質體建構 18 2.3.1. pACYC-T5-DsRed-NLS (DsRed-NLS) 18 2.3.2. pACYC-T7-lacO-Cas9-rrnB-J23119-sgPD-L1 (Cas9-sgPD-L1) 18 2.3.3. pACYC2-T5-lacO-Cas12b-rrnB-J23119-sgPD-L1/ EGFP/ Control (Cas12b-sgPD-L1/ Cas12b-sgEGFP/ Cas12b-sgControl) 18 2.3.4. pACYC2-T5-lacO-mCherry-Cas12b-3NLS-rrnB-J23119-sg EGFP/ Control (mCherry-Cas12b-sgEGFP/ mCherry-Cas12b-sgControl) 19 2.3.5. pGB3-inv-J23102-lacO-hly’(inv-hly’) 19 2.4. 蛋白質表達與純化 22 2.4.1. Cas9/Cas12b RNP親合管住層析純化與超濾膜濃縮 22 2.4.2. 聚丙烯胺膠體電泳分析 22 2.4.3. Cas9/Cas12b目標片段剪切 23 2.5. 大腸桿菌電穿孔轉型法 24 2.5.1. 大腸桿菌電轉勝任細胞製備 24 2.6. 細菌營養缺陷實驗 24 2.7. 細菌與細胞共同培養實驗 25 2.7.1. 細胞與EcN共同培養測試 25 2.7.2. Invasin表達之細胞胞吞測試 (Invasin-mediated cellular uptak assay) 26 2.7.3. 核定為序列 (Nucleus localization signal) 差異測試 27 2.7.4. 細胞與細菌比例(MOI)差異測試 27 2.7.5. 時間差異測試 28 2.7.6. 細胞編輯測試 29 第3章 結果與討論 30 3.1. 質體建構、表現、純化和分析 30 3.1.1. Cas9-sgPD-L1之建構、純化、測試 30 3.1.2. Cas12b RNP 之建構、純化、測試 34 3.1.3. Cas12b-sgPD-L1之建構、純化、測試 34 3.1.4. Cas9與Cas12b之剪切測試 36 3.1.5. Cas9與Cas12b pH耐受性比較 38 3.1.6. Cas12b-EGFP 建構、表達與測試 40 3.1.7. Cas12b-sgRNA 功能測試 40 3.1.8. DsRed-NLS質體建立 43 3.1.9. 目標蛋白於EcN共同表達 44 3.2. 細菌營養缺陷實驗 46 3.3. 細菌與細胞共同培養實驗 48 3.3.1. 細胞與EcN共同培養測試 48 3.3.2. 細胞胞吞Invasin表達菌株測試 54 3.3.3. 細菌傳遞DsRed蛋白質實驗 56 3.3.4. 檢測NLS將螢光蛋白質送入細胞中的效果 57 3.3.5. 檢測不同MOI對DsRed-NLS傳遞至細胞內差異 58 3.3.6. 檢測DsRed-NLS在不同時間點於細胞內之位置 60 3.3.7. EcN recAdapA傳遞mCherry-Cas12b-sgEGFP RNP in vivo實驗 62 第4章 結論 66 第5章 未來展望 67 第6章 參考文獻 69
dc.language.isozh-TW
dc.subjectCRISPR/Caszh_TW
dc.subject蛋白質傳遞系統zh_TW
dc.subject基因編輯zh_TW
dc.subjectE. coli Nissle 1917zh_TW
dc.subjectE. coli Nissle 1917en
dc.subjectprotein delivery systemen
dc.subjectCRISPR/Casen
dc.subjectgenome editingen
dc.title利用生物工程改造益生大腸桿菌作為CRISPR合成與傳遞之基因編輯系統zh_TW
dc.titleBioengineered probiotic Escherichia coli as a novel CRISPR synthesis and delivery system towards eukaryotic genome editingen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃筱鈞(Hsin-Tsai Liu),李哲欣(Chih-Yang Tseng),胡育誠
dc.subject.keywordCRISPR/Cas,蛋白質傳遞系統,基因編輯,E. coli Nissle 1917,zh_TW
dc.subject.keywordCRISPR/Cas,protein delivery system,genome editing,E. coli Nissle 1917,en
dc.relation.page75
dc.identifier.doi10.6342/NTU202102588
dc.rights.note未授權
dc.date.accepted2021-08-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
dc.date.embargo-lift2021-08-27-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
U0001-2208202116212800.pdf
  未授權公開取用
3.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved