Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 進修推廣部
  3. 生物科技管理碩士在職學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81608
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童國倫(Kuo-Lun Tung)
dc.contributor.authorRuo-Yu Chenen
dc.contributor.author陳若語zh_TW
dc.date.accessioned2022-11-24T09:24:42Z-
dc.date.available2022-11-24T09:24:42Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-09-03
dc.identifier.citationA, Shahtalebi. M. H, Sarrafzadeh. M. M.Montazer Rahmati, Application of nanofiltration membrane in the separation of amoxicillin from pharmaceutical wastewater. Iran. J. Environ. Health Sci. Eng. (2011), 8, 109−116. A. Fosco, Process Cooling as Part of a Sustainable Strategy, 2015, accessed 22 April (2020). A. Kuster, N. Adler, Pharmaceuticals in the environment: scientific evidence of risks and its regulation, Philos. Trans. R. Soc. Lond. B Biol. Sci. 369 (2014) A.J. Toth, E. Haaz, T. Nagy, A.J. Tarani, D. Fozer, A. Andre, N. Valentinyi, P. Mizsey, Novel method for the removal of organic halogens from process wastewaters enabling water reuse, Desalin. Water Treat. 130 (2018) 54-62, A.K. Rathoure, Zero liquid discharge treatment systems: prerequisite to industries, MOJ Eco, Environ. Sci. 5 (2020) 1–10. A.M. Deegan, B. Shaik, K. Nolan, K. Urell, M. Oelgemoller, J. Tobin, A. Morrissey, Treatment options for wastewater effluents from pharmaceutical companies, Int. J. Environ. Sci. Tech. 8 (2011) 649–666. B. Cebere, E. Faltina, N. Zelcans, D. Kalnina, Toxicity tests for ensuring successful industrial wastewater treatment plant operation, Environ. Clim. Technol. 3 (2009) 41–47. B.I. Escher, R. Baumgartner, M. Koller, K. Treyer, J. Lienert, C.S. McArdell, Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater, Water Res. 45 (2011) 75–92. B.P. Walsh, S.N. Murray, D.T.J. O Sullivan, The water energy nexus, an ISO50001 water case study and theneedforawatervaluesystem,WaterResour.Ind.10 (2015) 15–28. C. Baresel, L. Dalgren, M. Almemark, A. Lazic, Environmental performance of wastewater reuse systems: impact of system boundaries and external conditions, Water Sci. Technol. 73 (2016) 1387–1394. C. Gadipelly, A.Perez-Gonzalez, G.D. Yadav, I. Ortiz, R. Ibanez, VK. Rathod, K.V. Marathe, Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse, Ind. Eng. Chem. Res. 53 (2014) 11571–11592. C. Grandclement, I. Seyssiecq, A. Piram, P. Wong-Wang-Chung, G. Vanot, N. Tiliacos, N. Roche, P. Doumenq, From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review, Water Res. 111 (2017) 297–317. D. Glawe, San Antonio Condensate Collection and Use Manual for Commercial Buildings. San Antonio: San Antonio Water System, (2013).accessed 5 December 2019. D. Kanakaraju, B.D. Glass, M. Oelgemoller, Advanced oxidation process-mediated removal of pharmaceuticals from water: a review, J. Environ. Manag. 219 (2018) 189–207. D. Sreekanth, D. Sivaramakrishna, V. Himabindu, Y. Anjaneyulu, Thermophilic treatment of bulk drug pharmaceutical industrial wastewaters by using hybrid up flow anaerobic sludge blanket reactor. Bioresour. Technol. (2009), 100, 2534−2539. D.G.J. Larsson, Pollution from drug manufacturing: review and perspectives, Philos. Trans. R. Soc. Lond. B Biol. Sci. 369 (2014) 20130571. D.J.C. Constable, C. Jimenez-Gonzalez, R.K. Henderson, Perspective on solvent use in the pharmaceutical industry, org. Process Res. Dev. 22 (2007) 133–137. D.P. Webb, G. Skouteris, S. Rahimifard, In-plant real-time manufacturing water content characterisation, Water Resour, For. Ind.20 (2018) 37–45. E. Linclau, J. Ceulemans, K.D. Sitter, P. Cauwenberg, Water and detergent recovery from rinsing water in an industrial environment, Water Resour. Ind. 14 (2016) 3-10. E. Strade, D. Kalnina, Cost effective method for toxicity screening of pharmaceutical wastewater containing inorganic salts and harmful organic compounds, Environ. Clim. Technol. 23 (2019) 52–63 E. Szabados, A. Jobbagy, A.J. Toth, P. Mizsey,. Tardy, C. Pulgarin, S. iannakis, E. Takacs, L. Wojnarovits, M. Mako, Z. Trocsanyi, A. Tungler, Complex treatment for the disposal and utilization of process wastewaters of the pharmaceutical industry, period, Polytech. Chem. Eng. 62 (2018) 76- 90, https: doi. org10.3311PPch.10543. European Commission, Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee, 2019 European Union Strategic Approach to Pharmaceuticals in the Environment, accessed 5 January (2020). European Commission, Integrated Pollution Prevention and Control (IPPC). Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems, (2001). accessed 2 February (2020). European Commission, The Rules Governing Medicinal Products in the European Union vol. 4, 2014. Good Manufacturing Practice. Medicinal Products for Human and Veterinary Use. Part II: Basic Requirements for Active Substances used as Starting Materials, accessed 5 January (2020). European Medicines Agency, Guideline on the Quality of Water for Pharmaceutical Use. Draft, (2018). accessed 20 January (2020). Eurostat, Freshwater Resources Per Inhabitant — Long-Term Annual Average, (2017). accessed 25 January (2020). F.P. Byrne, S. Jin, G. Paggiola, T.H.M. Petchey, J.H. Clark, T.J. Farmer, A.J. Hunt, C.R. McElroy, J. Sherwood, Tools and techniques for solvent selection: green solvent selection guides, Sustain. Chem. Process. 4 (2016) 7. G.K. Paulus, L.M. Hornstra, N. Alygizakis, J. Slobodnik, N. Thomaidis, G. Medema, The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes, Int. J. Hyg Environ. Health 222 (2019) 635–644. G.V. Reddy, T.R. Kiran, M.V. Reddy, Innovative zero liquid discharge based effluent treatment system for API industry cluster in India, Int. J. Waste Resour. 6 (2016) 70. H. Kroiss, H. Rechberger, L. Egle, Phosphorus in water quality and waste management, in: S. Kumar (Ed.), Integrated Waste Management–Volume II, InTech, Rijeka, (2011), pp. 181–214. H.I. Abdel-Shafy, M.S.M. Mansour, Treatment of pharmaceutical industrial wastewater via anaerobic/aerobic system for unrestricted reuse, J. Sci. Ind. Res. 76 (2017) 119 -127. I. Reinholds, O. Muter, I. Pugajeva, J. Rusko, I. Perkons, V. Bartkevics, Determination of pharmaceutical residues and assessment of their removal efficiency at the Daugavgriva municipal wastewater treatment plant in Riga, Latvia, Water, Sci. Technol. 75 (2017) 387–396. J. Bezawada, S. Yan, R. P. John, R.D. Tyagi, R.Y. Surampalli, Recovery of Bacillus licheniformis alkaline protease from supernatant of fermented wastewater sludge using ultrafiltration and its character- Imation. Biotechnol. Res. Int. (2011), 1−11. J. Gawdzik, B. Gawdzik, Mobility of heavy metals in municipal sewage sludge from different throughput sewage treatment plants, Pol. J. Environ. Stud. 21(2012) 1603–1611. J. Rivera-Utrilla, M. Sanchez-Polo, M.A. Ferro-Garcia, G. Prados-Joya, R. Ocampo-Perez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere 93 (2013) 1268–1287. J. Schellekens, L. Heidecke, N. Nguyen, W. Spit, The Economic Value of Water - Water as a Key Resource for Economic Growth in the EU, 2018. accessed 5 February (2020). J. Willet, K. Wetser, J. Vreeburg, H.H.M. Rijnaarts, Review of methods to assess sustainability of industrial water use, Water Resour. Ind. 21 (2019) 100110. J.G. Cleary, Water conservation and reuse case study in pharmaceutical industry, Proc. Water Environ. Fed. 13 (2006) 111–125. L. Jimenez, Microbial diversity in pharmaceutical product recalls and environments, PDA J. Pharm. Sci. Technol. 61 (2007) 383–399. L. Ling, Y. Liu, D. Pan, W. Lyu, X. Xu, X. Xiang, M. Lyu, L. Zhu, Catalytic detoxification of pharmaceutical wastewater by Fenton-like reaction with activated alumina supported CoMnAl composite metal oxides catalyst, Chem. Eng. J. 381 (2020) 122607. L.K. Wang, T. Hung, H.H. Lo, C. Yapiakis, Handbook of Industrial and Hazardous Wastes Treatment, second ed., Marcel Dekker, Inc., New York, (2004). M. Agerstrand, C. Berg, B. B. Bjorlenius, M. Breitholtz, B. Brunstrom, J. Fick, L. Gunnarsson, D. J. Larsson, J.P. Sumpter, M. Tysklind, C. Ruden, Improving environmental risk assessment of human pharmaceuticals, Environ. Sci. Technol. 49 (2015) 5336-5345. M. Boroski, A. C. Rodrigues, J. C. Garcia, L.C. Sampaio, J. Nozaki, N. Hioka, Combined electrocoagulation and TiO2 photo assisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries. J. Hazard. Mater. (2009), 162, 448−454. M. Saidi, Experimental studies on effect of heavy metals presence in industrial wastewater on biological treatment, Int. J. Environ. Sci. 1 (2010) 666–676. M. Sun, S. X. Gan, D. F. Yin, H. Y. Liu, W. D. Yang, Application of nano-filtration membrane in the purification process of Tylosin. Chin. J. Antibiot. (2000), 25, 172−174. M. Yaqub, W. Lee, Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: a review, Sci. Total Environ. 681 (2019) 551–563. M.Andrews, P.Berardo, D.Foster, The sustainable industrial water cycle- a review of the economics and approach,WaterSupply11(2011)67–77. M.J. Raymond, C.S. Slater, M.J. Savelski, LCA approach to the analysis of solvent waste issues in the pharmaceutical industry, Green Chem. 12 (2010)1826–1834. M.L. Crawley, B.M. Trost, Applications of Transition Metal Catalysis in Drug Discovery and Development: an Industrial Perspective, John Wiley Sons, Inc., Hoboken, (2012). N.R. Desireddy, A. Glory, K.R. Bhimireddy, Y. Kurra, R. Reddy, An efficient synthesis of milnacipran Hydrochloride via reductive amination of aldehyde, J. Chem. (2017) 5385843. O. Frederic, P. Yves, Pharmaceuticals in hospital wastewater: their ecotoxicity and contribution to the environmental hazard of the effluent, Chemosphere 115 (2014) 31–39. O. Miarov, A. Tal, D. Avisar, A critical evaluation of comparative regulatory strategies for monitoring pharmaceuticals in recycled wastewater, J. Environ. Manag. 254 (2020) 109794. O.P. Sahu, P.K. Chaudhari, Review on chemical treatment of industrial waste, water, J. Appl. Sci. Environ. Manag. 17 (2013) 241–257. Oecd, OECD Environmental Outlook to 2050, 2012. accessed 25 January 2020. P. K. Tripathi, N. N. Rao, C. Chauhan, G. R. Pophali, S. M. Kashyap, S. K. Lokhande, L. Gan, Treatment of refractory nano-filtration reject from a tannery using Pd-catalyzed wet air oxidation. J. Hazard. Mater. (2013), 261, 63−71. Pfizer. Clavamox for cats and dogs.(2004). R, Gani. P.A, Goḿez. M, Folic. C, Jimeńez-Gonzaĺez. D. J. C, Constable. Solvents in organic synthesis: Replacement and multi-step reaction systems. Comput. Chem. Eng. (2008), 32, 2420− 2444. R. Changotra, H. Rajput, A. Dhir, Treatment of real pharmaceutical wastewater using combined approach of Fenton applications and aerobic biological treatment, J. Photo chem. Photo biol., A 376 (2019) 175–184. R. Ordóñez, D. Hermosilla, I. San Pío, A. Blanco, Replacement of fresh water use by 'nail effluent recovery in a highly optimized 100% recovered paper mill, Water Sci. Technol. 62 (2010) 1694–1703. R.W. Gensemer, R.C.Playle, The bioavailability and toxicity of aluminum in aquatic environments, Crit. Rev. Environ. Sci. Technol. 29 (1999)315–450. S, Perez-Vega. E, Ortega-Rivas. I, Salmeron-Ochoa. P. N, Sharratt. A system view of solvent selection in the pharmaceutical industry: Towards a sustainable choice. Environ., Dev. Sustainability 2012, 15 (1), 1−21. S. Ayatollahi, D. Kalnina, W. Song, B.A. Cottrell, M. onsior, W.J. Cooper, Recent advances in structure and reactivity of dissolved organic matter: radiation chemistry of non-isolated natural organic matter and selected model compounds, Water Sci. Technol. 66 (2012) 1 41-1 4, https: doi.org10.2166 wst.2012.404. S. Ayatollahi, D. Kalnina, W. Song, M. Turks, W.J. Cooper, Radiation chemistry of salicylic and methyl substituted salicylic acids: models for the radiation chemistry of pharmaceutical compounds, Radiat. Phys. Chem. 92 (2013) 93- 98. S. Gangavarapu, U.M.R. Ganguru, S. Kulkarni, N.M. Brahmandam, Studies on zero liquid discharge (ZLD) plant in API manufacturing unit, Int. J. Innov. Res. Eng. Manag. 2 (2015) 33–36. T. Asfaw, Review on hospital wastewater as a source of emerging drug resistance pathogens, J. Res. Environ. Sci. Toxicol. 7 (2018) 47–52. T. Latham, Clean Steam in the Pharmaceutical Industry, 2004. accessed 5 February 2020. T. Sandle, Pharmaceutical Microbiology. Essentials for Quality Assurance and Quality Control, Woodhead Publishing, Cambridge,(2016). T. Ternes, M, Meisenheimer, D. Mcdowell, F. Sacher, H. J. Brauch, B. Haist-Gulde, Removal of pharmaceuticals during drinking water treatment. Environ. Sci. Technol. (2002), 36, 3855−3863. T. Tong, M. Elimelech, The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions, Environ. Sci. Technol. 50 (2016) 6846–6855. T. Welton, Solvents and sustainable chemistry, Proc. R. Soc. A Math. Phys. Eng. Sci. 471 (2015) 20150502. Technology offer: Recovering/removing of heavy metals from wastewater by electrochemical technology; SGITT-OTRI, University of Alicante; Universidad de Alicante: Alicante, Spain. United Nations, The United Nations World Water Development Report 2020: Water and Climate Change, 2020. accessed 5 May 2020. United Nations, The United Nations World Water Development Report 2015: Water for a Sustainable World, (2015). accessed 5 November (2019). V. Lazarova, T. Asano, A. Bahri, J. Anderson, Milestones in Water Reuse. The Best Success Stories, IWA Publishing, London, (2013). W, Zhang. G.H, He. Gao, P. G.H, Chen. Development and characterization of composite nanofiltration membranes and their application in concentration of antibiotics. Sep. Purif. Technol. (2003), 30, 27−35. World Health Organization, WHO Good Manufacturing Practices: Water for Pharmaceutical Use, 2011. accessed 25 January (2020). Y.M. Kim, H. Park, K.H. Cho, J.M. Park, Long term assessment of factors affecting nitrifying bacteria communities and N-removal in a full-scale biological process treating high strength hazardous wastewater, Bioresource. Technol. 134 (2013) 180–189. Z. Chen, N. Ren, A. Wang, Z. Zhang, Y. Shi, A novel application of TPAD−MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater. Water Res.(2008), 42, 3385−3392. Z.Zhao, S.Cheng, Z.Qin, K.Ma, X.Jin, S.Liang, Evaluation of micro toxicity and biodegradability of residual organic solvents in pharmaceutical wastewater by combined prediction-test system, Desal in. Water Treat. 57 (2016) 28187–28194. https://www.aqua-equip.com/blog/ 澳洲皇家墨爾本理工大學(RMIT University) CSR企業社會責任報告書(2019) 國際水協會(IWA)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81608-
dc.description.abstract台灣是個容易缺水地區,為了降低這樣風險進而影響產業,所以希望在工業用水管理中尋找使用替代水的方案這成為必不可少的要素。若能透過管控水分級及預處理排出廢水並有效的利用科技技術的進步回收有用的相關物質已達到循環經濟零排放的落實定能達到雙贏。 製藥行業是高度依賴水的經濟部門,然而對水的純淨度也相對要求。該研究概述了當前製藥行業對水質的要求,以及製藥用水考慮製造層面的局限性和安全性。在製藥廢水處理程序中如何實施循環經濟,有幾項原則要素:在回收溶劑中反硝化過程中很容易降解碳源,使用無機酸及含磷的營養源作為處理廢水活性污泥微生物。有研究表明特定的製藥廢水中的有其化學成分能重複使用,則可作為次要材料。藥物化合物通常以分批過程生產,在不同操作中所產生的廢水存在多種混雜物質,所以需確保廢水為單獨收集也必須受到嚴格限制。在製藥和藥物生產的不同過程中將會產生含多種混合化合物的廢水。本篇評論中,確定了製藥工業中各種廢水的來源,並評估去除廢水的最佳可行技術。對使用大量水的活性藥物成分(API),散裝藥物和相關藥物製程在不同部門所產出的廢水進行了評估,並提出了策略,希望能有效回收有價值的化合物。目前沒有單一的技術可以完全從廢水中去除藥物。將常規處理方法與膜反應器一起使用以及加上先進的後處理方法對混合廢水處理技術似乎是目前最好的技術。結合預處理再將使用水分等級,最後在由分別獨立回收之廢水回收有價值的化合物,經由一連串相關處理達到重複利用及循環經濟的理想化,並達到再缺水環境下水的再利用性。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:24:42Z (GMT). No. of bitstreams: 1
U0001-2408202121235900.pdf: 8308009 bytes, checksum: 918cd778918f8d2e22bf6e3feef61a68 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 iv 關鍵詞彙 vi 目錄 vii 圖示 x 表格 xi Chapter 1 簡介 1 Chapter 2 製藥程序廢水及區分使用水等級 8 2.1 原料藥,藥品和環境藥品的命運 10 2.2 藥物釋放對健康的危害 10 2.3 廢水處理的選項及市面上各國之水價 11 2.4 製藥製造過程 16 2.4.1 化學合成過程 16 2.4.2 發酵過程 18 2.4.3 天然/生物提取過程 21 2.4.4 複合/配製過程 22 2.5 製藥散裝生產過程中的耗水量 23 2.6 化學溶劑使用需求量及限制 25 2.7 製藥廢水處理 26 Chapter 3 製藥中不同等級的水及回用應用 28 3.1 製程用水回用之應用 33 3.1.1 冷卻水 33 3.1.2 蒸汽水 35 3.2 現今法規及條文如何規範製藥工廠排放之原料藥的容許量 37 Chapter 4 將循環經濟要素納入製藥廢水之案例 39 4.1 作為廢水污泥去除過程中含Al3+的凝結劑 41 4.2 移動床生物膜處理技術(MBBRs)的用途 41 4.2.1 無機酸或鹼在移動床生物膜處理技術(MBBRs)中為控制酸鹼的用途 41 4.2.2 化學合成製程廢水的混合技術 43 4.3 使用含磷的營養源作為活化廢水污泥中微生物 44 4.4 使用回收的溶劑作為易降解的碳源進行反硝化過程 45 4.5 動力混合技術 46 Chapter 5 製程用水回收與再利用及其經濟價值 47 5.1 經過處理的製藥廢水在製藥生產過程中重複使用的機會和局限性 47 5.2 製程回收提高效益 49 5.2.1 重置過程 51 5.3 從藥品生產過程中回收的水 53 5.4 實際個案透過節水策略所呈現之經濟效益 54 Chapter 6 建議及未來技術 57 Chapter 7 結論 60 文獻回顧 62
dc.language.isozh-TW
dc.subject水管理zh_TW
dc.subject循環經濟zh_TW
dc.subject製藥zh_TW
dc.subjectCircular Economyen
dc.subjectPharmaceuticalen
dc.subjectWater Reuse Opportunitiesen
dc.title循環經濟下製藥行業之水管理再利用機會探討zh_TW
dc.titleExploration on Water Reuse Opportunities in the Pharmaceutical Industry Toward Circular Economyen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee糜福龍(Hsin-Tsai Liu),劉豫川(Chih-Yang Tseng)
dc.subject.keyword循環經濟,製藥,水管理,zh_TW
dc.subject.keywordCircular Economy,Pharmaceutical,Water Reuse Opportunities,en
dc.relation.page69
dc.identifier.doi10.6342/NTU202102693
dc.rights.note未授權
dc.date.accepted2021-09-03
dc.contributor.author-college進修推廣學院zh_TW
dc.contributor.author-dept生物科技管理碩士在職學位學程zh_TW
顯示於系所單位:生物科技管理碩士在職學位學程

文件中的檔案:
檔案 大小格式 
U0001-2408202121235900.pdf
  未授權公開取用
8.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved