請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81607完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李達源(Dar-Yuan Lee) | |
| dc.contributor.author | Yue-Xuan Tsai | en |
| dc.contributor.author | 蔡岳軒 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:24:41Z | - |
| dc.date.available | 2022-11-24T09:24:41Z | - |
| dc.date.copyright | 2021-09-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-30 | |
| dc.identifier.citation | 李祐任。2020。鎵/銦與鋁共存對水耕栽培水稻中鎵和銦累積之影響。臺灣大學農業化學研究所學位論文: 1-96. 陳珮雯。2019。鎵和銦污染水田土壤中水稻穀粒鎵和銦之累積。臺灣大學農業化學研究所學位論文: 1-93. 簡柏勛。2015。新興污染物鎵和銦對水耕栽培水稻生長之影響。臺灣大學農業化學研究所學位論文: 1-82. 許可。2009。含磷酸根離子和三價鐵離子的溶液中鎵的沉澱行為研究。 許國恩、胡雁翠、朱敬平、鍾裕仁。2014。廢污水與再生水中新興污染物之調查與管制現況。財團法人中興工程顧問社。 林家棻。1967。台灣省農田肥力測定。台灣省農業試驗所報告。台灣省農業試驗所刊行。No. 28 : 第2頁。 行政院環保署環境檢驗所。2003。土壤中重金屬檢測方法-王水消化法。 (NIEA S321.63B)。 Bidhan, R., and S. Bhadra. 2014. Effects of toxic levels of aluminum on seedling parameters of rice under hydroponic culture. Rice Sci. 21:217-223. Chang, H. F., S. L. Wang, D. C. Lee, S. Y. Hsiao, Y. Hoshimoto, and K. C. Yeh. 2020. Assessment of indium toxicity to the model plant Arabidopsis. J. Hazard. Mater. 387: 121983. Chang, H.-F., S. L. Wang, and K. C. Yeh. 2017. Effect of gallium exposure in Arabidopsis thaliana is similar to aluminum stress. Environ. Sci. Technol. 51: 1241-1248. Chattopadhyay, A. and R. Jervis. 1974. Multielement determination in market-garden soils by instrumental photon activation analysis. Anal. Chem. 46: 1630-1639. Chen, H. W. 2006. Gallium, indium, and arsenic pollution of groundwater from a semiconductor manufacturing area of Taiwan. Bull. Environ. Contam. Toxicol. 77: 289-296. Chou, W. L., C. T. Wang, K. C. Yang, and Y. H. Huang. 2008. Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process. J. Hazard. Mater. 160: 6-12. Clarkson, D. T. 1965. The effect of aluminum and some other trivalent metal cations on cell division in the root apices of Allium cepa. Ann. Bot. 29: 309-315. Conner, E. A., H Yamauchi, B. A. Fowler. 1995. Alterations in the heme biosynthetic pathway from the III-V semiconductor metal, indium arsenide (InAs). Chem.-biol. Interact. 96: 273-285. Čurlík, J. and P. Šefčík. 1999. Geochemical atlas of the Slovak Republic. Part V: Soils, Ministry of the Environment of the Slovak Republic. Dixit, S. and J. G. Hering. 2003. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 37: 4182-4189. Doncheva, S., M. Amenos, C. Poschenrieder, and J. Barcelo. 2005. Root cell patterning: a primary target for aluminum toxicity in maize. J. Exp. Bot. 56: 1213-1220. Eriksson, J. 2001. Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertiliser, precipitation and in oil and crops, Swedish Environmental Protection Agency Stockholm, Sweden. Fergusson, J. E. 1990. The heavy elements: chemistry, environmental impact and health effects\Jack E. Fergusson. Gee, G. and J. Bauder. 1986. Particle-size analysis. p. 383–411. A. Klute (ed.) Methods of soil analysis. Part 1. Agron. Monogr. 9. ASA and SSSA, Madison, WI.' Particle-size analysis. p. 383–411. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.: -. Gilani, S. H. and Y. Alibhai. 1990. Teratogenicity of metals to chick embryos. J. Toxicol. Environ. Health, Part A Current Issues 30: 23-31. Goering, P. L., R. R. Maronpot, B. A. Fowler. 1988. Effect of intratracheal gallium arsenide administration on δ-aminolevulinic acid dehydratase in rats: relationship to urinary excretion of aminolevulinic acid. Toxicol. Appl. Pharmacol. 92: 179-193. Gottschling, B. C., R. R. Maronpot, J. R. Hailey, S. Peddada, C. R. Moomaw, J. E. Klaunig, and A. Nyska. 2001. The role of oxidative stress in indium phosphide-induced lung carcinogenesis in rats. Toxicol. Sci. 64: 28-40. Govindaraju, K. 1994. 1994 compilation of working values and sample description for 383 geostandards. Geostandards newsletter 18: 1-158. Gray, F., D. A. Kramer, J. D. Bliss. 2000. Gallium and gallium compounds. Kirk‐Othmer Encyclopedia of Chemical Technology. Hoyt, P. B. and M. Nyborg. 1971. Toxic Metals in Acid Soil: I. Estimation of Plant‐Available Aluminum. Soil Sci. Soc. Am. J. 35: 236-240. Ivanoff, C. S., A. E. Ivanoff, and T. L. Hottel. 2012. Gallium poisoning: A rare case report. Food and chemical toxicology 50: 212-215. Jensen, H., S. Gaw, N. J. Lehto, L. Hassall, and B. H. Robinson. 2018. The mobility and plant uptake of gallium and indium, two emerging contaminants associated with electronic waste and other sources. Chemosphere 209: 675-684. Jones, D. L., E. B. Blancaflor, L. V. Kochian, S, Gilroy. 2006. Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant, cell Environ. 29: 1309-1318. Kabata-Pendias, A. 2000. Trace elements in soils and plants, CRC press. Kabata-Pendias, A. and A. B. Mukherjee. 2007. Trace elements from soil to human, Springer Science Business Media. Kollmeier, M., H. H. Felle, and W. J. Horst. 2000. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol. 122: 945-956. Kopittke, P. M., F. P. C. Blamey, B. A. Mckenna, P. Wang, and N. W. Menzies. 2011. Toxicity of metals to roots of cowpea in relation to their binding strength. Environ. Toxicol. Chem. 30: 1827-1833. Li, L., A. F. Tutone, R. S. M. Drummond, R. C. Gardner, and S. Luan. 2001. A novel family of magnesium transport genes in Arabidopsis. The Plant Cell 13: 2761-2775. Lin, H. C. and P. P. Hwang. 1998. Acute and chronic effects of gallium chloride (GaCl3) on tilapia (Oreochromis mossambicus) larvae. Bul. Environ. Contam. Toxicol. 60: 931-935. Liu, Y. H., S. M. Sabry, R. Jorg, Z. Y. Hseu. 2021. Pedogeochemical distribution of gallium, indium and thallium, their potential availability and associated risk in highly-weathered soil profiles of Taiwan. Environ. Res. 197:110994 Ma, J. F., R. Shen, S. Nagao, and E. Tanimoto. 2004. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol. 45: 583-589. McKeague, J. and J. Day. 1966. Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46: 13-22. McLean, E. 1983. Soil pH and lime requirement. Methods of soil analysis: Part 2 Chemical and microbiological properties 9: 199-224. Meharg, A. A. and M. M. Rahman. 2003. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ. Sci. Technol. 37: 229-234. Mehra, O. and M. Jackson. 2013. Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clays clay Miner. Elsevier: 317-327. Nakajima, K., K. Yokoyama, K. Nakano, and T. Nagasaka. 2007. Substance flow analysis of indium for flat panel displays in Japan. Mater. Trans. 48: 2365-2369. Nelson, D. and L. E. Sommers. 1983. Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 Chemical and microbiological properties 9: 539-579. Omura, M., K. Yamazaki, A. Tanaka, M. Hirata, Y. Makita, and N. Inoue. 2000. Changes in the testicular damage caused by indium arsenide and indium phosphide in hamsters during two years after intratracheal instillations. J. Occup. Health 42: 196-204. Orvig, C. 1993. The aqueous coordination chemistry of aluminum. Coordination chemistry of aluminum: 85-121. Ramos-Díaz, A., L. Brito-Argáez, T. Munnik, and S. M. T. Hernández-Sotomayor. 2007. Aluminum inhibits phosphatidic acid formation by blocking the phospholipase C pathway. Planta 225: 393-401. Reimann, C., M. Birke, A. Demetriades, P. Filzmoser, and P. O'Connor. 2014. Chemistry of Europe's agricultural soils, part A. Rengel, Z. and W. H. Zhang 2003. Role of dynamics of intracellular calcium in aluminum‐toxicity syndrome. New Phytol. 159: 295-314. Salminen, R., M. J. Batista, M. Bidovec, A. Demetriades, R. De Vivo, W. De Vos, M. Duris, A. Gilucis, V. Gregorauskiene, and J. Halamić,. 2005. Geochemical atlas of Europe, part 1, background information, methodology and maps. Schmohl, N. and W. Horst 2000. Cell wall pectin content modulates aluminum sensitivity of Zea mays (L.) cells grown in suspension culture. Plant, Cell Environ. 23: 735-742. Schwarz-Schampera, U. 2014. Indium. Critical metals handbook: 204-229. Simon, L., F. Kiss, A. Bakó, F. Hajdu, T. Z. Hörcsik, Á. Balogh, and I. Pais. 1989. Effect of gallium on photosynthetic pigments and peroxidase activity of Chlorella pyrenoidosa. J. Plant Nutr. 12: 1123-1140. Socolof, M. L., J. G. Overly, and J. R. Geibig. 2005. Environmental life-cycle impacts of CRT and LCD desktop computer displays. J. Clean. Prod. 13: 1281-1294. Stellman, J.M. 1998. Encyclopaedia of occupational health and safety, International Labour Organization. Su, J.Y., C.H. Syu, and D. Y. Lee. 2018. Growth inhibition of rice (Oryza sativa L.) seedlings in Ga-and In-contaminated acidic soils is respectively caused by Al and Al+ In toxicity. J. Hazard. Mater. 344: 274-282. Survey U.S.G. 2021. Minerals yearbook. U.S. Geological Survey. Syu, C.H., P. W. Chen, C.C. Huang, and D.Y. Lee. 2020. Accumulation of gallium (Ga) and indium (In) in rice grains in Ga-and In-contaminated paddy soils. Environ. Pollut. 261: 114189. Syu, C.H., P.H. Chien, C.C. Huang, P.Y. Jiang, K.W. Juang, and D.Y. Lee. 2017. The growth and uptake of Ga and In of rice (Oryza sativa L.) seedlings as affected by Ga and In concentrations in hydroponic cultures. Ecotoxicol. Environ. Saf. 135: 32-39. Tabuchi, A. and H. Matsumoto. 2001. Changes in cell‐wall properties of wheat (Triticum aestivum) roots during aluminum‐induced growth inhibition. Physiol. Plant. 112: 353-358. Takeda, A., K. Kimura, and S.I. Yamasaki. 2004. Analysis of 57 elements in Japanese soils, with special reference to soil group and agricultural use. Geoderma 119: 291-307. TSIA. 2020. Overview on Taiwan Semiconductor Industry. Taiwan Semiconductor Industry Association. Venugopal, B. and T.D. Luckey. 1978. Metal toxicity in mammals. Volume 2. Chemical toxicity of metals and metalloids, Plenum Press. Wilson, S., P.H. Briggs, J.S. Mee, and D. F. Siems. 1994. Determination of thirty‐two major and trace elements in three NIST soil SRMs using ICP‐AES and WDXRF. Geostandards newsletter 18: 85-89. Wood, S.A. and I.M. Samson. 2006. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews 28: 57-102. Wright, R.J. 1989. Soil aluminum toxicity and plant growth. Commun. Soil Sci. Plant Anal. 20: 1479-1497. Yu, X.Z. and X.H. Zhang. 2015. DNA-protein cross-links involved in growth inhibition of rice seedlings exposed to Ga. Environ. Sci. Pollut. Research 22: 10830-10838. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81607 | - |
| dc.description.abstract | 鎵和銦被廣泛地應用於半導體及光電產業,在高科技產業園區附近污染地區發現兩者共同存在於環境中。由於鎵、銦擁有相似化學性質,兩者存在於酸性土壤中會和鋁競爭吸附位置而釋出鋁,導致植物受到鋁毒害。然而,鮮少有研究探討鎵、銦共存時,鎵、銦的動態變化及植體的累積量。因此,本研究欲探討鎵和銦共存下,在不同土壤環境中的交互作用。本研究使用有效性鋁含量高的平鎮系土以及有效性鋁含量低的翁子系土為試驗土壤。利用人為方式分別於鎵處理組、銦處理組及鎵銦共處理組中添加 0、717.5、1435、2870 μmol kg-1 的氯化鎵和氯化銦。以土壤孵育實驗探討鎵、銦共存時土壤溶液中的動態變化。以水稻幼苗試驗 (50天) 探討鎵、銦對台梗 9 號幼苗生長及累積量之影響。土壤孵育之結果顯示,在鎵銦共處理組,兩試驗土壤之銦濃度與銦處理組相比有上升的趨勢,顯示鎵銦共存的情況下,土壤溶液中的鎵、銦會競爭土壤的吸附位置,鎵易被土壤吸持而銦則存留於溶液中。平鎮系土壤溶液的鋁濃度為:鎵銦共處理組 > 鎵處理組 > 銦處理組。翁子系土壤溶液的鋁濃度在三種處理組間沒有顯著差異。水稻生質量的結果顯示,翁子系水稻在 In-H、GaIn-M、以及 GaIn-H 處理下,水稻根部生長受到抑制。在三種處理下,平鎮系水稻之生長皆隨著處理濃度增加而受到抑制。翁子系水稻植體之鎵、銦濃度結果顯示,水稻對鎵、銦可能不存在競爭吸收的關係。在鎵銦共處理組,平鎮系水稻地上部之鎵、銦、鋁濃度與鎵處理組及銦處理組相比皆有下降的趨勢。本研究結果指出,當鎵、銦共存於酸性土壤中,應較注意環境中銦對植物造成的毒害,若土壤之有效鋁含量高,亦應注意鋁毒害。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:24:41Z (GMT). No. of bitstreams: 1 U0001-3008202115250500.pdf: 7594634 bytes, checksum: a03133a9d04c2b2dc514601cf3899425 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 i Abstract ii 目錄 iv 圖目錄 vii 表目錄 x 第一章 、緒論 1 1.1 鎵 1 1.1.1 鎵之化性、應用及污染 1 1.1.2 土壤環境中之鎵分布及動態變化 2 1.1.3 鎵對植物生長之影響 4 1.1.4 鎵對動物和人體之毒害及生長之影響 5 1.2 銦 6 1.2.1 銦之化性、應用及污染 6 1.2.2 土壤環境中銦之分布及動態變化 7 1.2.3 銦對植物生長之影響 9 1.2.4 銦對動物和人體之毒性及危害 10 1.3 鋁 11 1.3.1 鋁之化性及分布 11 1.3.2 鋁對植物生長之影響 12 1.4 鎵、銦於台灣之現況及管制標準 13 1.5 研究動機與目的 14 第二章 、材料與方法 15 2.1 試驗土壤之採集與基本特性 15 2.2 試驗土壤基本性質分析 15 2.2.1 土壤質地-比重計法 15 2.2.2 土壤pH值 16 2.2.3 土壤有機質含量 16 2.2.4 土壤有效鋁含量 17 2.2.5 土壤無定型鐵氧化物含量 17 2.2.6 土壤游離鐵鋁氧化物 17 2.2.7 試驗土壤總鎵與銦之含量 18 2.3 試驗土壤之鎵、銦添加前處理 18 2.3.1 鎵處理組土壤之製備 18 2.3.2 銦處理組土壤之製備 19 2.3.3 鎵銦共處理組土壤之製備 19 2.4 土壤浸水孵育試驗 20 2.5 水稻幼苗盆栽試驗 20 2.5.1 試驗水稻品種 20 2.5.2 水稻栽培之環境 20 2.5.3 水稻秧苗之培育 21 2.5.4 化肥施用 21 2.5.5 盆栽幼苗試驗 21 2.5.6 土壤孔隙水之採集與分析 22 2.5.7 盆栽試驗期間土壤 pH 值及 Eh 值之測定 22 2.6 以DCB溶液洗除水稻根部之鐵模 22 2.7 植體中鋁、鎵、銦含量分析 23 2.7.1 添加標準品分析 23 2.8 統計分析 23 第三章 、結果與討論 27 3.1 試驗土壤基本性質 27 3.2 土壤孵育實驗與盆栽孔隙水 29 3.2.1 土壤孵育實驗與盆栽試驗期間之土壤溶液 pH 值之變化 29 3.2.2 土壤孵育實驗與盆栽試驗期間之土壤溶液 Eh 值之變化 34 3.2.3 孵育實驗土壤溶液與盆栽試驗孔隙水之鎵濃度變化 39 3.2.4 孵育實驗土壤溶液與盆栽試驗孔隙水之銦濃度變化 45 3.2.5 孵育實驗土壤溶液與盆栽試驗孔隙水之鋁濃度變化 50 3.3 盆栽幼苗試驗 55 3.3.1 水稻幼苗於各處理組之生長情形、株高及生質量 55 3.3.2 水稻幼苗植體於鎵處理及鎵銦共處理下之鎵濃度變化 62 3.3.3 水稻幼苗地上部之鎵總累積量 64 3.3.4 水稻幼苗植體於銦處理及鎵銦共處理下之銦濃度變化 66 3.3.5 水稻幼苗地上部之銦總累積量 68 3.3.6 水稻幼苗植體於鎵處理、銦處理、以及鎵銦共處理下之鋁濃度變化 70 3.3.7 水稻幼苗地上部之鋁總累積量 74 第四章 、結論 76 第五章 、參考文獻 77 第六章 、附錄 85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水稻幼苗 | zh_TW |
| dc.subject | 新興污染物 | zh_TW |
| dc.subject | 鎵 | zh_TW |
| dc.subject | 銦 | zh_TW |
| dc.subject | 共存 | zh_TW |
| dc.subject | indium | en |
| dc.subject | rice seedlings | en |
| dc.subject | coexist | en |
| dc.subject | Emerging contaminants | en |
| dc.subject | gallium | en |
| dc.title | 探討鎵和銦兩種新興污染物共存下被酸性土壤吸持和水稻的累積 | zh_TW |
| dc.title | Gallium and Indium Retention by Acidic Soils and Accumulation by Rice Seedlings in the Coexistence of these Two Emerging Contaminants | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄒裕民(Hsin-Tsai Liu),莊愷瑋(Chih-Yang Tseng),許正一,許健輝 | |
| dc.subject.keyword | 新興污染物,鎵,銦,共存,水稻幼苗, | zh_TW |
| dc.subject.keyword | Emerging contaminants,gallium,indium,coexist,rice seedlings, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202102849 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-08-30 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3008202115250500.pdf 未授權公開取用 | 7.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
