請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81604完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡政達(Jeng-Da Chai) | |
| dc.contributor.author | Hong-Jui Huang | en |
| dc.contributor.author | 黃泓睿 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:24:40Z | - |
| dc.date.available | 2022-11-24T09:24:40Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-14 | |
| dc.identifier.citation | P. Avouris and F. Xia. Graphene applications in electronics and photonics. MRS Bulletin, 37(12), 12251234. P. Boffetta, N. Jourenkova, and P. Gustavsson. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control volume 8, pages444–472 (1997). J.L. Bredas. Mind the gap! Mater. Horiz., 2014, 1, 1719. J.D. Chai. Density functional theory with fractional orbital occupations. J. Chem. Phys. 136, 154104 (2012). J.D. Chai. Thermally-assisted-occupation density functional theory with generalizedgradient approximations. J. Chem. Phys. 140, 18A521 (2014). J.D. Chai and P.T. Chen. Restoration of the derivative discontinuity in kohn-sham density functional theory: An efficient scheme for energy gap correction. Phys. Rev. Lett. 110, 033002 (2013). J.H. Chung and J.D. Chai. Electronic properties of möbius cyclacenes studied by thermally-assisted-occupation density functional theory. Sci. Rep. 9, 2907 (2019). E. Clar and W. Schmidt. Correlations between photoelectron and ultraviolet absorption spectra of polycyclic hydrocarbons : The terrylene and peropyrene series. Tetrahedron, Volume 34, Issue 21, 1978, Pages 32193224. E. Cobas, A. L. Friedman, O. M. J. van't Erve, J. T. Robinson, and B. T. Jonker. Graphene as a tunnel barrier: Graphene-based magnetic tunnel junctions. Nano Lett. 2012, 12, 6, 3000–3004. A. J. Cohen, P. MoriSánchez, and W. Yang. Challenges for density functional theory. Chem. Rev. 2012, 112, 1, 289–320. A. J. Cohen, P. MoriSánchez, and W. Yang. Insights into current limitations of density functional theory. Science 321 (5890), 792794. Q. Deng and J.D. Chai. Electronic properties of triangle-shaped graphene nanoflakes from TAODFT. ACS Omega 2019, 4, 10, 14202–14210. M. Dennis, R. Massey, D. McWeeny, M. Knowles, and D. Watson. Analysis of polycyclic aromatic hydrocarbons in UK total diets. Food and Chemical Toxicology, Volume 21, Issue 5, 1983, Pages 569574. C. E.Cerniglia. Biodegradation of polycyclic aromatic hydrocarbons. Current Opinion in Biotechnology, Volume 4, Issue 3, 1993, Pages 331338. T. M. Figueira-Duarte and K. Müllen. Pyrene-based materials for organic electronics. Chem. Rev. 2011, 111, 11, 7260–7314. T. Guerra, L. Araújo, and S. Azevedo. Magnetic and electronic properties of diamondshaped graphene-boron nitride nanoribbons and nanoflakes. Journal of Physics and Chemistry of Solids, Volume 135, 2019, 109085. J. W. Hager and S. C. Wallace. Two-laser photoionization supersonic jet mass spectrometry of aromatic molecules. Anal. Chem. 1988, 60, 1, 5–10. Q. He, S. Wu, Z. Yin, and H. Zhang. Graphene-based electronic sensors. Chem. Sci., 2012, 3, 17641772. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964). W. Hu, Y. Huang, X. Qin, L. Lin, E. Kan, X. Li, C. Yang, and J. Yang. Room temperature magnetism and tunable energy gaps in edge-passivated zigzag graphene quantum dots. npj 2D Mater Appl 3, 17 (2019). H.J. Huang, S. Seenithurai, and J.D. Chai. TAODFT study on the electronic properties of diamond-shaped graphene nanoflakes. Nanomaterials 2020, 10, 1236. H.S. Jang, Y. Wang, Y. Lei, and M.P. Nieh. Controllable formation of pyrene (C16H10) excimers in polystyrene/tetrabutylammonium hexafluorophosphate films through solvent vapor and temperature annealing. J. Phys. Chem. C 2013, 117, 3, 1428–1435. J.H. Kim, H. U. Kim, I.N. Kang, S. K. Lee, S.J. Moon, W. S. Shin, and D.H. Hwang. Incorporation of pyrene units to improve hole mobility in conjugated polymers for organic solar cells. Macromolecules 2012, 45, 21, 8628–8638. W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965). L. Kou, B. Yan, F. Hu, S.C. Wu, T. O. Wehling, C. Felser, C. Chen, and T. Frauenheim. Graphene-based topological insulator with an intrinsic bulk band gap above room temperature. Nano Lett. 2013, 13, 12, 6251–6255. H. Lee, J. Ihm, M. L. Cohen, and S. G. Louie. Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Lett. 2010, 10, 3, 793–798. C.Y. Lin, K. Hui, J.H. Chung, and J.D. Chai. Self-consistent determination of the fictitious temperature in thermally-assisted-occupation density functional theory. RSC Adv. 2017, 7, 50496–50507. P.O. Löwdin and H. Shull. Natural orbitals in the quantum theory of two-electron systems. Phys. Rev. 101, 1730 (1956). K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996). T. Nielsen, H. E. Jørgensen, J. C. Larsen, and M. Poulsen. City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects. Science of The Total Environment, Volumes 189–190, 1996, Pages 4149. H. Ouarrad, F.Z. Ramadan, and L. B. Drissi. Size engineering optoelectronic features of C, Si and CSi hybrid diamond-shaped quantum dots. RSC Adv., 2019, 9, 2860928617. F. J. Owens. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons. J. Chem. Phys. 128, 194701 (2008). J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. RomeroAburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J.J. Zhu, and P. M. Ajayan. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012, 12, 2, 844–849. J. P. Perdew and K. Schmidt. Jacob's ladder of density functional approximations for the exchange-correlation energy. AIP Conference Proceedings 577, 1 (2001). S. Seenithurai and J.D. Chai. Effect of Li termination on the electronic and hydrogen storage properties of linear carbon chains: A TAODFT study. Sci Rep 7, 4966 (2017). S. Seenithurai and J.D. Chai. Electronic and hydrogen storage properties of Li terminated linear boron chains studied by TAODFT. Sci Rep 8, 13538 (2018). W. J. Simonsick and R. A. Hites. Characterization of high molecular weight polycyclic aromatic hydrocarbons by charge exchange chemical ionization mass spectrometry. Anal. Chem. 1986, 58, 11, 2114–2121. Y. Su, X. Wang, L. Wang, Z. Zhang, X. Wang, Y. Song, and P. P. Power. Thermally controlling the singlet–triplet energy gap of a diradical in the solid state. Chem. Sci., 2016, 7, 65146518. C. Tang, F. Liu, Y.J. Xia, J. Lin, L.H. Xie, G.Y. Zhong, Q.L. Fan, and W. Huang. Fluorene-substituted pyrenes—novel pyrene derivatives as emitters in nondoped blue OLEDs. Organic Electronics, Volume 7, Issue 3, 2006, Pages 155162. J. M. Tour. Top-down versus bottom-up fabrication of graphene-based electronics. Chem. Mater. 2014, 26, 1, 163–171. B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard. Spin qubits in graphene quantum dots. Nature Phys 3, 192–196 (2007). T. H. Vo, M. Shekhirev, D. A. Kunkel, M. D. Morton, E. Berglund, L. Kong, P. M. Wilson, P. A. Dowben, A. Enders, and A. Sinitskii. Largescale solution synthesis of narrow graphene nanoribbons. Nat Commun 5, 3189 (2014). W. L. Wang, S. Meng, and E. Kaxiras. Graphene nanoflakes with large spin. Nano Lett. 2008, 8, 1, 241–245. W. E. Wentworth and R. S. Becker. Potential method for the determination of electron affinities of molecules: Application to some aromatic hydrocarbons. J. Am. Chem. Soc. 1962, 84, 22, 4263–4266. C. M. Wettstein, F. P. Bonafé, M. B. Oviedo, and C. G. Sánchez. Optical properties of graphene nanoflakes:shape matters. J. Chem. Phys. 144, 224305 (2016). C.S. Wu, P.Y. Lee, and J.D. Chai. Electronic properties of cyclacenes from TAO-DFT. Sci. Rep. 6, 37249 (2016). J. Yang, L. Li, Y. Yu, Z. Ren, Q. Peng, S. Ye, Q. Li, and Z. Li. Blue pyrene-based AIEgens: inhibited intermolecular π–π stacking through the introduction of substituents with controllable intramolecular conjugation, and high external quantum efficiencies up to 3.46 % in non-doped OLEDs. Mater. Chem. Front., 2017, 1, 9199. C.N. Yeh and J.D. Chai. Role of Kekulé and Non-Kekulé structures in the radical character of alternant polycyclic aromatic hydrocarbons: A TAODFT study. Sci Rep 6, 30562 (2016). Y. Zhang, Y.W. Tan, H. L. Stormer, and P. Kim. Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438, 201–204 (2005). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81604 | - |
| dc.description.abstract | 對比於科沈密度泛函理論(KS-DFT),本論文採用熱輔助佔據密度泛函理論(TAO-DFT)的局部密度近似(LDA)方法研究鑽石型石墨烯奈米薄片(本文稱為n-pyrene)。本論文顯示科沈密度泛函理論(KS-DFT)無法良好地處理強關聯電子系統,甚至部分科沈密度泛函理論計算的結果顯示出靜態相關誤差。 除此之外,熱輔助佔據密度泛函理論(TAO-DFT)的計算效率與科沈密度泛函理論(KS-DFT)相似,但是熱輔助佔據密度泛函理論(TAO-DFT)在研究n-pyrene 的電子性質時降低了強關聯電子系統靜態關聯誤差。本論文使用熱輔助佔據密度泛函理論(TAO-DFT)局部密度近似(LDA)方法研究了 n-pyrene 的諸多電子性質(如單重態-三重態能隙、垂直電離能、垂直電子親和力、基本間隙等)。根據熱輔助佔據密度泛函理論(TAO-DFT)局部密度近似(LDA)方法計算的結果,對於所有研究的對象,n-pyrene 的基態都是單重態。此外,單重態-三重態能隙、垂直電離能、基本能隙隨著 n-pyrene 分子大小的增加而減小,而當n-pyrene 分子的尺寸增加時,垂直電子親和力會隨著分子尺寸增大而增加。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:24:40Z (GMT). No. of bitstreams: 1 U0001-3108202120411100.pdf: 33442521 bytes, checksum: 022d584d832bac098d5c34dac0654bf7 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "Acknowledgements i 摘要 iii Abstract v Contents vii List of Figures ix List of Tables xv Denotation xvii Chapter 1 Introduction 1 Chapter 2 Method 5 2.1 TAO¬DFT 5 2.2 Computational Details 12 Chapter 3 Pyrene 17 3.1 Polycyclic Aromatic Hydrocarbons 17 3.2 Pyrene 18 Chapter 4 Results 21 4.1 Computational Results 21 4.2 Visualization of Active Orbitals 43 Chapter 5 Conclusions 69 5.1 Singlet-Triplet Energy Gap 69 5.2 Spin Contamination Effects 69 5.3 Vertical Ionization Potential, Vertical Electron Affinity, and Fundamental Gap 70 5.4 Symmetrized von Neumann Entropy 70 5.5 Active Orbital Occupation Numbers 71 5.6 Active Orbitals Visualization 71 5.7 Summary 72 References 73 Appendix A — Jacob’s Ladder 79 A.1 Jacob’s Ladder 79 Appendix B — Visualization of active orbitals from TAO-PBE 83 " | |
| dc.language.iso | en | |
| dc.subject | 強關聯電子系統 | zh_TW |
| dc.subject | 單重態-三重態能隙 | zh_TW |
| dc.subject | 熱輔助佔據密度泛函理論 | zh_TW |
| dc.subject | 石墨烯奈米薄片 | zh_TW |
| dc.subject | singlet−triplet energy gaps | en |
| dc.subject | thermally-assisted-occupation density functional theory | en |
| dc.subject | graphene nanoflakes | en |
| dc.subject | strong static correlation effects | en |
| dc.title | n-pyrene的電子性質研究 | zh_TW |
| dc.title | Electronic properties of n-pyrene from TAO-DFT | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張秀華(Hsin-Tsai Liu),關肇正(Chih-Yang Tseng) | |
| dc.subject.keyword | 熱輔助佔據密度泛函理論,石墨烯奈米薄片,強關聯電子系統,單重態-三重態能隙, | zh_TW |
| dc.subject.keyword | thermally-assisted-occupation density functional theory,graphene nanoflakes,strong static correlation effects,singlet−triplet energy gaps, | en |
| dc.relation.page | 108 | |
| dc.identifier.doi | 10.6342/NTU202102915 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-09-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3108202120411100.pdf 未授權公開取用 | 32.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
