請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81602完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐善慧(Shan-hui Hsu) | |
| dc.contributor.author | Ting-Chieh Chen | en |
| dc.contributor.author | 陳廷杰 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:24:38Z | - |
| dc.date.available | 2022-11-24T09:24:38Z | - |
| dc.date.copyright | 2022-02-21 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-10 | |
| dc.identifier.citation | [1] P. Humpolíček, K. Radaszkiewicz, Z. Capáková, J. Pacherník, P. Bober, V. Kašpárková, P. Rejmontová, M. Lehocký, P. Ponížil, J. Stejskal, Polyaniline cryogels: Biocompatibility of novel conducting macroporous material, Scientific Reports 8 (2018). [2] V. Lozinsky, Cryostructuring of polymeric systems. 50.† cryogels and cryotropic gel-formation: terms and definitions, Gels 4 (2018) 77. [3] M. Rezaeeyazdi, T. Colombani, A. Memic, S.A. Bencherif, Injectable hyaluronic acid-co-gelatin cryogels for tissue-engineering applications, Materials (Basel) 11(8) (2018). [4] N. -Sazhnev, M. Drozdova, I. Rodionov, N. Kil’deeva, T. Balabanova, E. Markvicheva, V. Lozinsky, Preparation of chitosan cryostructurates with controlled porous morphology and their use as 3D-scaffolds for the cultivation of animal cells, Applied Biochemistry and Microbiology 54 (2018) 459-467. [5] A. Mohammadpour, S. Arjmand, A.S. Lotfi, H. Tavana, M. Kabir-Salmani, Promoting hepatogenic differentiation of human mesenchymal stem cells using a novel laminin-containing gelatin cryogel scaffold, Biochem Biophys Res Commun 507(1-4) (2018) 15-21. [6] I. Kim, S.S. Lee, S. Bae, H. Lee, N.S. Hwang, Heparin functionalized injectable cryogel with rapid shape-recovery property for neovascularization, Biomacromolecules 19(6) (2018) 2257-2269. [7] N. Sazhnev, M. Drozdova, I. Rodionov, N. Kil’deeva, T. Balabanova, E. Markvicheva, V. Lozinsky, Preparation of chitosan cryostructurates with controlled porous morphology and their use as 3D-scaffolds for the cultivation of animal cells, Applied Biochemistry and Microbiology 54 (2018) 459-467. [8] L.J. Eggermont, Z.J. Rogers, T. Colombani, A. Memic, S.A. Bencherif, Injectable cryogels for biomedical applications, Trends in Biotechnology 38(4) (2020) 418-431. [9] M.C.G. Pellá, M.K. Lima-Tenório, E.T. Tenório-Neto, M.R. Guilherme, E.C. Muniz, A.F. Rubira, Chitosan-based hydrogels: From preparation to biomedical applications, Carbohydrate Polymers 196 (2018) 233-245. [10] E.İ. Bektaş, G.G. Peközer, F.N. Kök, G.T. Köse, Evaluation of natural gum-based cryogels for soft tissue engineering, Carbohydrate Polymers (2021) 118407. [11] S. Ahmed, Annu, A. Ali, J. Sheikh, A review on chitosan centred scaffolds and their applications in tissue engineering, International Journal of Biological Macromolecules 116 (2018) 849-862. [12] M.N. Rodrigues, M.B. Oliveira, R.R. Costa, J.F. Mano, Chitosan/chondroitin sulfate membranes produced by polyelectrolyte complexation for cartilage engineering, Biomacromolecules 17(6) (2016) 2178-2188. [13] C.G.T. Neto, J.A. Giacometti, A.E. Job, F.C. Ferreira, J.L.C. Fonseca, M.R. Pereira, Thermal Analysis of Chitosan Based Networks, Carbohydrate Polymers 62(2) (2005) 97-103. [14] Y.-P. Guo, J.-J. Guan, J. Yang, Y. Wang, C.-Q. Zhang, Q.-F. Ke, Hybrid nanostructured hydroxyapatite–chitosan composite scaffold: bioinspired fabrication, mechanical properties and biological properties, Journal of Materials Chemistry B 3(23) (2015) 4679-4689. [15] S. Yamada, K. Sugahara, S. Ozbek, Evolution of glycosaminoglycans: Comparative biochemical study, Commun Integr Biol 4(2) (2011) 150-8. [16] H. Karimi-Maleh, A. Ayati, R. Davoodi, B. Tanhaei, F. Karimi, S. Malekmohammadi, Y. Orooji, L. Fu, M. Sillanpää, Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: A review, Journal of Cleaner Production 291 (2021) 125880. [17] S.-h. Hsu, K.-C. Hung, C.-W. Chen, Biodegradable polymer scaffolds, Journal of Materials Chemistry B 4(47) (2016) 7493-7505. [18] R. Jayakumar, D. Menon, K. Manzoor, S.V. Nair, H. Tamura, Biomedical applications of chitin and chitosan based nanomaterials—A short review, Carbohydrate Polymers 82(2) (2010) 227-232. [19] I.O. Saheed, W.D. Oh, F.B.M. Suah, Chitosan modifications for adsorption of pollutants – A review, Journal of Hazardous Materials 408 (2021) 124889. [20] T.-W. Lin, S.-h. Hsu, Self-healing hydrogels and cryogels from biodegradable polyurethane nanoparticle crosslinked chitosan, Advanced Science 7(3) (2020) 1901388. [21] P.C. Caracciolo, N.J. Lores, G.A. Abraham, Chapter 8 - Polyurethane-based structures obtained by additive manufacturing technologies, in: A.-M. Holban, A.M. Grumezescu (Eds.), Materials for Biomedical Engineering, Elsevier (2019), pp. 235-258. [22] D.G. Bekas, Y. Hou, Y. Liu, A. Panesar, 3D printing to enable multifunctionality in polymer-based composites: A review, Composites Part B: Engineering 179 (2019) 107540. [23] Z. Jiang, B. Diggle, M.L. Tan, J. Viktorova, C.W. Bennett, L.A. Connal, Extrusion 3D printing of polymeric materials with advanced properties, Advanced Science 7(17) (2020) 2001379. [24] P. Heidarian, A.Z. Kouzani, A. Kaynak, M. Paulino, B. Nasri-Nasrabadi, Dynamic hydrogels and polymers as inks for three-dimensional printing, ACS Biomaterials Science Engineering 5(6) (2019) 2688-2707. [25] U. Bozuyuk, O. Yasa, I.C. Yasa, H. Ceylan, S. Kizilel, M. Sitti, Light-triggered drug release from 3D-printed magnetic chitosan microswimmers, ACS Nano 12(9) (2018) 9617-9625. [26] M. Nadgorny, J. Collins, Z. Xiao, P.J. Scales, L.A. Connal, 3D-printing of dynamic self-healing cryogels with tuneable properties, Polymer Chemistry 9(13) (2018) 1684-1692. [27] S. Horiyama, Y. Takahashi, M. Hatai, C. Honda, K. Suwa, A. Ichikawa, N. Yoshikawa, K. Nakamura, M. Kunitomo, S. Date, T. Masujima, M. Takayama, Methyl vinyl ketone, a toxic ingredient in cigarette smoke extract, modifies glutathione in mouse melanoma cells, Chemical and Pharmaceutical Bulletin 62(8) (2014) 772-778. [28] J. Liu, L. Sun, W. Xu, Q. Wang, S. Yu, J. Sun, Current advances and future perspectives of 3D printing natural-derived biopolymers, Carbohydrate Polymers 207 (2019) 297-316. [29] M. Guvendiren, J. Molde, R.M. Soares, J. Kohn, Designing biomaterials for 3D printing, ACS Biomaterials Science Engineering 2(10) (2016) 1679-1693. [30] S.-H. Hsiao, S.-h. Hsu, Synthesis and characterization of dual stimuli-sensitive biodegradable polyurethane soft hydrogels for 3D cell-laden bioprinting, ACS Applied Materials Interfaces 10(35) (2018) 29273-29287. [31] R.-D. Chen, C.-F. Huang, S.-h. Hsu, Composites of waterborne polyurethane and cellulose nanofibers for 3D printing and bioapplications, Carbohydrate Polymers 212 (2019) 75-88. [32] J.O. Akindoyo, M.D.H. Beg, S. Ghazali, M.R. Islam, N. Jeyaratnam, A.R. Yuvaraj, Polyurethane types, synthesis and applications – a review, RSC Advances 6(115) (2016) 114453-114482. [33] T.-Y. Chen, T.-K. Wen, N.-T. Dai, S.-h. Hsu, Cryogel/hydrogel biomaterials and acupuncture combined to promote diabetic skin wound healing through immunomodulation, Biomaterials (2020) 120608. [34] J. Xu, C.-W. Wong, S.-h. Hsu, An injectable, electroconductive hydrogel/scaffold for neural repair and motion sensing, Chemistry of Materials (2020). [35] T. Adachi, Y. Osako, M. Tanaka, M. Hojo, S.J. Hollister, Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration, Biomaterials 27(21) (2006) 3964-3972. [36] Y.-T. Wen, N.-T. Dai, S.-h. Hsu, Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering, Acta Biomaterialia 88 (2019) 301-313. [37] J. Xu, C.-W. Wong, S.-h. Hsu, An Injectable, Electroconductive Hydrogel/Scaffold for Neural Repair and Motion Sensing, Chemistry of Materials 32(24) (2020) 10407-10422. [38] P. Li, Z. Jia, Q. Wang, P. Tang, M. Wang, K. Wang, J. Fang, C. Zhao, F. Ren, X. Ge, X. Lu, A resilient and flexible chitosan/silk cryogel incorporated Ag/Sr co-doped nanoscale hydroxyapatite for osteoinductivity and antibacterial properties, Journal of Materials Chemistry B 6(45) (2018) 7427-7438. [39] K.R. Hixon, T. Lu, S.A. Sell, A comprehensive review of cryogels and their roles in tissue engineering applications, Acta Biomaterialia 62 (2017) 29-41. [40] C.-Y. Liao, W.-J. Wu, C.-T. Hsieh, H.-C. Yang, C.-S. Tseng, S.-h. Hsu, Water/ice as sprayable sacrificial materials in low-temperature 3D printing for biomedical applications, Materials Design 160 (2018) 624-635. [41] S.-h. Hsu, K.-C. Hung, Y.-Y. Lin, C.-H. Su, H.-Y. Yeh, U.-S. Jeng, C.-Y. Lu, S.A. Dai, W.-E. Fu, J.-C. Lin, Water-based synthesis and processing of novel biodegradable elastomers for medical applications, Journal of Materials Chemistry B 2(31) (2014) 5083-5092. [42] Y.-J. Lin, W.-T. Chuang, S.-h. Hsu, Gelation mechanism and dtructural dynamics of chitosan self-healing hydrogels by in situ SAXS and coherent X-ray scattering, ACS Macro Letters 8(11) (2019) 1449-1455. [43] W. Liao, Y. Zhang, Y. Guan, X.X. Zhu, Fractal Structures of the Hydrogels Formed in Situ from Poly(N-isopropylacrylamide) Microgel Dispersions, Langmuir 28(29) (2012) 10873-10880. [44] D. Ding, P.A. Guerette, J. Fu, L. Zhang, S.A. Irvine, A. Miserez, From Soft Self-Healing Gels to Stiff Films in Suckerin-Based Materials Through Modulation of Crosslink Density and β-Sheet Content, Advanced Materials 27(26) (2015) 3953-3961. [45] S.-h. Hsu, K.-C. Hung, Y.-Y. Lin, C.-H. Su, H.-Y. Yeh, U.S. Jeng, C.-Y. Lu, S.A. Dai, W.-E. Fu, J.-C. Lin, Water-based synthesis and processing of novel biodegradable elastomers for medical applications, Journal of Materials Chemistry B 2(31) (2014) 5083-5092. [46] Y.-c. Chien, W.-T. Chuang, U.S. Jeng, S.-h. Hsu, Preparation, characterization, and mechanism for biodegradable and biocompatible polyurethane shape memory elastomers, ACS Applied Materials Interfaces 9(6) (2017) 5419-5429. [47] F. Herbst, D. Döhler, P. Michael, W.H. Binder, Self-healing polymers via supramolecular forces, Macromolecular Rapid Communications 34(3) (2013) 203-220. [48] Y. Xu, Y. Li, Q. Chen, L. Fu, L. Tao, Y. Wei, Injectable and self-healing chitosan hydrogel based on imine bonds: Design and therapeutic applications, International Journal of Molecular Sciences 19(8) (2018) 2198. [49] Y. He, F. Yang, H. Zhao, Q. Gao, B. Xia, J. Fu, Research on the printability of hydrogels in 3D bioprinting, Scientific Reports 6(1) (2016) 29977. [50] E.F. Burguera, H.H.K. Xu, L. Sun, Injectable calcium phosphate cement: Effects of powder-to-liquid ratio and needle size, Journal of Biomedical Materials Research Part B: Applied Biomaterials 84B(2) (2008) 493-502. [51] N. Watanabe, Y. Yamamoto, S. Fujimura, A. Kojima, A. Nakamura, K. Watanabe, T. Ishi, Y. Murayama, Utility of multi-material three-dimensional print model in preoperative simulation for glioma surgery, Journal of Clinical Neuroscience 93 (2021) 200-205. [52] A. Singh, P.A. Shiekh, M. Das, J. Seppälä, A. Kumar, Aligned chitosan-gelatin cryogel-filled polyurethane nerve guidance channel for neural tissue engineering: fabrication, characterization, and in vitro evaluation, Biomacromolecules 20(2) (2018) 662-673. [53] V.I. Lozinsky, Cryogels on the basis of natural and synthetic polymers: preparation, properties and application, Russian Chemical Reviews 71(6) (2002) 489-511. [54] A. Kumar, R. Mishra, Y. Reinwald, S. Bhat, Cryogels: Freezing unveiled by thawing, Materials Today 13(11) (2010) 42-44. [55] C. Oelschlaeger, F. Bossler, N. Willenbacher, Synthesis, structural and micromechanical properties of 3D hyaluronic acid-based cryogel scaffolds, Biomacromolecules 17(2) (2016) 580-589. [56] J.R. Woodard, A.J. Hilldore, S.K. Lan, C. Park, A.W. Morgan, J.A.C. Eurell, S.G. Clark, M.B. Wheeler, R.D. Jamison, A.J.W. Johnson, The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity, Biomaterials 28(1) (2007) 45-54. [57] H. Chi, G. Chen, Y. He, G. Chen, H. Tu, X. Liu, J. Yan, X. Wang, 3D-HA scaffold functionalized by extracellular matrix of stem cells promotes bone repair, International Journal of Nanomedicine 15 (2020) 5825-5838. [58] R.G.M. Breuls, T.U. Jiya, T.H. Smit, Scaffold stiffness influences cell behavior: opportunities for skeletal tissue engineering, Open Orthop J 2 (2008) 103-109. [59] M.C. Arufe, A. De la Fuente, I. Fuentes-Boquete, F.J. De Toro, F.J. Blanco, Differentiation of synovial CD-105+ human mesenchymal stem cells into chondrocyte-like cells through spheroid formation, Journal of Cellular Biochemistry 108(1) (2009) 145-155. [60] K.-C. Yang, I.-H. Chen, Y.-T. Yang, J.-K. Hsiao, C.-C. Wang, Effects of scaffold geometry on chondrogenic differentiation of adipose-derived stem cells, Materials Science and Engineering: C 110 (2020) 110733. [61] S.-j. Kim, J. Park, H. Byun, Y.-W. Park, L.G. Major, D.Y. Lee, Y.S. Choi, H. Shin, Hydrogels with an embossed surface: An all-in-one platform for mass production and culture of human adipose-derived stem cell spheroids, Biomaterials 188 (2019) 198-212. [62] Z. Liu, M. Tamaddon, Y. Gu, J. Yu, N. Xu, F. Gang, X. Sun, C. Liu, Cell Seeding Process Experiment and Simulation on Three-Dimensional Polyhedron and Cross-Link Design Scaffolds, Frontiers in Bioengineering and Biotechnology 8(104) (2020). [63] D. Wendt, A. Marsano, M. Jakob, M. Heberer, I. Martin, Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity, Biotechnology and Bioengineering 84(2) (2003) 205-214. [64] A. Campos Marín, M. Brunelli, D. Lacroix, Flow perfusion rate modulates cell deposition onto scaffold substrate during cell seeding, Biomechanics and Modeling in Mechanobiology 17(3) (2018) 675-687. [65] I.J. Fang, B.G. Trewyn, Chapter three - Application of Mesoporous Silica Nanoparticles in Intracellular Delivery of Molecules and Proteins, in: N. Düzgüneş (Ed.), Methods in Enzymology, Academic Press (2012), pp. 41-59. [66] A.K. Gaharwar, P.J. Schexnailder, Q. Jin, C.-J. Wu, G. Schmidt, Addition of chitosan to silicate cross-lilnked PEO for tuning osteoblast cell adhesion and mineralization, ACS Applied Materials Interfaces 2(11) (2010) 3119-3127. [67] C. Chatelet, O. Damour, A. Domard, Influence of the degree of acetylation on some biological properties of chitosan films, Biomaterials 22(3) (2001) 261-268. [68] P.J. Roughley, J.S. Mort, The role of aggrecan in normal and osteoarthritic cartilage, J Exp Orthop 1(1) (2014) 1-11. [69] S.A. Kim, Y.J. Sur, M.-L. Cho, E.J. Go, Y.H. Kim, A.A. Shetty, S.J. Kim, Atelocollagen promotes chondrogenic differentiation of human adipose-derived mesenchymal stem cells, Scientific Reports 10(1) (2020) 10678. [70] K.-C. Hung, U.S. Jeng, S.-h. Hsu, Fractal structure of hydrogels modulates stem cell behavior, ACS Macro Letters 4(9) (2015) 1056-1061. [71] B. Sultankulov, D. Berillo, S. Kauanova, S. Mikhalovsky, L. Mikhalovska, A. Saparov, Composite cryogel with polyelectrolyte complexes for growth factor delivery, Pharmaceutics 11(12) (2019) 650. [72] C. Gegg, F. Yang, The effects of ROCK inhibition on mesenchymal stem cell chondrogenesis are culture model dependent, Tissue Eng Part A 26(3-4) (2020) 130-139. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81602 | - |
| dc.description.abstract | 冷凍凝膠的優點是具有高度多孔性,並具有足夠的機械穩定性和可注射性,可用於生物醫學應用。當前,三維(3D)列印被用於生產組織工程的客製化支架。但是到目前為止,關於冷凍凝膠的3D列印研究很少,因為冷凍凝膠的熱傳因素導致其應用上的限制。我們之前的研究中,合成了各種雙官能聚胺酯(DPU)奈米粒子交聯劑,它們與殼聚醣(CS)在4°C下反應4小時,作為3D列印的進料(預冷凍凝膠)。將列印後的預冷凍凝膠在-20°C下冷凍形成3D列印的冷凍凝膠。三維列印冷凍凝膠具有與塊狀冷凍凝膠相似的特性,例如:形狀恢復特性和吸水率(≈3200%)。細胞培養實驗的結果表明3D列印的冷凍凝膠支架可促進人間充質乾細胞的增殖和軟骨分化,並提供出色的機械完整性。具有可注射性和形狀恢復特性的3D列印冷凍凝膠支架在組織工程和微創手術中擁有應用潛力。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:24:38Z (GMT). No. of bitstreams: 1 U0001-1002202208271800.pdf: 4628916 bytes, checksum: 1d28f114c60047bd1eaadbaa0dd69e70 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VIII 表目錄 X 第一章 文獻回顧 1 1.1. 冷凍凝膠的發展與應用 1 1.2. 殼聚醣的生醫應用與限制 1 1.3. 3D列印技術的製備方式 2 1.4. 水性生物可降解聚胺酯交聯劑的生醫應用 2 1.5. 研究目的 4 第二章 研究方法 5 2.1. 研究架構 5 2.2. DL型聚乳酸二元醇之合成與鑑定 6 2.2.1. DL型聚乳酸二元醇之合成 6 2.2.2. DL型聚乳酸二元醇之分子量鑑定 7 2.3. 雙官能基聚胺酯交聯劑之材料製備與分析 8 2.3.1.雙官能基聚胺酯交聯劑之合成 8 2.3.2. 雙官能基聚胺酯交聯劑膜之製備 10 2.3.3. 膠體滲透層析儀 10 2.3.4. 奈米粒徑和表面電位分析儀 10 2.3.5. 衰減式全反射(ATR-FTIR)傅立葉紅外光譜分析 11 2.3.6. 化學分析影像能譜儀分析 11 2.3.7. 廣角度X光繞射儀 12 2.4. 不同種類的交聯劑之冷凍凝膠的製備 12 2.4.1. 冷凍凝膠之吸水能力測試 12 2.4.2. 冷凍凝膠之動態力學測試 13 2.4.3. 冷凍凝膠模擬生理環境降解測試 13 2.4.4. 冷凍凝膠含細胞培養降解實驗 13 2.5. 不同時間的雙官能基聚胺酯交聯劑之預冷凍凝膠優化 14 2.5.1 原位小角度X射線散射分析儀 14 2.5.2. 流變性質檢測(Rheology) 15 2.6. 預冷凍凝膠3D列印 15 2.7. 3D列印冷凍凝膠的物理化學性質分析 16 2.7.1. 冷凍凝膠及3D列印冷凍凝膠之孔隙度與孔徑比較 16 2.7.2. 冷凍凝膠及3D列印冷凍凝膠之吸水率測試 17 2.7.3. 冷凍凝膠及3D列印冷凍凝膠之動態力學分析 17 2.7.4. 冷凍凝膠之體外降解測試 17 2.8. 3D列印冷凍凝膠可注射能力測試 17 2.8.1. 傳統冷凍凝膠之可注射能力測試 17 2.8.2. 3D列印冷凍凝膠之可注射能力測試 18 2.9. 人脂肪幹細胞(hADSCs)相容性測試 18 2.9.1. hADSCs增殖測試 18 2.9.2. hADSCs螢光染色測試 19 2.9.3. hADSCs縮時攝影測試 19 2.9.4. hADSCs分化之基因表現測試 19 2.9.5. hADSCs分化之醣胺聚醣(GAG)分析 20 2.9.6. hADSCs分化之safranin O/fast green染色分析 20 2.10. 統計分析 21 第三章 實驗結果 22 3.1. 雙官能基聚胺酯交聯劑性質之基本分析 22 3.1.1. DL型聚乳酸二元醇之核磁共振分析 22 3.1.2. 分子量、粒徑、電負度測試 22 3.1.3. X射線光電子能譜分析 23 3.1.4. 傅立葉紅外光譜儀 23 3.1.5 化學分析影像能譜儀 23 3.2. 殼聚醣與聚胺酯交聯形成冷凍凝膠 24 3.2.1. 不同組成比例的冷凍凝膠吸水程度測試 24 3.2.2. 水合冷凍凝膠之機械性質測試 25 3.3. 3D列印之預冷凍凝膠墨水最佳化 26 3.3.1. 巨觀預冷凍凝膠的注射性測試 26 3.3.2.小角度X射線散射測試 27 3.3.3. 預冷凍凝膠之流變學測試 28 3.4. 3D列印之冷凍凝膠 29 3.4.1. 3D列印冷凍凝膠的列印製備過程 29 3.4.2. 3D列印冷凍凝膠巨觀測試 30 3.5. 3D列印冷凍凝膠製程與傳統冷凍凝膠製程的比較 30 3.5.1. 傳統冷凍凝膠的製備與預冷凍凝膠的製備 30 3.5.2. 穿透式電子顯微鏡分析 31 3.5.3. 不同冷凍凝膠之機械性質分析 31 3.5.4. 不同冷凍凝膠之注射實驗測試 32 3.6. 3D 列印冷凍凝膠之生物相容性測試 32 3.6.1. hADSCs細胞型態變化 32 3.6.2. hADSCs 增殖程度測試 33 3.6.3. hADSCs分化之基因表現測試 33 3.6.4. hADSCs分化之醣胺聚醣(GAG)分析與染色分析 34 第四章 討論 35 4.1. 可列印冷凍凝膠之限制與發展 35 4.2. 克服限制並製備3D列印冷凍凝膠的優勢 35 4.3. 不同CSDPU冷凍凝膠在微觀與機械性質的討論 36 4.4. 製備3D列印冷凍凝膠的條件與優勢 37 4.5. 3D列印冷凍凝膠與傳統冷凍凝膠的性質比較 39 4.6. 3D列印冷凍凝膠的生物相容性 40 4.7. 3D列印冷凍凝膠的潛在利用 41 第五章 結論 42 參考文獻 43 | |
| dc.language.iso | zh-TW | |
| dc.subject | 可注射性 | zh_TW |
| dc.subject | 殼聚醣 | zh_TW |
| dc.subject | 3D列印 | zh_TW |
| dc.subject | 聚胺酯 | zh_TW |
| dc.subject | 冷凍凝膠 | zh_TW |
| dc.subject | cryogel | en |
| dc.subject | injectability | en |
| dc.subject | Chitosan | en |
| dc.subject | 3D-printing | en |
| dc.subject | polyurethane | en |
| dc.title | 具有注射特性和形狀恢復特性的三維列印冷凍凝膠支架 | zh_TW |
| dc.title | Three-Dimensional Printing of Cryogel as Injectable and Shape Recoverable Scaffolds | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴育英(Tzi-Dar Chiueh),侯詠德(Hsin-Shu Chen) | |
| dc.subject.keyword | 殼聚醣,3D列印,聚胺酯,冷凍凝膠,可注射性, | zh_TW |
| dc.subject.keyword | Chitosan,3D-printing,polyurethane,cryogel,injectability, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU202200506 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2022-02-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1002202208271800.pdf 未授權公開取用 | 4.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
