Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81599
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙聖德(Sheng-Der Chao)
dc.contributor.authorWei-Jer Huangen
dc.contributor.author黃偉哲zh_TW
dc.date.accessioned2022-11-24T09:24:35Z-
dc.date.available2022-11-24T09:24:35Z-
dc.date.copyright2021-09-17
dc.date.issued2021
dc.date.submitted2021-09-06
dc.identifier.citation[1]Chao, S. W., Li, A. H. T., Chao, S. D. (2009). Molecular dynamics simulations of fluid methane properties using ab initio intermolecular interaction potentials. Journal of computational chemistry, 30(12), 1839-1849. [2]Chen, Q. S., and Chao, S. D. (2019). Quantum Chemistry Calculated Intermolecular Interaction and Molecular Dynamics Simulation of Dichloromethane. National Taiwan University, Institute of Applied Mechanics. [3]Yin, C. C., Li, A. H., Chao, S. D. (2013). Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential. The Journal of chemical physics, 139(19), 194501. [4]Li, A. H. T., Huang, S. C., Chao, S. D. (2010). Molecular dynamics simulation of liquid carbon tetrachloride using ab initio force field. The Journal of chemical physics, 132(2), 024506. [5]Stone, A. J. (1996). The theory of intermolecular forces. International Series of Monographs on Chemistry, vol. 32. [6]Parker, T. M., Burns, L. A., Parrish, R. M., Ryno, A. G., Sherrill, C. D. (2014). Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies. The Journal of chemical physics, 140(9), 094106. [7]Dunning, T. H. (2000). A road map for the calculation of molecular binding energies. The Journal of Physical Chemistry A, 104(40), 9062-9080. [8]Stone, A. (2013). The theory of intermolecular forces. OUP Oxford. [9]Grimme, S., Antony, J., Ehrlich, S., Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 132(15), 154104. [10]Marchetti, O., Werner, H. J. (2009). Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method. The Journal of Physical Chemistry A, 113(43), 11580-11585. [11]Raghavachari, K., Trucks, G. W., Pople, J. A., Head-Gordon, M. (1989). A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 157(6), 479-483. [12]Jeziorski, B., Moszynski, R., Szalewicz, K. (1994). Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chemical Reviews, 94(7), 1887-1930. [13]Marques, M. A., Gross, E. K. (2004). Time-dependent density functional theory. Annual Review of Physical Chemistry, 55, 427-455. [14]Rey R. (2007). Quantitative characterization of orientational order in liquid carbon tetrachloride. The Journal of chemical physics, 126(16), 164506. [15]Krishnan, R. B. J. S., Binkley, J. S., Seeger, R., Pople, J. A. (1980). Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics, 72(1), 650-654. [16]Dunning Jr, T. H. (1989). Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of chemical physics, 90(2), 1007-1023. [17]Boys, S. F., Bernardi, F. D. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553-566. [18]Frisch, M.J., et al. (2009). Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford. [19]Turney, J. M., et al. (2012). Psi4: an open‐source ab initio electronic structure program. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(4), 556-565. [20]Duncan, J.L., McKean, D., Mallinson, P., McCulloch, R. (1973). Infrared spectra of CHD2Cl and CHD2CCH and the geometries of methyl chloride and propyne. Journal of Molecular Spectroscopy, 46, 232-239. [21]Rapaport, D. C. (2004). The art of molecular dynamics simulation. Cambridge university press. [22]Spencer, Calvin F. and Adler, Stanley B. (1978). A critical review of equations for predicting saturated liquid density. Journal of Chemical Engineering Data, 23(1), 82-89. [23]Martin, J. M. (1996). Ab initio total atomization energies of small molecules—towards the basis set limit. Chemical physics letters, 259(5-6), 669-678. [24]Helgaker, T., Klopper, W., Koch, H., Noga, J. (1997). Basis-set convergence of correlated calculations on water. The Journal of chemical physics, 106(23), 9639-9646. [25]Feller, D. (1992). Application of systematic sequences of wave functions to the water dimer. The Journal of chemical physics, 96(8), 6104-6114. [26]Press, W. H., Press, W. H., Flannery, B. P., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., Vetterling, W. T. (1989). Numerical recipes in Pascal: the art of scientific computing (Vol. 1). Cambridge University Press. [27]Böhm, H.J., Meissner, C. Ahlrichs, R. (1984). Molecular dynamics simulation of liquid CH3F, CHF3, CH3Cl, CH3CN, CO2 and CS2 with new pair potentials, Molecular Physics, 53:3, 651-672. [28]Martins Freitas, F. F., Cabral, B. J. C., and Silva Fernandes, F. M. S. (1993). Computer simulation of liquid methyl chloride. The Journal of Physical Chemistry, 97(37), 9470-9477. [29]Prielmeier, F. X., Lüdemann, H. D. (1986). Self diffusion in compressed liquid chloromethane, dichloromethane and trichloromethane. Molecular Physics, 58(3), 593-604. [30]Sastri, S.R.S., Rao, K.K. (1992). A new group contribution method for predicting viscosity of organic liquids. The Chemical Engineering Journal, 50(1), 9-25. [31]Pothoczki, S., Temleitner, L., Pusztai, L. (2011). Detailed intermolecular structure of molecular liquids containing slightly distorted tetrahedral molecules with C(3v) symmetry: chloroform, bromoform, and methyl-iodide. The Journal of chemical physics, 134(4), 044521. [32]Pothoczki, S., Temleitner, L., Pusztai, L. (2015). Structure of Neat Liquids Consisting of (Perfect and Nearly) Tetrahedral Molecules. Chemical reviews, 115(24), 13308–13361. [33]Shephard, J. J. and Soper, A. K. and Callear, S. K. and Imberti, S. and Evans, J. S. O. and Salzmann, C. G. (2015). Polar stacking of molecules in liquid chloroform. Chemical communications, 51(23), 4770-4773. [34]Karnes, J. J., Benjamin, I. (2017). On the local intermolecular ordering and dynamics of liquid chloroform. Journal of Molecular Liquids, 248, 121-126. [35]Karnes, J. J., Benjamin, I. (2021). Deconstructing the Local Intermolecular Ordering and Dynamics of Liquid Chloroform and Bromoform. The journal of physical chemistry. B, 125(14), 3629–3637.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81599-
dc.description.abstract"我們使用MP2/aug-cc-PVQZ計算一氯甲烷分子的單體結構最佳化,並且以自洽理論(Hartee-Fock, HF)、微擾理論(Møller–Plesset Perturbation Theory, MP)及耦合簇理論(Coupled Cluster Method, CC)等三種方法計算一氯甲烷分子二聚體之間的交互作用能,所有計算皆有BSSE(Basis Set Supperposition Error)修正,其中我們以HF與MP2方法搭配Pople’s medium size與Dunning’s correlation consistent的基底對一氯甲烷分子二聚體做結構最佳化計算,並且比較MP2與CCSD(T)在相同基底aug-cc-PVXZ(X=D、T、Q)下的計算結果。我們對一氯甲烷分子二聚體做了一系列的分類,從中選取了12種構型,以MP2/aug-cc-PVQZ計算完整的勢能曲線,搭配PSI4軟體內的SAPT分法進一步將二聚體間的勢能拆解成靜電能、交換能、誘導能與色散能,分析各項吸引力與排斥力對一氯甲烷二聚體的影響。 分子動力學模擬的部分,我們使用5 sites Lennard-Jones potential model以及庫倫項擬合量子化學計算得到的12種構型的一氯甲烷分子二聚體勢能曲線,並且建構出力場,將其代入牛頓方程式進行分子動力學的模擬。模擬部分我們從三相點沿著汽化曲線模擬至接近臨界點,得到各溫度下的徑向分佈函數(Radial Distribution Function, RDF)、速度自相關函數(Velocity Autocorrelation Function, VAF)、擴散係數(Diffusion coefficient)與黏滯係數(Viscosity)等。氯仿局部結構的部分,我們引用智謙學長的氯仿參數,參考兩種分析方法,分別為方向相關函數與對相關函數g(r,θ),並且與實驗值比較後皆得到相當不錯的結果,這說明了基於量子化學計算所架構出的力場進行分子動力學的模擬有一定的可靠度。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:24:35Z (GMT). No. of bitstreams: 1
U0001-0209202119131300.pdf: 4779072 bytes, checksum: a2f504b1b396136912fabdd6f686ce88 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 # 致謝 i 摘要 ii ABSTRACT iii 目錄 v 圖目錄 viii 表目錄 x 第一章 緒論 1 第二章 基本理論 4 2.1 量子力學理論 4 2.1.1 薛丁格方程式(Schrödinger equation) 4 2.1.2 波恩-奧本海默近似法(Born-Oppenheimer approximation) 6 2.2 分子軌域理論 9 2.2.1 全初始法 9 2.2.2 Hartree-Fock近似法(Hartree-Fock approximation) 10 2.2.3 微擾理論(Møller–Plesset Perturbation Theory) 12 2.2.4 耦合簇理論(Coupled Cluster Method, CC) 15 2.3 分子動力學 17 2.3.1 基本原理 17 2.3.2 週期性邊界條件(Periodic boundary condition) 18 2.3.3 徑向分布函數(Radial Distribution Function, RDF) 20 2.3.4 速度自相關函數(Velocity Autocorrelation Function, VAF) 22 2.3.5 擴散係數(Diffusion Constant) 24 2.3.6 黏滯係數(Viscosity Coefficient) 24 第三章 計算方法 26 3.1 一氯甲烷二聚體之量子化學計算方法 27 3.1.1 一氯甲烷單體結構最佳化計算 27 3.1.2 一氯甲烷分子二聚體能量計算 27 3.2 一氯甲烷曲線擬合方法 30 3.3 分子動力學計算方法 31 第四章 模擬與計算結果 32 4.1 一氯甲烷二聚體之量子化學計算結果 33 4.1.1 HF計算結果 33 4.1.2 MP2計算結果 37 4.1.3 CCSD(T)計算結果 41 4.1.4 一氯甲烷SAPT分析 45 4.2 一氯甲烷二聚體之能量曲線擬合結果 48 4.3 分子動力學模擬結果 53 4.3.1 徑向分佈函數模擬結果 54 4.3.2 速度自相關函數模擬結果 58 4.3.3 擴散係數計算結果 59 4.3.4 剪力黏滯係數計算結果 60 4.3.5 方向相關函數(Orientational correlation functions)模擬結果 61 4.3.6 二維對相關函數(Pair Correlation Function)g(r,θ)模擬結果 67 第五章 結論與展望 71 5.1 量子化學計算結論 71 5.2 分子動力學模擬結論 72 5.3 未來展望 73 參考文獻 74 附錄A 78 附錄B 79 附錄C 81 "
dc.language.isozh-TW
dc.subject局部結構zh_TW
dc.subject黏滯係數zh_TW
dc.subject擴散係數zh_TW
dc.subject速度自相關函數zh_TW
dc.subject徑向分佈函數zh_TW
dc.subject分子動力學模擬zh_TW
dc.subject耦合簇理論zh_TW
dc.subject微擾理論zh_TW
dc.subject自洽理論zh_TW
dc.subject方向相關函數zh_TW
dc.subject氯仿zh_TW
dc.subject一氯甲烷zh_TW
dc.subject對相關函數zh_TW
dc.subjectDiffusion Coefficienten
dc.subjectChloromethaneen
dc.subjectMethyl Chlorideen
dc.subjectChloroformen
dc.subjectTrichloromethaneen
dc.subjectHartee-Fock(HF) Approximationen
dc.subjectMøller–Plesset Perturbation Theory(MP)en
dc.subjectCoupled Cluster method(CC)en
dc.subjectMolecular Dynamics simulationen
dc.subjectRadial Distribution Function(RDF)en
dc.subjectVelocity Autocorrelation Function(VAF)en
dc.subjectViscosity coefficienten
dc.subjectLocal structureen
dc.subjectOrientational Correlation Functionsen
dc.subjectPair Correlation Functionen
dc.title一氯甲烷分子之量子化學勢能計算與一氯甲烷、氯仿分子之分子動力學模擬zh_TW
dc.titleQuantum Chemistry Calculated Intermolecular Interaction and Molecular Dynamics Simulation of Chloromethane、Chloroform Moleculesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江志強(Hsin-Tsai Liu),陳俊杉(Chih-Yang Tseng),林祥泰,郭錦龍
dc.subject.keyword一氯甲烷,氯仿,自洽理論,微擾理論,耦合簇理論,分子動力學模擬,徑向分佈函數,速度自相關函數,擴散係數,黏滯係數,局部結構,方向相關函數,對相關函數,zh_TW
dc.subject.keywordChloromethane,Methyl Chloride,Chloroform,Trichloromethane,Hartee-Fock(HF) Approximation,Møller–Plesset Perturbation Theory(MP),Coupled Cluster method(CC),Molecular Dynamics simulation,Radial Distribution Function(RDF),Velocity Autocorrelation Function(VAF),Diffusion Coefficient,Viscosity coefficient,Local structure,Orientational Correlation Functions,Pair Correlation Function,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202102968
dc.rights.note未授權
dc.date.accepted2021-09-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-0209202119131300.pdf
  未授權公開取用
4.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved