請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81581完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳忠幟(Chung-chih Wu) | |
| dc.contributor.author | Pan Li | en |
| dc.contributor.author | 李盼 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:24:23Z | - |
| dc.date.available | 2022-11-24T09:24:23Z | - |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-25 | |
| dc.identifier.citation | Chapter 1 [1] H. J. Round, World, 1907, 19, 309. [2] A. Bernanose, P. Vouaux, J. Chim. Phys., 1953, 50, 261. [3] A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys., 1953, 50, 64. [4] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys., 1963, 38, 2042. [5] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913. [6] C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys., 1989, 65, 3610. [7] J. H. Burroughes, D. D. Bradley, A. Brown, R. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature, 1990, 347, 539. [8] M. A. ul Haq, M. Y. Hassan, H. Abdullah, H. A. Rahman, M. P. Abdullah, F. Hussin, D. M. Said, Renew. Sust. Energ. Rev., 2014, 33, 268. [9] A. Ugale, T. N. Kalyani, S. J. Dhoble, Elsevier, 2018. [10] S. Kang, D. Park, S. Kim, C. Whang, K. Jeong, S. Im, Appl. Phys. Lett., 2002, 81, 2581. [11] S. Lai, S. Tao, M. Chan, T. Ng, M. Lo, C. Lee, X. Zhang, S. Lee, Org. Electron., 2010, 11, 1511. [12] Z. Li, H. Meng, Organic light-emitting materials and devices, CRC press, 2006. [13] Z. Luo, S.-T. Wu, Opt. Photonics News, 2015, 2015, 19. [14] J. Shinar, ed., Organic light-emitting devices: a survey, Springer Science Business Media, 2013. [15] Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev., 2017, 46, 915. [16] D. Chen, W. Li, L. Gan, Z. Wang, M. Li, S.-J. Su, Mater. Sci. Eng. R Rep., 2020, 142, 100581. [17] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 1998, 395, 151. [18] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys., 2001, 90, 5048. [19] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater., 2014, 26, 7931. [20] K. H. Kim, C. K. Moon, J. H. Lee, S. Y. Kim, J. J. Kim, Adv. Mater., 2014, 26, 3844. [21] C. W. Lee, J. Y. Lee, Adv. Mater., 2013, 25, 5450. [22] J. Liu, X. Shi, X. Wu, J. Wang, Z. Min, Y. Wang, M. Yang, C. H. Chen, G. He, Org. Electron., 2014, 15, 2492. [23] J. Partee, E. Frankevich, B. Uhlhorn, J. Shinar, Y. Ding, T. Barton, Phys. Rev. Lett., 1999, 82, 3673. [24] D. Chaudhuri, E. Sigmund, A. Meyer, L. Röck, P. Klemm, S. Lautenschlager, A. Schmid, S. R. Yost, T. Van Voorhis, S. Bange, S. Höger, J. M. Lupton, Angew. Chem. Int. Ed., 2013, 52, 13449. [25] W. Li, Y. Pan, R. Xiao, Q. Peng, S. Zhang, D. Ma, F. Li, F. Shen, Y. Wang, B. Yang, Adv. Funct. Mater., 2014, 24, 1609. [26] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature, 2012, 492, 234. [27] C. Adachi, Jpn. J. Appl. Phys., 2014, 53, 060101. [28] M. Y. Wong, E. Zysman‐Colman, Adv. Mater., 2017, 29, 1605444. [29] S. Xiang, Z. Huang, S. Sun, X. Lv, L. Fan, S. Ye, H. Chen, R. Guo, L. Wang, J. Mater. Chem. C, 2018, 6, 11436. [30] T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, C.-C. Wu, Adv. Mater., 2016, 28, 6976. [31] W. Zeng, H.-Y. Lai, W.-K. Lee, M. Jiao, Y.-J. Shiu, C. Zhong, S. Gong, T. Zhou, G. Xie, M. Sarma, K.-T. Wong, C.-C. Wu, C. Yang, Adv. Mater., 2018, 30, 1704961. [32] D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee, J. H. Kwon, Nat. Photon., 2019, 13, 540. [33] T. D. Schmidt, T. Lampe, P. I. Djurovich, M. E. Thompson, W. Brütting, Phys. Rev. Appl., 2017, 8, 037001. [34] J.-S. Kim, P. K. Ho, N. C. Greenham, R. H. Friend, J. Appl. Phys., 2000, 88, 1073. [35] Q. Zhang, H. Kuwabara, W. J. Potscavage Jr, S. Huang, Y. Hatae, T. Shibata, C. Adachi, J. Am. Chem. Soc., 2014, 136, 18070. [36] J. V. Caspar, E. M. Kober, B. P. Sullivan, T. J. Meyer, J. Am. Chem. Soc., 1982, 104, 630. Chapter 2 [1] T. D. Schmidt, T. Lampe, M. R. Daniel Sylvinson , P. I. Djurovich, M. E. Thompson, W. Brütting, Phys. Rev. Appl., 2017, 8, 037001. [2] J. Y. Kim, D. Yokoyama, C. Adachi, J. Phys. Chem. C, 2012, 116, 8699. [3] M. Y. Wong, E. Zysman‐Colman, Adv. Mater., 2017, 29, 1605444. [4] H. Noda, H. Nakanotani, C. Adachi, Sci. Adv., 2018, 4, eaao6910. [5] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 1998, 395, 151. [6] P. T. Chou, Y. Chi, Chem. A Eur. J., 2007, 13, 380. [7] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature, 2012, 492, 234. [8] Y. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nat. Rev. Mater., 2018, 3, 1. [9] M. J. Jurow, C. Mayr, T. D. Schmidt, T. Lampe, P. I. Djurovich, W. Brütting, M. E. Thompson, Nat. Mater., 2016, 15, 85. [10] D. Yokoyama, H. Sasabe, Y. Furukawa, C. Adachi, J. Kido, Adv. Funct. Mater., 2011, 21, 1375. [11] Y.-T. Lee, P.-C. Tseng, T. Komino, M. Mamada, R. J. Ortiz, M.-k. Leung, T.-L. Chiu, C.-F. Lin, J.-H. Lee, C. Adachi, ACS Appl. Mater. Interfaces, 2018, 10, 43842. [12] Y. Watanabe, D. Yokoyama, T. Koganezawa, H. Katagiri, T. Ito, S. Ohisa, T. Chiba, H. Sasabe, J. Kido, Adv. Mater., 2019, 31, 1808300. [13] M. Liu, R. Komatsu, X. Cai, K. Hotta, S. Sato, K. Liu, D. Chen, Y. Kato, H. Sasabe, S. Ohisa, Y. Suzuri, D. Yokoyama, S.-J. Su, J. Kido, Chem. Mater., 2017, 29, 8630. [14] T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, C.-C. Wu, Adv. Mater., 2016, 28, 6976. [15] T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu, C.-H. Cheng, Nat. Photon., 2018, 12, 235. [16] Y. L. Zhang, Q. Ran, Q. Wang, Y. Liu, C. Hänisch, S. Reineke, J. Fan, L. S. Liao, Adv. Mater., 2019, 31, 1902368. [17] D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee, J. H. Kwon, Nat. Photon., 2019, 13, 540. [18] C. Mayr, S. Y. Lee, T. D. Schmidt, T. Yasuda, C. Adachi, W. Brütting, Adv. Funct. Mater., 2014, 24, 5232. [19] P. Rajamalli, N. Senthilkumar, P.-Y. Huang, C.-C. Ren-Wu, H.-W. Lin, C.-H. Cheng, J. Am. Chem. Soc., 2017, 139, 10948. [20] T. Komino, Y. Sagara, H. Tanaka, Y. Oki, N. Nakamura, H. Fujimoto, C. Adachi, Appl. Phys. Lett., 2016, 108, 241106. [21] K. H. Kim, J. J. Kim, Adv. Mater., 2018, 30, 1705600. [22] T. D. Schmidt, T. Lampe, P. I. Djurovich, M. E. Thompson, W. Brütting, Phys. Rev. Appl., 2017, 8, 037001. [23] L. Zhao, T. Komino, M. Inoue, J.-H. Kim, J. Ribierre, C. Adachi, Appl. Phys. Lett., 2015, 106, 17_1. [24] C. Zhou, C. Cao, D. Yang, X. Cao, H. Liu, D. Ma, C.-S. Lee, C. Yang, Materials Chemistry Frontiers, 2021, 5, 3209. [25] K. T. Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, Y. Chi, Nat. Photon., 2017, 11, 63. [26] H. Shin, Y. H. Ha, H. G. Kim, R. Kim, S. K. Kwon, Y. H. Kim, J. J. Kim, Adv. Mater., 2019, 31, 1808102. [27] T. Komino, H. Tanaka, C. Adachi, Chem. Mater., 2014, 26, 3665. [28] S. Y. Byeon, J. Kim, D. R. Lee, S. H. Han, S. R. Forrest, J. Y. Lee, Adv. Opt. Mater., 2018, 6, 1701340. [29] W. Zeng, S. Gong, C. Zhong, C. Yang, J. Phys. Chem. C, 2019, 123, 10081. [30] Y. Xiang, P. Li, S. Gong, Y.-H. Huang, C.-Y. Wang, C. Zhong, W. Zeng, Z. Chen, W.-K. Lee, X. Yin, Sci. Adv., 2020, 6, eaba7855. [31] K. Wu, T. Zhang, L. Zhan, C. Zhong, S. Gong, N. Jiang, Z.-H. Lu, C. Yang, Chem. Eur. J., 2016, 22, 10860. [32] Y. Xiang, Y. Zhao, N. Xu, S. Gong, F. Ni, K. Wu, J. Luo, G. Xie, Z.-H. Lu, C. Yang, J. Mater. Chem. C, 2017, 5, 12204. [33] K. C. Pan, S. W. Li, Y. Y. Ho, Y. J. Shiu, W. L. Tsai, M. Jiao, W. K. Lee, C. C. Wu, C. L. Chung, T. Chatterjee, Y.-S. Li, K.-T. Wong, H.-C. Hu, C.-C. Chen, M.-T. Lee, Adv. Funct. Mater., 2016, 26, 7560. [34] D. R. Lee, B. S. Kim, C. W. Lee, Y. Im, K. S. Yook, S.-H. Hwang, J. Y. Lee, ACS Appl. Mater. Interfaces, 2015, 7, 9625. [35] K. Wu, T. Zhang, L. Zhan, C. Zhong, S. Gong, N. Jiang, Z. H. Lu, C. Yang, Chem. A Eur. J., 2016, 22, 10860. [36] H. Tanaka, K. Shizu, H. Miyazaki, C. Adachi, Chem. Commun., 2012, 48, 11392. [37] M. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold, A. P. Monkman, Nat. Commun., 2016, 7, 1. [38] Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev., 2003, 103, 3899. [39] R. Komatsu, H. Sasabe, K. Nakao, Y. Hayasaka, T. Ohsawa, J. Kido, Adv. Opt. Mater., 2017, 5, 1600675. [40] N. J. Turro, Modern molecular photochemistry, University science books, 1991. Chapter 3 [1] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913. [2] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 1998, 395, 151. [3] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater., 2014, 26, 7931. [4] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys., 2001, 90, 5048. [5] B. S. Kim, J. Y. Lee, Adv. Funct. Mater., 2014, 24, 3970. [6] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature, 2012, 492, 234. [7] C. Adachi, Jpn. J. Appl. Phys., 2014, 53, 060101. [8] Y. Watanabe, H. Sasabe, J. Kido, Bull. Chem. Soc. Jpn., 2019, 92, 716. [9] T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, C.-C. Wu, Adv. Mater., 2016, 28, 6976. [10] K. H. Kim, C. K. Moon, J. H. Lee, S. Y. Kim, J. J. Kim, Adv. Mater., 2014, 26, 3844. [11] H. Becker, S. Burns, R. Friend, Physical Review B, 1997, 56, 1893. [12] J. Wasey, A. Safonov, I. Samuel, W. Barnes, Opt. Commun., 2000, 183, 109. [13] J.-S. Kim, P. K. Ho, N. C. Greenham, R. H. Friend, J. Appl. Phys., 2000, 88, 1073. [14] W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, C. Mayr, Phys. Status Solidi A, 2013, 210, 44. [15] Z. Zhang, E. Crovini, P. L. dos Santos, B. A. Naqvi, D. B. Cordes, A. M. Slawin, P. Sahay, W. Brütting, I. D. Samuel, S. Bräse, Adv. Opt. Mater., 2020, 8, 2001354. [16] T. Komino, Y. Sagara, H. Tanaka, Y. Oki, N. Nakamura, H. Fujimoto, C. Adachi, Appl. Phys. Lett., 2016, 108, 241106. [17] Y. Xiang, P. Li, S. Gong, Y.-H. Huang, C.-Y. Wang, C. Zhong, W. Zeng, Z. Chen, W.-K. Lee, X. Yin, C.-C. Wu, C. Yang, Sci. Adv., 2020, 6, eaba7855. [18] T. D. Schmidt, T. Lampe, M. R. Daniel Sylvinson , P. I. Djurovich, M. E. Thompson, W. Brütting, Phys. Rev. Appl., 2017, 8, 037001. [19] M. Liu, R. Komatsu, X. Cai, K. Hotta, S. Sato, K. Liu, D. Chen, Y. Kato, H. Sasabe, S. Ohisa, Y. Suzuri, D. Yokoyama, S.-J. Su, J. Kido, Chem. Mater., 2017, 29, 8630. [20] W. Li, B. Li, X. Cai, L. Gan, Z. Xu, W. Li, K. Liu, D. Chen, S. J. Su, Angew. Chem. Int. Ed., 2019, 58, 11301. [21] S. Xiang, X. Lv, S. Sun, Q. Zhang, Z. Huang, R. Guo, H. Gu, S. Liu, L. Wang, J. Mater. Chem. C, 2018, 6, 5812. [22] W. Zeng, H.-Y. Lai, W.-K. Lee, M. Jiao, Y.-J. Shiu, C. Zhong, S. Gong, T. Zhou, G. Xie, M. Sarma, K.-T. Wong, C.-C. Wu, C. Yang, Adv. Mater., 2018, 30, 1704961. [23] T. Komino, Y. Sagara, H. Tanaka, Y. Oki, N. Nakamura, H. Fujimoto, C. J. A. P. L. Adachi, 2016, 108, 241106. [24] C. S. Oh, C.-K. Moon, J. M. Choi, J.-S. Huh, J.-J. Kim, J. Y. Lee, Org. Electron., 2017, 42, 337. [25] K. H. Kim, J. J. Kim, Adv. Mater., 2018, 30, 1705600. [26] F.-M. Xie, J.-X. Zhou, Y.-Q. Li, J.-X. Tang, J. Mater. Chem. C, 2020, 8, 9476. [27] B. Li, Z. Wang, S. J. Su, F. Guo, Y. Cao, Y. Zhang, Adv. Opt. Mater., 2019, 7, 1801496. [28] F. E. Held, A. A. Guryev, T. Fröhlich, F. Hampel, A. Kahnt, C. Hutterer, M. Steingruber, H. Bahsi, C. von Bojničić-Kninski, D. S. Mattes, T. C. Foertsch, A. Nesterov-Mueller, M. Marschall, S. B. Tsogoeva, Nat. Commun., 2017, 8, 1. [29] Z. Zhang, J. Xie, H. Wang, B. Shen, J. Zhang, J. Hao, J. Cao, Z. Wang, Dyes Pigm., 2016, 125, 299. [30] D. Y. Kim, J. Kang, S. E. Lee, Y. K. Kim, S. S. Yoon, Luminescence, 2017, 32, 1180. [31] B. Li, Z. Li, F. Guo, J. Song, X. Jiang, Y. Wang, S. Gao, J. Wang, X. Pang, L. Zhao, ACS Appl. Mater. Interfaces, 2020, 12, 14233. [32] R. Keruckiene, S. Vekteryte, E. Urbonas, M. Guzauskas, E. Skuodis, D. Volyniuk, J. V. Grazulevicius, Beilstein J. Org. Chem., 2020, 16, 1142. [33] B. Li, X. Jiang, Z. Li, F. Guo, Y. Wang, L. Zhao, Y. Zhang, Chin. Chem. Lett., 2020, 31, 1188. [34] T. Nakagawa, S.-Y. Ku, K.-T. Wong, C. Adachi, Chem. Commun., 2012, 48, 9580. [35] W.-L. Tsai, M.-H. Huang, W.-K. Lee, Y.-J. Hsu, K.-C. Pan, Y.-H. Huang, H.-C. Ting, M. Sarma, Y.-Y. Ho, H.-C. Hu, Chem. Commun., 2015, 51, 13662. [36] K. Wu, T. Zhang, L. Zhan, C. Zhong, S. Gong, N. Jiang, Z.-H. Lu, C. Yang, Chem. Eur. J., 2016, 22, 10860. [37] K. C. Pan, S. W. Li, Y. Y. Ho, Y. J. Shiu, W. L. Tsai, M. Jiao, W. K. Lee, C. C. Wu, C. L. Chung, T. Chatterjee, Y.-S. Li, K.-T. Wong, H.-C. Hu, C.-C. Chen, M.-T. Lee, Adv. Funct. Mater., 2016, 26, 7560. [38] M.-S. Lin, S.-J. Yang, H.-W. Chang, Y.-H. Huang, Y.-T. Tsai, C.-C. Wu, S.-H. Chou, E. Mondal, K.-T. Wong, J. Mater. Chem., 2012, 22, 16114. [39] J. C. de Mello, H. F. Wittmann, R. H. Friend, Adv. Mater., 1997, 9, 230. [40] H. Sasabe, Y. Chikayasu, S. Ohisa, H. Arai, T. Ohsawa, R. Komatsu, Y. Watanabe, D. Yokoyama, J. Kido, Front. Chem., 2020, 8, 427. [41] W. Zeng, S. Gong, C. Zhong, C. Yang, J. Phys. Chem. C, 2019, 123, 10081. [42] C. Mayr, S. Y. Lee, T. D. Schmidt, T. Yasuda, C. Adachi, W. Brütting, Adv. Funct. Mater., 2014, 24, 5232. [43] X. Zeng, K.-C. Pan, W.-K. Lee, S. Gong, F. Ni, X. Xiao, W. Zeng, Y. Xiang, L. Zhan, Y. Zhang, C.-C. Wu, C. Yang, J. Mater. Chem. C, 2019, 7, 10851. [44] T. Komino, H. Tanaka, C. Adachi, Chem. Mater., 2014, 26, 3665. [45] C. Mayr, W. Brütting, Chem. Mater., 2015, 27, 2759. [46] H. S. Kim, S.-R. Park, M. C. Suh, J. Phys. Chem. C, 2017, 121, 13986. [47] M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Bräuer, K. Meerholz, A. Tünnermann, Org. Electron., 2010, 11, 1039. [48] J. Frischeisen, D. Yokoyama, A. Endo, C. Adachi, W. Brütting, Org. Electron., 2011, 12, 809. Chapter 4 [1] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature, 2012, 492, 234. [2] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photon., 2014, 8, 326. [3] M. Y. Wong, E. Zysman‐Colman, Adv. Mater., 2017, 29, 1605444. [4] Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev., 2017, 46, 915. [5] K. Kawasumi, T. Wu, T. Zhu, H. S. Chae, T. Van Voorhis, M. A. Baldo, T. M. Swager, J. Am. Chem. Soc., 2015, 137, 11908. [6] M. K. Etherington, F. Franchello, J. Gibson, T. Northey, J. Santos, J. S. Ward, H. F. Higginbotham, P. Data, A. Kurowska, P. L. Dos Santos, Nat. Commun., 2017, 8, 1. [7] F. B. Dias, K. N. Bourdakos, V. Jankus, K. C. Moss, K. T. Kamtekar, V. Bhalla, J. Santos, M. R. Bryce, A. P. Monkman, Adv. Mater., 2013, 25, 3707. [8] H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nat. Commun., 2014, 5, 1. [9] F. B. Dias, J. Santos, D. R. Graves, P. Data, R. S. Nobuyasu, M. A. Fox, A. S. Batsanov, T. Palmeira, M. N. Berberan‐Santos, M. R. Bryce, A. P. Monkman, Adv. Sci., 2016, 3, 1600080. [10] S. K. Jeon, H. L. Lee, K. S. Yook, J. Y. Lee, Adv. Mater., 2019, 31, 1803524. [11] T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, C.-C. Wu, Adv. Mater., 2016, 28, 6976. [12] T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S. Liu, C.-H. Cheng, Nat. Photon., 2018, 12, 235. [13] D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee, J. H. Kwon, Nat. Photon., 2019, 13, 540. [14] Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Nat. Photon., 2019, 13, 678. [15] Q. Zhang, H. Kuwabara, W. J. Potscavage Jr, S. Huang, Y. Hatae, T. Shibata, C. Adachi, J. Am. Chem. Soc., 2014, 136, 18070. [16] S. Wang, X. Yan, Z. Cheng, H. Zhang, Y. Liu, Y. Wang, Angew. Chem. Int. Ed., 2015, 54, 13068. [17] C. Li, R. Duan, B. Liang, G. Han, S. Wang, K. Ye, Y. Liu, Y. Yi, Y. Wang, Angew. Chem. Int. Ed., 2017, 56, 11525. [18] J.-X. Chen, W.-W. Tao, Y.-F. Xiao, K. Wang, M. Zhang, X.-C. Fan, W.-C. Chen, J. Yu, S. Li, F.-X. Geng, ACS Appl. Mater. Interfaces, 2019, 11, 29086. [19] J. Xue, Q. Liang, R. Wang, J. Hou, W. Li, Q. Peng, Z. Shuai, J. Qiao, Adv. Mater., 2019, 31, 1808242. [20] J. X. Chen, K. Wang, C. J. Zheng, M. Zhang, Y. Z. Shi, S. L. Tao, H. Lin, W. Liu, W. W. Tao, X. M. Ou, Adv. Sci., 2018, 5, 1800436. [21] T. Yang, B. Liang, Z. Cheng, C. Li, G. Lu, Y. Wang, J. Phys. Chem. C, 2019, 123, 18585. [22] R. Furue, K. Matsuo, Y. Ashikari, H. Ooka, N. Amanokura, T. Yasuda, Adv. Opt. Mater., 2018, 6, 1701147. [23] F.-M. Xie, H.-Z. Li, G.-L. Dai, Y.-Q. Li, T. Cheng, M. Xie, J.-X. Tang, X. Zhao, ACS Appl. Mater. Interfaces, 2019, 11, 26144. [24] J. X. Chen, W. W. Tao, W. C. Chen, Y. F. Xiao, K. Wang, C. Cao, J. Yu, S. Li, F. X. Geng, C. Adachi, Angew. Chem. Int. Ed., 2019, 58, 14391. [25] W. Zeng, T. Zhou, W. Ning, C. Zhong, J. He, S. Gong, G. Xie, C. Yang, Adv. Mater., 2019, 31, 1901404. [26] S.-J. Woo, Y. Kim, S.-K. Kwon, Y.-H. Kim, J.-J. Kim, ACS Appl. Mater. Interfaces, 2019, 11, 7199. [27] G. Meng, X. Chen, X. Wang, N. Wang, T. Peng, S. Wang, Adv. Opt. Mater., 2019, 7, 1900130. [28] X. Lv, R. Huang, S. Sun, Q. Zhang, S. Xiang, S. Ye, P. Leng, F. B. Dias, L. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 10758. [29] C. Li, C. Duan, C. Han, H. Xu, Adv. Mater., 2018, 30, 1804228. [30] W. Huang, M. Einzinger, A. Maurano, T. Zhu, J. Tiepelt, C. Yu, H. S. Chae, T. Van Voorhis, M. A. Baldo, S. L. Buchwald, Adv. Opt. Mater., 2019, 7, 1900476. [31] V. Jankus, P. Data, D. Graves, C. McGuinness, J. Santos, M. R. Bryce, F. B. Dias, A. P. Monkman, Adv. Funct. Mater., 2014, 24, 6178. [32] Y. L. Zhang, Q. Ran, Q. Wang, Y. Liu, C. Hänisch, S. Reineke, J. Fan, L. S. Liao, Adv. Mater., 2019, 31, 1902368. [33] C. Mayr, S. Y. Lee, T. D. Schmidt, T. Yasuda, C. Adachi, W. Brütting, Adv. Funct. Mater., 2014, 24, 5232. [34] K. C. Pan, S. W. Li, Y. Y. Ho, Y. J. Shiu, W. L. Tsai, M. Jiao, W. K. Lee, C. C. Wu, C. L. Chung, T. Chatterjee, Y.-S. Li, K.-T. Wong, H.-C. Hu, C.-C. Chen, M.-T. Lee, Adv. Funct. Mater., 2016, 26, 7560. [35] M. J. Jurow, C. Mayr, T. D. Schmidt, T. Lampe, P. I. Djurovich, W. Brütting, M. E. Thompson, Nat. Mater., 2016, 15, 85. [36] P. Rajamalli, N. Senthilkumar, P.-Y. Huang, C.-C. Ren-Wu, H.-W. Lin, C.-H. Cheng, J. Am. Chem. Soc., 2017, 139, 10948. [37] K. H. Kim, J. J. Kim, Adv. Mater., 2018, 30, 1705600. [38] H.-J. Park, S. H. Han, J. Y. Lee, H. Han, E.-G. Kim, Chem. Mater., 2018, 30, 3215. [39] J. Kim, T. Batagoda, J. Lee, D. Sylvinson, K. Ding, P. J. Saris, U. Kaipa, I. W. Oswald, M. A. Omary, M. E. Thompson, S. R. Forrest, Adv. Mater., 2019, 31, 1900921. [40] W. Zeng, H.-Y. Lai, W.-K. Lee, M. Jiao, Y.-J. Shiu, C. Zhong, S. Gong, T. Zhou, G. Xie, M. Sarma, K.-T. Wong, C.-C. Wu, C. Yang, Adv. Mater., 2018, 30, 1704961. [41] I. S. Park, H. Komiyama, T. Yasuda, Chem. Sci., 2017, 8, 953. [42] H. Sun, C. Zhong, J.-L. Bredas, J. Chem. Theory Comput., 2015, 11, 3851. [43] W. Zeng, S. Gong, C. Zhong, C. Yang, J. Phys. Chem. C, 2019, 123, 10081. [44] Y. H. Huang, W. L. Tsai, W. K. Lee, M. Jiao, C. Y. Lu, C. Y. Lin, C. Y. Chen, C. C. Wu, Adv. Mater., 2015, 27, 929. [45] M. Jiao, C. Y. Lu, W. K. Lee, C. Y. Chen, C. C. Wu, Adv. Opt. Mater., 2016, 4, 365. [46] S. Kothavale, K. H. Lee, J. Y. Lee, ACS Appl. Mater. Interfaces, 2019, 11, 17583. [47] B. Wang, X. Qiao, Z. Yang, Y. Wang, S. Liu, D. Ma, Q. Wang, Org. Electron., 2018, 59, 32. [48] Z. Chen, Z. Wu, F. Ni, C. Zhong, W. Zeng, D. Wei, K. An, D. Ma, C. Yang, J. Mater. Chem. C, 2018, 6, 6543. [49] S. Wang, Z. Cheng, X. Song, X. Yan, K. Ye, Y. Liu, G. Yang, Y. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 9892. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81581 | - |
| dc.description.abstract | "如今,有機發光二極體(OLED)的發展使其成為顯示和照明應用的重要技術,並常見於消費類電子產品。為了提高OLED的性能並降低成本,本論文中,我們重點研究了基於熱激活化延遲熒光(TADF)的高效率有機發光材料。 在本論文的第一部分,我們研究了兩個綠色TADF發光材料PXZPyPM和PXZTAZPM。通過受體平面擴展實現選擇性調節其分子水平偶極取向(Θ//),獲得比對照材料PXZPM更高的Θ//,同時保持幾乎相同的電子結構和發光特性,並實現OLED外部量子效率(EQE)高達近34%,功率效率超過118流明/瓦。 在第二部分,繼第一部分的工作之後,我們研究了吩噁嗪作供體和喹唑啉作受體的TADF發光材料2DPyPh-Qz,其受體連接兩個吡啶環以擴展受體平面。2DPyPh-Qz具有高達96%的光致發光量子產率(PLQY, ΦPL)以及高的水平發光偶極取向(Θ// = 79%),並實現了EQE為27.5%的綠光TADF OLED,這在基於喹唑啉的TADF發光材料中很有競爭力。 第三部分我們研究了基於線性、平面、剛性的 ANQDC作受體和剛性吖啶作供體的兩種新型紅色TADF材料ANQDC-DMAC和ANQDC-MeFAC。這種設計策略賦予了二者TADF性質、高達95%的ΦPL以及較高的分子水平取向(Θ// ≈ 80%)。前者在共主體系統中實現了超高電致發光性能,發光波峰在615 nm,EQE 接近28%,功率效率超過50流明/瓦,高於大多數報導的紅色TADF發光材料。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:24:23Z (GMT). No. of bitstreams: 1 U0001-2409202110363100.pdf: 11263602 bytes, checksum: c6a77102dcf4fa076c08c956bf43982b (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 中文摘要 iv Abstract v Contents vii List of Tables x List of Figures xii Chapter 1 Introduction 1 1.1 Overview of Organic Light-Emitting Diodes 1 1.2 Overview of Organic Light-Emitting Materials 3 1.3 Dissertation Motivation and Organization 6 References 7 Figures 10 Chapter 2 Acceptor plane expansion of TADF emitters to achieve high external quantum efficiencies of OLEDs 12 2.1 Introduction 12 2.2 Methods 16 2.2.1 Materials 16 2.2.2 Photophysical characterization 18 2.2.3 Optical simulation 20 2.2.4 Device fabrication and characterization 21 2.3 Results and Discussions 22 2.3.1 Photophysical characterization 22 2.3.2 Electroluminescent characterization 25 2.4 Summary 28 References 29 Tables 33 Figures 35 Chapter 3 Quinazoline‐based TADF emitters for high‐performance OLEDs with external quantum efficiencies about 28% 45 3.1 Introduction 45 3.2 Methods 48 3.2.1 Materials 48 3.2.2 Photophysical characterization 50 3.2.3 Device fabrication and characterization 51 3.3 Results and Discussions 51 3.3.1 Photophysical characterization 51 3.3.2 Electroluminescent characterization 56 3.4 Summary 58 References 59 Tables 63 Figures 65 Chapter 4 High-efficiency red OLEDs based on TADF emitters with high PLQY and preferentially horizontal emitting dipole orientation 75 4.1 Introduction 75 4.2 Methods 79 4.2.1 Materials 79 4.2.2 Photophysical characterization 80 4.2.3 Optical simulation 80 4.2.4 Device fabrication and characterization 80 4.3 Results and Discussions 81 4.3.1 Photophysical characterization 81 4.3.2 Electroluminescent characterization 85 4.4 Summary 89 References 90 Tables 95 Figures 98 Chapter 5 Summary 108 5.1 Dissertation Summary 108 | |
| dc.language.iso | en | |
| dc.subject | 共主體 | zh_TW |
| dc.subject | 有機發光二極體 | zh_TW |
| dc.subject | 熱激活化延遲熒光 | zh_TW |
| dc.subject | 高效率 | zh_TW |
| dc.subject | 水平偶極取向 | zh_TW |
| dc.subject | 受體平面擴展 | zh_TW |
| dc.subject | co-host | en |
| dc.subject | Organic light-emitting diodes | en |
| dc.subject | thermally activated delayed fluorescence | en |
| dc.subject | high efficiency | en |
| dc.subject | horizontal dipole orientation | en |
| dc.subject | acceptor plane expansion | en |
| dc.title | 基於綠光和紅光熱激活化延遲熒光材料之高效率有機發光二極體之研究 | zh_TW |
| dc.title | Investigation of high-efficiency organic light-emitting diodes based on green and red thermally activated delayed fluorescent emitters | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0003-1559-1782 | |
| dc.contributor.advisor-orcid | 吳忠幟(0000-0002-0921-5599) | |
| dc.contributor.oralexamcommittee | 陳俐吟(Hsin-Tsai Liu),蔡志宏(Chih-Yang Tseng),黃奕翔,林昶宇 | |
| dc.subject.keyword | 有機發光二極體,熱激活化延遲熒光,高效率,水平偶極取向,受體平面擴展,共主體, | zh_TW |
| dc.subject.keyword | Organic light-emitting diodes,thermally activated delayed fluorescence,high efficiency,horizontal dipole orientation,acceptor plane expansion,co-host, | en |
| dc.relation.page | 109 | |
| dc.identifier.doi | 10.6342/NTU202103338 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-09-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2409202110363100.pdf 未授權公開取用 | 11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
