Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 法醫學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81379
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁德怡(Te-I Weng)
dc.contributor.authorYi-Fang Wuen
dc.contributor.author吳宜芳zh_TW
dc.date.accessioned2022-11-24T03:46:39Z-
dc.date.available2021-07-20
dc.date.available2022-11-24T03:46:39Z-
dc.date.copyright2021-07-20
dc.date.issued2021
dc.date.submitted2021-07-12
dc.identifier.citation1. UNODC UNODC Early Warning Advisory (EWA) on New Psychoactive Substances (NPS). https://www.unodc.org/LSS/Page/NPS. 2. EMCDDA (2020) European Drug Report. doi:10.2810/123451 3. Peacock A, Bruno R, Gisev N, Degenhardt L, Hall W, Sedefov R, White J, Thomas KV, Farrell M, Griffiths P (2019) New psychoactive substances: challenges for drug surveillance, control, and public health responses. Lancet 394 (10209):1668-1684. doi:10.1016/S0140-6736(19)32231-7 4. Weinstein AM, Rosca P, Fattore L, London ED (2017) Synthetic Cathinone and Cannabinoid Designer Drugs Pose a Major Risk for Public Health. Front Psychiatry 8:156. doi:10.3389/fpsyt.2017.00156 5. Majchrzak M, Celinski R, Kus P, Kowalska T, Sajewicz M (2018) The newest cathinone derivatives as designer drugs: an analytical and toxicological review. Forensic Toxicol 36 (1):33-50. doi:10.1007/s11419-017-0385-6 6. Pascual-Caro S, Borrull F, Calull M, Aguilar C (2020) A Fast Analytical Method for Determining Synthetic Cathinones in Oral Fluid by Liquid Chromatography-Tandem Mass Spectrometry. J Anal Toxicol. doi:10.1093/jat/bkaa144 7. Pendl E, Pauritsch U, Kollroser M, Schmid MG (2021) Determination of cathinone and cathine in Khat plant material by LC-MS/MS: Fresh vs. dried leaves. Forensic Sci Int 319:110658. doi:10.1016/j.forsciint.2020.110658 8. Pieprzyca E, Skowronek R, Niznansky L, Czekaj P (2020) Synthetic cathinones - From natural plant stimulant to new drug of abuse. Eur J Pharmacol 875:173012. doi:10.1016/j.ejphar.2020.173012 9. Corkery JM, Schifano F, Oyefeso A, Ghodse AH, Tonia T, Naidoo V, Button J (2011) Overview of literature and information on 'khat-related' mortality: a call for recognition of the issue and further research. Ann Ist Super Sanita 47 (4):445-464. doi:10.4415/ANN_11_04_17 10. EMCDDA Khat drug profile. https://www.emcdda.europa.eu/publications/drug-profiles/khat. 11. Kalix P (1990) Pharmacological properties of the stimulant khat. Pharmacol Ther 48 (3):397-416. doi:10.1016/0163-7258(90)90057-9 12. DeRuiter J, Hayes L, Valaer A, Clark CR (1994) Methcathinone and Designer Analogues: Synthesis, Stereochemical Analysis, and Analytical Properties. Journal of Chromatographic Science 32 (12):552-564 13. Kelly JP (2011) Cathinone derivatives: A review of their chemistry, pharmacology and toxicology. Drug Testing and Analysis 3 (7-8):439-453. doi:10.1002/dta.313 14. Kalix P (1992) Cathinone, a natural amphetamine. Pharmacol Toxicol 70 (2):77-86. doi:10.1111/j.1600-0773.1992.tb00434.x 15. Meyer MR, Wilhelm J, Peters FT, Maurer HH (2010) Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography-mass spectrometry. Anal Bioanal Chem 397 (3):1225-1233. doi:10.1007/s00216-010-3636-5 16. Dargan PI, Sedefov R, Gallegos A, Wood DM (2011) The pharmacology and toxicology of the synthetic cathinone mephedrone (4-methylmethcathinone). Drug Test Anal 3 (7-8):454-463. doi:10.1002/dta.312 17. Baumann MH, Ayestas MA, Jr., Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37 (5):1192-1203. doi:10.1038/npp.2011.304 18. Martinez-Clemente J, Escubedo E, Pubill D, Camarasa J (2012) Interaction of mephedrone with dopamine and serotonin targets in rats. Eur Neuropsychopharmacol 22 (3):231-236. doi:10.1016/j.euroneuro.2011.07.009 19. Liechti M (2015) Novel psychoactive substances (designer drugs): overview and pharmacology of modulators of monoamine signaling. Swiss Med Wkly 145:w14043. doi:10.4414/smw.2015.14043 20. Zawilska JB, Wojcieszak J (2013) Designer cathinones--an emerging class of novel recreational drugs. Forensic Sci Int 231 (1-3):42-53. doi:10.1016/j.forsciint.2013.04.015 21. Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, Chaboz S, Hoener MC, Liechti ME (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168 (2):458-470. doi:10.1111/j.1476-5381.2012.02145.x 22. Ezaki J, Ro A, Hasegawa M, Kibayashi K (2016) Fatal overdose from synthetic cannabinoids and cathinones in Japan: demographics and autopsy findings. Am J Drug Alcohol Abuse 42 (5):520-529. doi:10.3109/00952990.2016.1172594 23. Schifano F, Corkery J, Ghodse AH (2012) Suspected and confirmed fatalities associated with mephedrone (4-methylmethcathinone, 'meow meow') in the United Kingdom. J Clin Psychopharmacol 32 (5):710-714. doi:10.1097/JCP.0b013e318266c70c 24. Lee S-F, Hsu J, Tsay W-I (2013) The trend of drug abuse in Taiwan during the years 1999 to 2011. Journal of Food and Drug Analysis 21 (4):390-396. doi:10.1016/j.jfda.2013.09.003 25. Feng LY, Li JH (2020) New psychoactive substances in Taiwan: challenges and strategies. Curr Opin Psychiatry 33 (4):306-311. doi:10.1097/YCO.0000000000000604 26. Chou HH, Hsieh CH, Chaou CH, Chen CK, Yen TH, Liao SC, Seak CJ, Chen HY (2021) Synthetic cathinone poisoning from ingestion of drug-laced 'instant coffee packets' in Taiwan. Hum Exp Toxicol:960327121996043. doi:10.1177/0960327121996043 27. Chen L-Y (2019) Psychiatric Profiles and Clinical Manifestations of Cathinone Users: Case Series of Analytically Confirmed Cathinone Use in Taiwan. Addiction Addictive Disorders 6 (1):1-6. doi:10.24966/aad-7276/100023 28. Weng TI, Chen LY, Chen JY, Chen PS, Hwa HL, Fang CC (2020) Characteristics of analytically confirmed illicit substance-using patients in the Emergency Department. J Formos Med Assoc 119 (12):1827-1834. doi:10.1016/j.jfma.2020.01.005 29. Ellefsen KN, Anizan S, Castaneto MS, Desrosiers NA, Martin TM, Klette KL, Huestis MA (2014) Validation of the only commercially available immunoassay for synthetic cathinones in urine: Randox Drugs of Abuse V Biochip Array Technology. Drug Test Anal 6 (7-8):728-738. doi:10.1002/dta.1633 30. Swortwood MJ, Hearn WL, DeCaprio AP (2014) Cross-reactivity of designer drugs, including cathinone derivatives, in commercial enzyme-linked immunosorbent assays. Drug Test Anal 6 (7-8):716-727. doi:10.1002/dta.1489 31. Ambach L, Redondo AH, Konig S, Angerer V, Schurch S, Weinmann W (2015) Detection and quantification of 56 new psychoactive substances in whole blood and urine by LC-MS/MS. Bioanalysis 7 (9):1119-1136. doi:10.4155/bio.15.48 32. Mercolini L, Protti M, Catapano MC, Rudge J, Sberna AE (2016) LC-MS/MS and volumetric absorptive microsampling for quantitative bioanalysis of cathinone analogues in dried urine, plasma and oral fluid samples. J Pharm Biomed Anal 123:186-194. doi:10.1016/j.jpba.2016.02.015 33. Vaiano F, Busardo FP, Palumbo D, Kyriakou C, Fioravanti A, Catalani V, Mari F, Bertol E (2016) A novel screening method for 64 new psychoactive substances and 5 amphetamines in blood by LC-MS/MS and application to real cases. J Pharm Biomed Anal 129:441-449. doi:10.1016/j.jpba.2016.07.009 34. Freni F, Bianco S, Vignali C, Groppi A, Moretti M, Osculati AMM, Morini L (2019) A multi-analyte LC-MS/MS method for screening and quantification of 16 synthetic cathinones in hair: Application to postmortem cases. Forensic Sci Int 298:115-120. doi:10.1016/j.forsciint.2019.02.036 35. Vignali C, Moretti M, Groppi A, Osculati AMM, Tajana L, Morini L (2019) Distribution of the Synthetic Cathinone alpha-Pyrrolidinohexiophenone in Biological Specimens. J Anal Toxicol 43 (1):e1-e6. doi:10.1093/jat/bky047 36. Adamowicz P, Jurczyk A, Gil D, Szustowski S (2020) A case of intoxication with a new cathinone derivative alpha-PiHP - A presentation of concentrations in biological specimens. Leg Med (Tokyo) 42:101626. doi:10.1016/j.legalmed.2019.101626 37. Fan SY, Zang CZ, Shih PH, Ko YC, Hsu YH, Lin MC, Tseng SH, Wang DY (2020) A LC-MS/MS method for determination of 73 synthetic cathinones and related metabolites in urine. Forensic Sci Int 315:110429. doi:10.1016/j.forsciint.2020.110429 38. Amaratunga P, Lorenz Lemberg B, Lemberg D (2013) Quantitative measurement of synthetic cathinones in oral fluid. J Anal Toxicol 37 (9):622-628. doi:10.1093/jat/bkt080 39. Leffler AM, Smith PB, de Armas A, Dorman FL (2014) The analytical investigation of synthetic street drugs containing cathinone analogs. Forensic Sci Int 234:50-56. doi:10.1016/j.forsciint.2013.08.021 40. Glicksberg L, Kerrigan S (2018) Stability of Synthetic Cathinones in Urine. J Anal Toxicol 42 (2):77-87. doi:10.1093/jat/bkx091 41. Zhao S, Li L (2018) Dansylhydrazine Isotope Labeling LC-MS for Comprehensive Carboxylic Acid Submetabolome Profiling. Anal Chem 90 (22):13514-13522. doi:10.1021/acs.analchem.8b03435 42. Zhao S, Dawe M, Guo K, Li L (2017) Development of High-Performance Chemical Isotope Labeling LC-MS for Profiling the Carbonyl Submetabolome. Anal Chem 89 (12):6758-6765. doi:10.1021/acs.analchem.7b01098 43. Guo K, Li L (2009) Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Analytical chemistry 81 (10):3919-3932. doi:10.1021/ac900166a 44. Appelblad P, Ponten E, Jaegfeldt H, Backstrom T, Irgum K (1997) Derivatization of steroids with dansylhydrazine using trifluoromethanesulfonic Acid as catalyst. Anal Chem 69 (23):4905-4911. doi:10.1021/ac9702958 45. Appelblad P, Ahmed A, Ponten E, Backstrom T, Irgum K (2001) Perfluorosulfonated ionomer-modified polyethylene. A material for simultaneous solid-phase enrichment and enhanced precolumn dansylation of C-21 ketosteroids in human serum. Anal Chem 73 (15):3701-3708. doi:10.1021/ac010071w 46. Herrington J, Zhang L, Whitaker D, Sheldon L, Zhang JJ (2005) Optimizing a dansylhydrazine (DNSH) based method for measuring airborne acrolein and other unsaturated carbonyls. J Environ Monit 7 (10):969-976. doi:10.1039/b502063h 47. Zhang J, Zhang L, Fan Z, Ilacqua V (2000) Development of the Personal Aldehydes and Ketones Sampler Based upon DNSH Derivatization on Solid Sorbent. Environmental Science Technology 34 (12):2601-2607 48. CG D (2001) Proposed New Nonintrusive Tool to Heighten Public Awareness of Societal Use of Illicit-Abused Drugs and Their Potential for Ecological Consequences. In: Illicit Drugs in Municipal Sewage. American Chemical Society. doi:10.1021/bk-2001-0791.ch020 49. EMCDDA (2016) Assessing illicit drugs in wastewater: advances in wastewater-based drug epidemiology. doi:10.2810/017397 50. Baz-Lomba JA, Reid MJ, Thomas KV (2016) Target and suspect screening of psychoactive substances in sewage-based samples by UHPLC-QTOF. Anal Chim Acta 914:81-90. doi:10.1016/j.aca.2016.01.056 51. Bade R, Bijlsma L, Sancho JV, Baz-Lomba JA, Castiglioni S, Castrignano E, Causanilles A, Gracia-Lor E, Kasprzyk-Hordern B, Kinyua J, McCall AK, van Nuijs ALN, Ort C, Plosz BG, Ramin P, Rousis NI, Ryu Y, Thomas KV, de Voogt P, Zuccato E, Hernandez F (2017) Liquid chromatography-tandem mass spectrometry determination of synthetic cathinones and phenethylamines in influent wastewater of eight European cities. Chemosphere 168:1032-1041. doi:10.1016/j.chemosphere.2016.10.107 52. Archer JRH, Mendes F, Hudson S, Layne K, Dargan PI, Wood DM (2020) Evaluation of long-term detection trends of new psychoactive substances in pooled urine from city street portable urinals (London, UK). Br J Clin Pharmacol 86 (3):517-527. doi:10.1111/bcp.14239 53. Bade R, Abdelaziz A, Nguyen L, Pandopulos AJ, White JM, Gerber C (2020) Determination of 21 synthetic cathinones, phenethylamines, amphetamines and opioids in influent wastewater using liquid chromatography coupled to tandem mass spectrometry. Talanta 208:120479. doi:10.1016/j.talanta.2019.120479 54. Sulej-Suchomska AM, Klupczynska A, Derezinski P, Matysiak J, Przybylowski P, Kokot ZJ (2020) Urban wastewater analysis as an effective tool for monitoring illegal drugs, including new psychoactive substances, in the Eastern European region. Sci Rep 10 (1):4885. doi:10.1038/s41598-020-61628-5 55. Chiaia AC, Banta-Green C, Field J (2008) Eliminating solid phase extraction with large-volume injection LC/MS/MS: analysis of illicit and legal drugs and human urine indicators in U.S. wastewaters. Environ Sci Technol 42 (23):8841-8848. doi:10.1021/es802309v 56. Berset JD, Brenneisen R, Mathieu C (2010) Analysis of llicit and illicit drugs in waste, surface and lake water samples using large volume direct injection high performance liquid chromatography--electrospray tandem mass spectrometry (HPLC-MS/MS). Chemosphere 81 (7):859-866. doi:10.1016/j.chemosphere.2010.08.011 57. Backe WJ, Field JA (2012) Is SPE necessary for environmental analysis? A quantitative comparison of matrix effects from large-volume injection and solid-phase extraction based methods. Environ Sci Technol 46 (12):6750-6758. doi:10.1021/es300235z 58. Backe WJ (2021) Suspect and non-target screening of reuse water by large-volume injection liquid chromatography and quadrupole time-of-flight mass spectrometry. Chemosphere 266:128961. doi:10.1016/j.chemosphere.2020.128961 59. Wooding M, Rohwer ER, Naude Y (2017) Determination of endocrine disrupting chemicals and antiretroviral compounds in surface water: A disposable sorptive sampler with comprehensive gas chromatography - Time-of-flight mass spectrometry and large volume injection with ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1496:122-132. doi:10.1016/j.chroma.2017.03.057 60. Du P, Liu X, Zhong G, Zhou Z, Thomes MW, Lee CW, Bong CW, Zhang X, Hao F, Li X, Zhang G, Thai PK (2020) Monitoring Consumption of Common Illicit Drugs in Kuala Lumpur, Malaysia, by Wastewater-Cased Epidemiology. Int J Environ Res Public Health 17 (3). doi:10.3390/ijerph17030889 61. <Bioanalytical-Method-Validation-Guidance-for-Industry.pdf>. 62. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26 (7):966-968. doi:10.1093/bioinformatics/btq054 63. Liu P, Xiang L, Tan Q, Tang H, Zhang H (2013) Steric hindrance effect on thermoresponsive behaviors of pyrrolidone-based polymers. Polym Chem 4 (4):1068-1076. doi:10.1039/c2py20773g 64. Uchiyama S, Kaneko T, Tokunaga H, Ando M, Otsubo Y (2007) Acid-catalyzed isomerization and decomposition of ketone-2,4-dinitrophenylhydrazones. Anal Chim Acta 605 (2):198-204. doi:10.1016/j.aca.2007.10.031 65. Liu J, Tong S, Sun H, Chang Y, Luo H, Yu H, Shen Z (2021) Effect of shaking speed on immobilization of cephalosporin C acylase: Correlation between protein distribution and properties of the immobilized enzymes. Biotechnol Prog 37 (1):e3063. doi:10.1002/btpr.3063 66. Gottardo R, Sorio D, Musile G, Trapani E, Seri C, Serpelloni G, Tagliaro F (2014) Screening for synthetic cannabinoids in hair by using LC-QTOF MS: a new and powerful approach to study the penetration of these new psychoactive substances in the population. Med Sci Law 54 (1):22-27. doi:10.1177/0025802413477396 67. Adamowicz P, Tokarczyk B (2016) Simple and rapid screening procedure for 143 new psychoactive substances by liquid chromatography-tandem mass spectrometry. Drug Test Anal 8 (7):652-667. doi:10.1002/dta.1815 68. da Cunha KF, Oliveira KD, Huestis MA, Costa JL (2020) Screening of 104 New Psychoactive Substances (NPS) and Other Drugs of Abuse in Oral Fluid by LC-MS-MS. J Anal Toxicol 44 (7):697-707. doi:10.1093/jat/bkaa089 69. Tang MH, Ching CK, Lee CY, Lam YH, Mak TW (2014) Simultaneous detection of 93 conventional and emerging drugs of abuse and their metabolites in urine by UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 969:272-284. doi:10.1016/j.jchromb.2014.08.033
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81379-
dc.description.abstract近年來新興濫用藥物成長快速,其中合成卡西酮已經成為主要的濫用藥物之一且種類繁多,因此使分析合成卡西酮變得更加重要也具有挑戰性。目前偵測合成卡西酮的方法主要仰賴液相層析搭配串聯式質譜儀,其偵測極限一般可達0.1~0.5 奈克/毫升(ng/ml),也可以同時偵測多種合成卡西酮。為求準確定量,同位素內標準品常被用來校正基質效應產生之偏差。然而,並非所有新興合成卡西酮都能在市面上找到相對應之內標準品,並且大部份可以獲得的內標準品也非常昂貴,這也使得合成卡西酮的準確定量受到阻礙。化學同位素標記法可以提升逆相層析滯留效果與偵測靈敏度。丹磺醯肼(dansyl hydrazine)已經用來標記許多化合物如酮類、固醇類、有羰基或醛基的物質,並可提升偵測度。合成卡西酮皆具有貝他位置酮基,適合丹磺醯肼衍生提升其偵測靈敏度。同時,藉由使用不同穩定同位素之丹磺醯肼(C12 與C13),可以合成同位素內標準品做為絕對定量之用。 本研究針對其衍生效率,在反應時間、溫度與試劑種類進行最佳化。衍生後產物透過串聯式質譜儀就各項質譜參數進行離子對之最佳化,取得最佳之多重反應監測離子對後則進行層析條件最佳化。最終分析條件經過一系列之方法確效,包括線性、準確度、精確度及穩定度。我們使用31個合成卡西酮來檢視衍生化策略,其中有10個合成卡西酮的偵測極限達到飛克/毫升 (fg/ml) 等級,確校結果顯示判定係數皆大於0.996,準確度介於78~123%,精確度之相對標準偏差值皆小於18%。藉由化學同位素標記法,我們開發出更高靈敏度且可以同時準確定量31個合成卡西酮的方法。同時,透過大體積稀釋尿液模擬極低濃度環境,如社區汙水系統,用以評估此一方法之應用性。這一方法預期可應用於汙水系統並提供監測特定地區的非法濫用藥物使用狀況。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:46:39Z (GMT). No. of bitstreams: 1
U0001-1207202110440900.pdf: 1673437 bytes, checksum: 48288064da84b8dfc072b907090aef6e (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents中文摘要 1 Abstract 2 Ch1. Introduction 10 1.1 New psychoactive substances 10 1.2 Origin of cathinones 11 1.3 Psychoactive effects of synthetic cathinones 11 1.4 Characters of synthetic cathinones 13 1.5 Synthetic cathinones in Taiwan 14 1.6 Detection of cathinones 15 1.7 Chemical isotope labeling (CIL) 16 1.8 Sewage-based epidemiology (SBE) 17 1.9 Aim of this study 18 Ch2. Material and methods 19 2.1 Chemicals 19 2.2 Sample preparation and labeling procedure 19 2.3 LC-MS/MS conditions 20 2.4 Method validation 21 2.5 Simulation of sewage water 22 2.6 Data analysis 22 Ch3. Result and discussion 22 3.1 Optimization of labeling conditions 22 3.2 Optimization of LC gradients 25 3.3 Optimization of MRM transition 26 3.4 Sensitivity evaluation 27 3.5 Method validation 28 3.6 Method application 29 Ch.4 Conclusion 30 Ch.5 Figures 31 Ch.6 Tables 43 References 58
dc.language.isoen
dc.subject新興濫用藥物zh_TW
dc.subject質譜zh_TW
dc.subject合成卡西酮zh_TW
dc.subject化學同位素標記法zh_TW
dc.subject汙水系統zh_TW
dc.subjectsynthetic cathinonesen
dc.subjectchemical isotope labelingen
dc.subjectmass spectrometryen
dc.subjectsewage-based epidemiologyen
dc.subjectnew psychoactive substancesen
dc.title透過同位素標誌技術建立超靈敏之合成卡西酮分析方法zh_TW
dc.titleDevelopment of ultra-sensitive method using chemical isotope labeling to determine synthetic cathinones with liquid chromatography-triple quadrupole mass spectrometryen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor陳冠元(Guan-Yuan Chen)
dc.contributor.oralexamcommittee蔡伊琳(Hsin-Tsai Liu),(Chih-Yang Tseng)
dc.subject.keyword新興濫用藥物,合成卡西酮,化學同位素標記法,汙水系統,質譜,zh_TW
dc.subject.keywordnew psychoactive substances,synthetic cathinones,chemical isotope labeling,sewage-based epidemiology,mass spectrometry,en
dc.relation.page64
dc.identifier.doi10.6342/NTU202101396
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-07-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept法醫學研究所zh_TW
顯示於系所單位:法醫學科所

文件中的檔案:
檔案 大小格式 
U0001-1207202110440900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved