Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81369
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李克強(Keh-Chyang Lee)
dc.contributor.authorYong-Jing Jianen
dc.contributor.author簡詠靜zh_TW
dc.date.accessioned2022-11-24T03:46:00Z-
dc.date.available2021-07-23
dc.date.available2022-11-24T03:46:00Z-
dc.date.copyright2021-07-23
dc.date.issued2021
dc.date.submitted2021-07-07
dc.identifier.citation1. Park, K., Controlled drug delivery: challenges and strategies. 1997: Acs Professional Reference Boo. 2. Helmholtz, H.V.J.A.d.P., Studien über electrische Grenzschichten. 1879. 243(7): p. 337-382. 3. Guoy, G.J.J.P., Constitution of the electric charge at the surface of an electrolyte. 1910. 9: p. 457-67. 4. Chapman, D.L.J.T.L., Edinburgh,, D.p. magazine, and j.o. science, LI. A contribution to the theory of electrocapillarity. 1913. 25(148): p. 475-481. 5. Stern, O.J.Z.f.E.u.a.p.C., Zur theorie der elektrolytischen doppelschicht. 1924. 30(21‐22): p. 508-516. 6. Overbeek, J.T.G.J.A.i.c.s., Quantitative interpretation of the electrophoretic velocity of colloids. 1950. 3: p. 797-823. 7. Booth, F.J.P.o.t.R.S.o.L.S.A.M. and P. Sciences, The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. 1950. 203(1075): p. 514-533. 8. Shui, L., J.C. Eijkel, and A. Van den Berg, Multiphase flow in microfluidic systems–Control and applications of droplets and interfaces. Advances in colloid and interface science, 2007. 133(1): p. 35-49. 9. Ashby, M.F. and D.R. Jones, An Introduction to the Properties and Applications. 1980: Pergamon. 10. Hoar, T. and J. Schulman, Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature, 1943. 152(3847): p. 102-103. 11. Moulik, S.P. and A.K. Rakshit, Physicochemisty and applications of microemulsions. Journal of Surface Science and Technology, 2006. 22(3/4): p. 159. 12. Rees, G.D. and B.H. Robinson, Microemulsions and organogels: properties and novel applications. Advanced Materials, 1993. 5(9): p. 608-619. 13. Lee, K.S. and J.H. Lee, Chapter 4 - Hybrid Chemical EOR Using Low-Salinity and Smart Waterflood, in Hybrid Enhanced Oil Recovery using Smart Waterflooding, K.S. Lee and J.H. Lee, Editors. 2019, Gulf Professional Publishing. p. 65-110. 14. Karunaratne, D.N., G. Pamunuwa, and U. Ranatunga, Introductory Chapter: Microemulsions, in Properties and uses of microemulsions. 2017, IntechOpen. 15. Flanagan, J., H.J.C.r.i.f.s. Singh, and nutrition, Microemulsions: a potential delivery system for bioactives in food. 2006. 46(3): p. 221-237. 16. Taylor, T. and A. Acrivos, On the deformation and drag of a falling viscous drop at low Reynolds number. Journal of Fluid Mechanics, 1964. 18(3): p. 466-476. 17. Eow, J.S., M. Ghadiri, and A. Sharif, Experimental studies of deformation and break-up of aqueous drops in high electric fields. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003. 225(1-3): p. 193-210. 18. Jubery, T.Z., S.K. Srivastava, and P. Dutta, Dielectrophoretic separation of bioparticles in microdevices: A review. 2014. 35(5): p. 691-713. 19. Voldman, J.J.A.R.B.E., Electrical forces for microscale cell manipulation. 2006. 8: p. 425-454. 20. Jung, J., et al., Label-free continuous lateral magneto-dielectrophoretic microseparators for highly efficient enrichment of circulating nucleated cells from peripheral blood. Sensors and Actuators B: Chemical, 2011. 157(1): p. 314-320. 21. Velev, O.D. and K.H.J.S.M. Bhatt, On-chip micromanipulation and assembly of colloidal particles by electric fields. 2006. 2(9): p. 738-750. 22. Bhattacharya, S., et al., Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis. 2014. 406(7): p. 1855-1865. 23. Su, H.-W., J.L. Prieto, and J.J.L.o.a.C. Voldman, Rapid dielectrophoretic characterization of single cells using the dielectrophoretic spring. 2013. 13(20): p. 4109-4117. 24. Nakano, A. and A.J.E. Ros, Protein dielectrophoresis: advances, challenges, and applications. 2013. 34(7): p. 1085-1096. 25. Viefhues, M., et al., Dielectrophoresis based continuous-flow nano sorter: fast quality control of gene vaccines. 2013. 13(15): p. 3111-3118. 26. Sarno, B., et al., Dielectrophoresis: Developments and applications from 2010 to 2020. Electrophoresis, 2021. 42(5): p. 539-564. 27. von Hippel, A.J.A.H.m.l.B.A.H., Dielectric materials and applications, new ed. ed., ser. 1995. 28. Zhao, K. and D. Li, Direct current dielectrophoretic manipulation of the ionic liquid droplets in water. Journal of Chromatography A, 2018. 1558: p. 96-106. 29. Martin, F. and H. Zipse, Charge distribution in the water molecule—a comparison of methods. Journal of computational chemistry, 2005. 26(1): p. 97-105. 30. Bohinski, R.C., P. Melius, and M.E. Friedman, Modern concepts in biochemistry. 1976: Allyn and Bacon. 31. Pohl, H.A., The Motion and Precipitation of Suspensoids in Divergent Electric Fields. Journal of Applied Physics, 1951. 22(7): p. 869-871. 32. Pohl, H.A.J.J.o.A.P., The motion and precipitation of suspensoids in divergent electric fields. 1951. 22(7): p. 869-871. 33. Zhang, C., et al., Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. 2010. 396(1): p. 401-420. 34. Jubery, T.Z., S.K. Srivastava, and P.J.E. Dutta, Dielectrophoretic separation of bioparticles in microdevices: A review. 2014. 35(5): p. 691-713. 35. Qian, C., et al., Dielectrophoresis for bioparticle manipulation. 2014. 15(10): p. 18281-18309. 36. Zellner, P., et al., 3D Insulator‐based dielectrophoresis using DC‐biased, AC electric fields for selective bacterial trapping. 2015. 36(2): p. 277-283. 37. Nerguizian, V., et al., The effect of dielectrophoresis on living cells: crossover frequencies and deregulation in gene expression. Analyst, 2019. 144(12): p. 3853-3860. 38. Inaba, M., et al., Dielectrophoretic properties of submicron diamond particles in sodium chloride aqueous solution. Japanese Journal of Applied Physics, 2020. 59(4): p. 046502. 39. Huang, Y., et al., Dielectrophoretic Cell Separation and Gene Expression Profiling on Microelectronic Chip Arrays. Analytical Chemistry, 2002. 74(14): p. 3362-3371. 40. Bhatt, G., et al., Dielectrophoresis assisted impedance spectroscopy for detection of gold-conjugated amplified DNA samples. Sensors and Actuators B: Chemical, 2019. 288: p. 442-453. 41. Zhao, K. and D. Li, Tunable Droplet Manipulation and Characterization by ac-DEP. ACS Applied Materials Interfaces, 2018. 10(42): p. 36572-36581. 42. Sun, M., et al., Continuous on-chip cell separation based on conductivity-induced dielectrophoresis with 3D self-assembled ionic liquid electrodes. Analytical chemistry, 2016. 88(16): p. 8264-8271. 43. Zhang, P. and Y. Liu, DC biased low-frequency insulating constriction dielectrophoresis for protein biomolecules concentration. Biofabrication, 2017. 9(4): p. 045003. 44. Natu, R., et al., Automated “pick and transfer” of targeted cells using dielectrophoresis. Lab on a Chip, 2019. 19(15): p. 2512-2525. 45. Al-Ahdal, S.A., et al., Dielectrophoresis of Amyloid-Beta Proteins as a Microfluidic Template for Alzheimer’s Research. International journal of molecular sciences, 2019. 20(14): p. 3595. 46. Bazant, M.Z. and Y. Ben, Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab on a Chip, 2006. 6(11): p. 1455-1461. 47. Tang, S.Y., et al., Creation of liquid metal 3D microstructures using dielectrophoresis. Advanced Functional Materials, 2015. 25(28): p. 4445-4452. 48. Jones, T.B. and T.B. Jones, Electromechanics of particles. 2005: Cambridge university press. 49. Hughes, M.P., Nanoelectromechanics in Engineering and Biology. 2002, Boca Raton: CRC Press. 50. Jones, T.B., Electromechanics of Particles. 1995, New York: Cambridge University Press. 51. O'Brien, R.W., The response of a colloidal suspension to an alternating electric field. Advances in Colloid and Interface Science, 1982. 16(1): p. 281-320. 52. Zhao, H. and H.H. Bau, The polarization of a nanoparticle surrounded by a thick electric double layer. J Colloid Interface Sci, 2009. 333(2): p. 663-71. 53. Zhao, H., Double-layer polarization of a non-conducting particle in an alternating current field with applications to dielectrophoresis. Electrophoresis, 2011. 32(17): p. 2232-44. 54. Delgado, A.V., et al., Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science, 2007. 309(2): p. 194-224. 55. Abraham, M., R. Becker, and J. Dougall, The classical theory of electricity and magnetism. 1932: Blackie London. 56. Hughes, M.P., Fifty years of dielectrophoretic cell separation technology. Biomicrofluidics, 2016. 10(3): p. 032801. 57. Hatfield, H., Dielectric separation: a new method for the treatment of ores. Institution of Mining and Metallurgy Bulletin, 1924. 233: p. 335-342. 58. Pohl, H.A., Some Effects of Nonuniform Fields on Dielectrics. Journal of Applied Physics, 1958. 29(8): p. 1182-1188. 59. Pohl, H.A. and R. Pethig, Dielectric measurements using non-uniform electric field (dielectrophoretic) effects. Journal of Physics E: Scientific Instruments, 1977. 10(2): p. 190-193. 60. Pohl, H.A. and I. Hawk, Separation of living and dead cells by dielectrophoresis. Science, 1966. 152(3722): p. 647-649. 61. Pohl, H.A., Biophysical aspects of dielectrophoresis. Journal of Biological Physics, 1973. 1(1): p. 1-16. 62. Pohl, H. and K. Kaler, Continuous dielectrophoretic separation of cell mixtures. Cell biophysics, 1979. 1(1): p. 15-28. 63. Höber, R., Eine Methode, die elektrische Leitfähigkeit im Innern von Zellen zu messen. Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere, 1910. 133(4): p. 237-253. 64. Höber, R., Ein zweites Verfahren, die Leitfähigkeit im Innern von Zellen zu messen. Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere, 1912. 148(4): p. 189-221. 65. Höber, R., Messungen der inneren Leitfähigkeit von Zellen. Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere, 1913. 150(1): p. 15-45. 66. Cole, K.S. and H.J. Curtis, Electric impedance of single marine eggs. The Journal of general physiology, 1938. 21(5): p. 591-599. 67. Cole, K., Impedance of single cells. Tabulae Biologicae, 1942. 19: p. 24. 68. Pohl, H.A., Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields / Herbert A. Pohl. Cambridge monographs on physics. 1978, Cambridge ;: Cambridge University Press. 69. Pethig, R.R., Dielectrophoresis: Theory, methodology and biological applications. 2017: John Wiley Sons. 70. Shen, B., et al., Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami‐induced local destruction of silicon dioxide. Electrophoresis, 2015. 36(2): p. 255-262. 71. Hermanson, K.D., et al., Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science, 2001. 294(5544): p. 1082-1086. 72. Richetti, P., J. Prost, and P. Barois, Two-dimensional aggregation and crystallization of a colloidal suspension of latex spheres. Journal De Physique Lettres, 1984. 45(23): p. 1137-1143. 73. Ahadian, S., et al., Rapid and high-throughput formation of 3D embryoid bodies in hydrogels using the dielectrophoresis technique. Lab on a Chip, 2014. 14(19): p. 3690-3694. 74. Benguigui, L. and I. Lin, More about the dielectrophoretic force. Journal of Applied Physics, 1982. 53(2): p. 1141-1143. 75. Dingari, N.N. and C.R.J.L. Buie, Theoretical investigation of bacteria polarizability under direct current electric fields. 2014. 30(15): p. 4375-4384. 76. Zhao, H., H.H.J.J.o.c. Bau, and i. science, The polarization of a nanoparticle surrounded by a thick electric double layer. 2009. 333(2): p. 663-671. 77. O'Konski, C.T.J.T.J.o.P.C., Electric properties of macromolecules. V. Theory of ionic polarization in polyelectrolytes. 1960. 64(5): p. 605-619. 78. Shilov, V., et al., Polarization of the electrical double layer. Time evolution after application of an electric field. Journal of colloid and interface science, 2000. 232(1): p. 141-148. 79. Dukhin, S.S., V.N. Shilov, and J.J.J.o.t.E.S. Bikerman, Dielectric phenomena and double layer in disperse systems and polyelectrolytes. 1974. 121(4): p. 154C. 80. Shilov, V. and S.J.C.J.-U. Dukhin, Theory of low-frequency dispersion of dielectric permittivity in suspensions of spherical colloidal particles due to double-layer polarization. 1970. 32(2): p. 245- . 81. Delgado, Á.V., Interfacial electrokinetics and electrophoresis. Vol. 106. 2001: CRC Press. 82. Shilov, V., et al., Thin double layer theory of the wide-frequency range dielectric dispersion of suspensions of non-conducting spherical particles including surface conductivity of the stagnant layer. 2001. 192(1-3): p. 253-265. 83. Zhao, H.J.E., Double‐layer polarization of a non‐conducting particle in an alternating current field with applications to dielectrophoresis. 2011. 32(17): p. 2232-2244. 84. Han, X., et al., Calculation of the contributions of scattering effects to the X-ray fluorescent intensities for light matrix samples. 2005. 538(1-2): p. 297-302. 85. Uppapalli, S. and H.J.L. Zhao, Polarization of a diffuse soft particle subjected to an alternating current field. 2012. 28(30): p. 11164-11172. 86. Wuzhang, J., et al., Electrophoretic mobility of oil droplets in electrolyte and surfactant solutions. Electrophoresis, 2015. 36(19): p. 2489-2497. 87. Delgado, Á.V., et al., Measurement and interpretation of electrokinetic phenomena. 2007. 309(2): p. 194-224. 88. Hunter, R.J., Foundations of Colloid Science. Vol. 2. 1989, New York: Oxford University Press. 89. Hunter, R.J., Foundations of colloid science. 2001: Oxford university press. 90. O'Brien, R.W. and L.R. White, Electrophoretic mobility of a spherical colloidal particle. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1978. 74(0): p. 1607-1626. 91. Happel, J. and H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media. Vol. 1. 1983: Springer Science Business Media. 92. Zhao, H. and H.H. Bau, Effect of double-layer polarization on the forces that act on a nanosized cylindrical particle in an ac electrical field. Langmuir, 2008. 24(12): p. 6050-6059. 93. Viswanath, D.S., et al., Viscosity of liquids: theory, estimation, experiment, and data. 2007: Springer Science Business Media. 94. McClements, D.J. and J. Rao, Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical reviews in food science and nutrition, 2011. 51(4): p. 285-330. 95. Djerdjev, A.M. and J.K. Beattie, Electroacoustic and ultrasonic attenuation measurements of droplet size and ζ-potential of alkane-in-water emulsions: effects of oil solubility and composition. Physical Chemistry Chemical Physics, 2008. 10(32): p. 4843-4852. 96. Chhabra, G., et al., Design and development of nanoemulsion drug delivery system of amlodipine besilate for improvement of oral bioavailability. Drug development and industrial pharmacy, 2011. 37(8): p. 907-916. 97. Wu, Y., et al., Electrophoresis of a highly charged dielectric fluid droplet in electrolyte solutions. Journal of Colloid and Interface Science, 2021. 598: p. 358-368. 98. Zhao, H.J.P.o.F., On the effect of hydrodynamic slip on the polarization of a nonconducting spherical particle in an alternating electric field. 2010. 22(7): p. 072004. 99. Zhou, H., et al., Calculation of the electric polarizability of a charged spherical dielectric particle by the theory of colloidal electrokinetics. 2005. 285(2): p. 845-856. 100. Kortschot, R., et al., Diverging electrophoretic and dynamic mobility of model silica colloids at low ionic strength in ethanol. 2014. 422: p. 65-70. 101. Ohshima, H., T.W. Healy, and L.R. White, Electrokinetic phenomena in a dilute suspension of charged mercury drops. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1984. 80(12): p. 1643-1667. 102. Ohshima, H., Theory of colloid and interfacial electric phenomena. 2006: Elsevier. 103. Delgado, Á.V., et al., Measurement and interpretation of electrokinetic phenomena. Journal of colloid and interface science, 2007. 309(2): p. 194-224.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81369-
dc.description.abstract"本論文主要探討介電液滴於系統中的介電泳運動現象。傳統常見的電動力學現象為電泳,在此我們應用一種新穎且具有發展潛力的技術「介電泳」(Dielectrophoresis, DEP),其原理為利用非均勻電場驅使介電質於電解質溶液中運動,在極小距離下產生極大的電場,能準確的分離粒子,再加上近年來微奈米科技蓬勃發展,更帶動介電泳的快速發展。 在真實介電泳系統中存在著許多非傳統硬球型態的粒子,無法再以單純的硬球來模擬,為了突破傳統設限,使用了液滴模型比擬為生物粒子,如DNA、RNA等等。將介電泳應用於生化方面時,更利用介電泳的不均勻電場操作,讓生物粒子免於受高壓電影響而死亡,亦達成分離或捕捉的目的。 液滴模型比起一般硬球模型多了黏度項可以調控,高黏度時能夠回到一般硬球型態,低黏度時則是能比擬為氣泡型態,另外,也讓液滴受Maxwell stress影響泳動表現,使研究的液滴模型越接近真實粒子。 本文的研究目標是決定粒子行為的關鍵因子:dipole coefficient,其代表粒子在介質中的有效極化程度,探討頻率、電雙層厚度、粒子表面帶電量、介電常數等等參數對粒子的介電泳行為之影響變化。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:46:00Z (GMT). No. of bitstreams: 1
U0001-0607202112380900.pdf: 4773381 bytes, checksum: 1ab52fcccfd343f4e341bcaac4bf5161 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 I 摘要 III Abstract IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1. 膠體粒子與電雙層 1 1.1.1. 膠體簡介 1 1.1.2. 電雙層理論 4 1.2. 液滴(liquid droplet)暨微乳液(microemulsion)系統 7 1.2.1. 液滴暨微乳液系統介紹 7 1.2.2. 液滴暨微乳液系統之應用 9 1.2.3. 液滴變形理論 10 1.3. 介電泳概論 11 1.3.1. 介電質與極化現象 12 1.3.2. 介電泳原理 15 1.4. 介電泳應用 21 1.5. 介電泳力與偶極矩 27 1.5.1. 介電泳作用力 27 1.5.2. 有效偶極矩與dipole coefficient 29 1.6. 文獻回顧−介電泳及極化效應 31 1.7. 低頻∕高頻區間−電雙層動態平衡 38 1.8. 研究目的與論文架構 42 第二章 理論分析 43 2.1. 系統描述 43 2.2. 物理問題分析與基本假設 44 2.3. 電動力學方程組 45 2.3.1. 電位方程式 45 2.3.2. 離子守恆式 46 2.3.3. 流場方程式 47 2.4. 平衡態與擾動態 49 2.4.1. 平衡態 50 2.4.2. 擾動態 51 2.5. 邊界條件 56 2.5.1. 平衡態邊界條件 56 2.5.2. 擾動態邊界條件 57 2.6. 系統變數前處理 61 2.6.1. 無因次分析與平衡電位求解 61 2.6.2. 擾動態變數線性化 63 2.6.3. 擾動態變數一維化 63 2.7. 粒子受力與電泳動度計算 68 2.7.1. 粒子受力計算 68 2.7.2. 振盪電泳速度計算 70 2.7.3. 介電泳速度計算 72 2.8. 偶極矩強度計算 74 第三章 數值方法 75 3.1. 正交配位法 75 3.2. 空間映射 79 3.3. 牛頓(Newton-Raphson)迭代法 80 3.4. 擾動態多變數聯立解 82 第四章 結果與討論 83 4.1. 系統參數設定 83 4.2. 準確性比對 85 4.3. 表面電位之影響 88 4.4. 液滴黏度比值影響 98 4.5. 介電常數影響 112 第五章 結論 118 參考文獻 120 符號說明 127 附錄 130 A. 有效偶極矩與CM factor關係式推導 130 B. 平均(time-average)介電泳力推導 134 C. 無窮大系統計算方法 136 D. 擾動電位球面邊界條件推導 139 E. 外部流場於液滴表面邊界條件推導 140 F. 介電泳泳動度(μDEP)推導 143
dc.language.isozh-TW
dc.subject電雙層極化效應zh_TW
dc.subject介電泳zh_TW
dc.subject介電質zh_TW
dc.subject交流電場zh_TW
dc.subject電動力學zh_TW
dc.subject介電液滴zh_TW
dc.subject有效偶極矩zh_TW
dc.subject介電泳泳動度zh_TW
dc.subjectdielectrophoresis (DEP)en
dc.subjectAC electric fielden
dc.subjectdielectric materialen
dc.subjectdouble layer polarizationen
dc.subjectDEP mobilityen
dc.subjecteffective dipole momenten
dc.subjectdielectric liquid dropleten
dc.subjectelectrokineticsen
dc.title介電液滴之介電泳現象探討zh_TW
dc.titleDielectrophoresis of a dielectric fluid dropleten
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳賢燁(Hsin-Tsai Liu),游佳欣(Chih-Yang Tseng)
dc.subject.keyword介電泳,介電質,交流電場,電動力學,介電液滴,有效偶極矩,介電泳泳動度,電雙層極化效應,zh_TW
dc.subject.keyworddielectrophoresis (DEP),dielectric material,AC electric field,electrokinetics,dielectric liquid droplet,effective dipole moment,DEP mobility,double layer polarization,en
dc.relation.page146
dc.identifier.doi10.6342/NTU202101294
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-07-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-0607202112380900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved