請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81356完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳彥仰(Mike Y. Chen) | |
| dc.contributor.author | Yu-Wei Wang | en |
| dc.contributor.author | 王佑威 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:45:10Z | - |
| dc.date.available | 2021-08-04 | |
| dc.date.available | 2022-11-24T03:45:10Z | - |
| dc.date.copyright | 2021-08-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-20 | |
| dc.identifier.citation | [1] T. Amemiya, H. Ando, and T. Maeda. Leadme interface for a pulling sensation from handheld devices. ACM Trans. Appl. Percept., 5(3), sep 2008. [2] M. Bouzit, G. Burdea, G. Popescu, and R. Boian. The rutgers master iinew design forcefeedback glove. IEEE/ASME Transactions on Mechatronics, 7(2):256–263, June 2002. [3] I. Choi and S. Follmer. Wolverine: A wearable haptic interface for grasping in vr. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST '16 Adjunct, page 117–119, New York, NY, USA, 2016. Association for Computing Machinery. [4] I. Choi, E. Ofek, H. Benko, M. Sinclair, and C. Holz. Claw: A multifunctional handheld haptic controller for grasping, touching, and triggering in virtual reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI '18, New York, NY, USA, 2018. Association for Computing Machinery. [5] T. Endo, H. Kawasaki, T. Mouri, Y. Ishigure, H. Shimomura, M. Matsumura, and K. Koketsu. Fivefingered haptic interface robot: Hiro iii. IEEE Transactions on Haptics, 4(1):14–27, 2011. [6] D. Formica, S. K. Charles, L. Zollo, E. Guglielmelli, N. Hogan, and H. I. Krebs. The passive stiffness of the wrist and forearm. Journal of Neurophysiology, 108(4):1158– 1166, 2012. PMID: 22649208. [7] J. Gong, D.Y. Huang, T. Seyed, T. Lin, T. Hou, X. Liu, M. Yang, B. Yang, Y. Zhang, and X.D. Yang. Jetto: Using lateral force feedback for smartwatch interactions. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI '18, New York, NY, USA, 2018. Association for Computing Machinery. [8] H. Gurocak, S. Jayaram, B. Parrish, and U. Jayaram. Weight sensation in virtual environments using a haptic device with air jets. J. Comput. Inf. Sci. Eng., 3:130– 135, 06 2003. [9] S. Heo, C. Chung, G. Lee, and D. Wigdor. Thor’s hammer: An ungrounded force feedback device utilizing propellerinduced propulsive force. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1– 11, New York, NY, USA, 2018. Association for Computing Machinery. [10] S. Je, M. J. Kim, W. Lee, B. Lee, X.D. Yang, P. Lopes, and A. Bianchi. Aeroplane: A handheld forcefeedback device that renders weight motion illusion on a virtual 2d plane. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST ’19, page 763–775, New York, NY, USA, 2019. Association for Computing Machinery. [11] S. Je, H. Lee, M. J. Kim, and A. Bianchi. Windblaster: A wearable propellerbased prototype that provides ungrounded forcefeedback. In ACM SIGGRAPH 2018 Emerging Technologies, SIGGRAPH '18, New York, NY, USA, 2018. Association for Computing Machinery. [12] S.H. Liu, P.C. Yen, Y.H. Mao, Y.H. Lin, E. Chandra, and M. Y. Chen. Headblaster: A wearable approach to simulating motion perception using headmounted air propulsion jets. ACM Trans. Graph., 39(4), jul 2020. [13] T. H. Massie and J. K. Salisbury. The phantom haptic interface: A device for probing virtual objects. In Proceedings of the ASME Dynamic Systems and Control Division, pages 295–301, New York, NY, USA, 1994. American Society of Mechanical Engineers Staf. [14] MathWorks. Rise time, settling time, and other stepresponse characteristics, 1994. [15] MetaCritic. Best alltime pc video games metacritic, 2020. [16] K. Nagai, S. Tanoue, K. Akahane, and M. Sato. Wearable 6dof wrist haptic device “spidarw'. In SIGGRAPH Asia 2015 Haptic Media And Contents Design, SA '15, New York, NY, USA, 2015. Association for Computing Machinery. [17] Novint. Novint falcon haptic device, 2006. [18] T. E. of Wikipedia. Rumble pak, 2006. [19] T. E. of Wikipedia. Takahashi meijin, 2009. [20] J. Rekimoto. Traxion: A tactile interaction device with virtual force sensation. In ACM SIGGRAPH 2014 Emerging Technologies, SIGGRAPH ’14, New York, NY, USA, 2014. Association for Computing Machinery. [21] J. M. Romano and K. J. Kuchenbecker. The airwand: Design and characterization of a largeworkspace haptic device. In 2009 IEEE International Conference on Robotics and Automation, pages 1461–1466, USA, 2009. Institute of Electrical and Electronics Engineers. [22] T. Sasaki, R. S. Hartanto, K.H. Liu, K. Tsuchiya, A. Hiyama, and M. Inami. Leviopole: Midair haptic interactions using multirotor. In ACM SIGGRAPH 2018 Emerging Technologies, SIGGRAPH '18, New York, NY, USA, 2018. Association for Computing Machinery. [23] J. Shigeyama, T. Hashimoto, S. Yoshida, T. Narumi, T. Tanikawa, and M. Hirose. Transcalibur: A weight shifting virtual reality controller for 2d shape rendering based on computational perception model. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page 1–11, New York, NY, USA, 2019. Association for Computing Machinery. [24] Silvent. Air nozzle silvent 1001, 2003. [25] T. M. Simon, R. T. Smith, and B. H. Thomas. Wearable jamming mitten for virtual environment haptics. In Proceedings of the 2014 ACM International Symposium on Wearable Computers, ISWC '14, page 67–70, New York, NY, USA, 2014. Association for Computing Machinery. [26] Y. Sun, S. Yoshida, T. Narumi, and M. Hirose. Pacapa: A handheld vr device for rendering size, shape, and stiffness of virtual objects in toolbased interactions. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, page 1–12, New York, NY, USA, 2019. Association for Computing Machinery. [27] H.R. Tsai and B.Y. Chen. Elastimpact: 2.5d multilevel instant impact using elasticity on headmounted displays. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST '19, page 429–437, New York, NY, USA, 2019. Association for Computing Machinery. [28] H.R. Tsai, J. Rekimoto, and B.Y. Chen. Elasticvr: Providing multilevel continuouslychanging resistive force and instant impact using elasticity for vr. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI '19, New York, NY, USA, 2019. Association for Computing Machinery. [29] Valve. Best of 2019 top sellers, 2019. [30] S. VR. Striker vr, 2017. [31] K. N. Winfree, J. Gewirtz, T. Mather, J. Fiene, and K. J. Kuchenbecker. A high fidelity ungrounded torque feedback device: The itorqu 2.0. In World Haptics 2009 Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages 261–266, NW Washington, DCUnited States, 2009. IEEE Computer Society. [32] H. Yano, M. Yoshie, and H. Iwata. Development of a nongrounded haptic interface using the gyro effect. In Proceedings of the 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS'03), HAPTICS '03, page 32, USA, 2003. IEEE Computer Society. [33] A. Zenner and A. Krüger. Shifty: A weightshifting dynamic passive haptic proxy to enhance object perception in virtual reality. IEEE Transactions on Visualization and Computer Graphics, 23(4):1285–1294, April 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81356 | - |
| dc.description.abstract | JetController首創在手持控制器上產生高頻且持續的三自由度力回饋技術。透過高速氣動電磁閥調控高壓氣體,JetController可在4.0N-1.0N下達到20-50Hz的完全脈衝,並透過多個氣動噴頭產生三自由度的力回饋。相較於螺旋槳技術,JetController提供10-30倍更快的力回饋,並大幅降低體積與重量。JetController能更廣泛的支援遊戲與虛擬實境體驗裡的觸覺事件,例如Halo遊戲裡自動武器的後座力(15Hz),以及Fruit Ninja遊戲裡切水果的體驗(最高可達45Hz)。為了評估JetController,我們將裝置整合至兩款著名的經典VR遊戲(Half-Life: Alyx和Beat Saber),提供遊戲中各種三維操作的觸覺回饋。實驗結果顯示,相較於市面上提供震動回饋的控制器,JetController顯著的提升了真實性、娛樂性與整體體驗,並受到絕大多數受測者的愛好。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:45:10Z (GMT). No. of bitstreams: 1 U0001-1507202104205300.pdf: 20900368 bytes, checksum: de6ed868b538c0e8e8cf745bf58641e8 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 i 摘要 ii Abstract iii 1 Introduction 1 2 Related Work 5 2.1 Externally Grounded Force Feedback . . . . . . . . . . . . . . . . . . . 5 2.2 Bodygrounded Force Feedback . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Ungrounded Force Feedback . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Illusionbased Force Feedback . . . . . . . . . . . . . . . . . . . . . . . 7 2.5 Air Propulsionbased Ungrounded Force Feedback . . . . . . . . . . . . 7 3 System Design and Implementation 9 3.1 Nozzle Layout and Controller Integration . . . . . . . . . . . . . . . . . 9 3.2 Handheld Weight and Size . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Pneumatic Control System . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Control Software and Hardware . . . . . . . . . . . . . . . . . . . . . . 14 4 System Evaluation 15 4.1 Experimental Setup and Design . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Maximum Force Magnitude . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 Operating Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 Impulse Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.5 Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 User Experience Evaluation 23 5.1 Designing Force Feedback Patterns . . . . . . . . . . . . . . . . . . . . . 23 5.1.1 Integration with Beat Saber . . . . . . . . . . . . . . . . . . . . 23 5.1.2 Integration with HalfLife: Alyx . . . . . . . . . . . . . . . . . . 24 5.2 User Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.4 Absolute Detection Threshold (ADT) . . . . . . . . . . . . . . . . . . . 26 5.5 Application: Beat Saber . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.5.1 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . 28 5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.6 Application: HalfLife: Alyx . . . . . . . . . . . . . . . . . . . . . . . . 29 5.6.1 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . 30 5.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6 Discussion and Limitations 32 6.1 Noise Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.2 Expanding Controller and Posture Support . . . . . . . . . . . . . . . . . 32 6.3 Mobile Weight Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7 CONCLUSION 35 8 ACKNOWLEDGEMENTS 36 Bibliography 37 | |
| dc.language.iso | en | |
| dc.subject | 手持式力回饋 | zh_TW |
| dc.subject | 高速觸覺回饋 | zh_TW |
| dc.subject | 氣體推力 | zh_TW |
| dc.subject | air propulsion | en |
| dc.subject | High-speed haptic feedback | en |
| dc.subject | ungrounded force feedback | en |
| dc.title | 利用氣動推力在手持控制器上產生高速的三自由度力回饋 | zh_TW |
| dc.title | JetController: High-speed Ungrounded 3-DoF Force Feedback Controllers using Air Propulsion Jets | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張永儒(Hsin-Tsai Liu),蔡欣叡(Chih-Yang Tseng),陳炳宇,鄭龍磻 | |
| dc.subject.keyword | 高速觸覺回饋,氣體推力,手持式力回饋, | zh_TW |
| dc.subject.keyword | High-speed haptic feedback,air propulsion,ungrounded force feedback, | en |
| dc.relation.page | 41 | |
| dc.identifier.doi | 10.6342/NTU202101476 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1507202104205300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 20.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
