請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8133
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 闕志鴻(Tzihong Chiueh) | |
dc.contributor.author | Yen-Lin Chen | en |
dc.contributor.author | 陳彥麟 | zh_TW |
dc.date.accessioned | 2021-05-20T00:49:09Z | - |
dc.date.available | 2022-02-18 | |
dc.date.available | 2021-05-20T00:49:09Z | - |
dc.date.copyright | 2021-02-20 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-02-17 | |
dc.identifier.citation | [1] https://www.microwaves101.com/encyclopedias/wirebonding. [2] https://www.phononmeiwa.co.jp/en/products/item/07.html. [3] Appendix I: Cryogenic Reference Tables. https://www.lakeshore.com/. [4] Technique Documents: Noise Figure Measurement Methods and Formulas, Maxim Integrated Tutorials 2875. https://www.maximintegrated.com/en/design/technicaldocuments/tutorials/2/2875.html. [5] Abazajian, K. M., Abitbol, M. H., Ahmed, Z., et al. arXiv:1706.02464, 2017. [6] Ade, P. A. R., Aikin, R. W., Barkats, D., et al. Phys. Rev. Lett., 112(24):1–25, 2014. [7] Ade, P. A. R., Pisano, G., Tucker, C., and Weaverr, S. Proc. SPIE, Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, 6275:248–262, 2006. [8] Afsar, M. N. IEEE Transactions on Microwave Theory and Techniques, 32(12):1598–1609, 1984. [9] Albertsen, N. C. and Skov-Madsen, P. IEEE Transactions on Microwave Theory and Techniques, 31(8):654–660, 1983. [10] Barkats, D., Dierickx, M. I., Kovac, J. M., et al. Proc. SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, 10708:355–368, 2018. [11] Bayet, E., Gerin, M., Phillips, T. G., and Contursi, A. Monthly Notices of the Royal Astronomical Society, 399(1):264–272, 2009. [12] Behe, R. and Brachat, M. IEEE Transactions on Antennas and Propagation, 39(8):1222–1224, 1991. [13] Birkinshaw, M. Physics Reports, 310(2):97–195, 1999. [14] Bornemann, J. and Labay, V. A. IEEE Transactions on Microwave Theory and Techniques, 43(8):1782–1787, 1995. [15] Bornmann, J., Amari, S., Uher, J., and Vahldieck, R. IEEE Transactions on Microwave Theory and Techniques, 47(3):330–335, 1999. [16] Britton, J. W., Nibarger, J. P., Yoon, K. W., et al. Proc. SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, 7741:229–239, 2010. [17] Bryerton, E., Mei, X. B., Kim, Y., et al. IEEE MTT-S International Microwave Symposium Digest, pages 681–684, 2009. [18] Chen, M. H. and Tsandoulas, G. N. IEEE Transactions on Antennas and Propagation, 21(3):389–391, 1973. [19] Chen, M. T. AMiBA Receiver Lab Report, 2003. [20] Chen, Y. L., Chiueh, T. H., and Teng, H. F. The Astrophysical Journal Supplement Series, 211(1):11, 2014. [21] Ciccognani, W., Giannini, F., Limiti, E., and Longhi, P. E. European Microwave Integrated Circuit Conference, pages 314–317, 2008. [22] Condon, J. J. and Ransom, S. M. Essential Radio Astronomy. Princeton University Press, 2016. ISBN: 978-0-691-13779-7. [23] Cremonini, A., Mariotti, S., and Roda, J. Cryogenics, 52(10):445–451, 2012. [24] Davis, D., Digiondomenico, O. J., and Kempic, J. A. IEEE Antennas and Propagation Society International Symposium, pages 26–33, 1967. [25] Doo, J., Park, W., Choe, W., and Jeong, J. Electronics, 8(523):1–9, 2019. [26] Ediss, G. A., Horner, N., Johnson, F., et al. ALMA Memo, (536), 2005. [27] Ege, T. and McAndrew, P. Electronics Letters, 21(24):1166–1168, 1985. [28] Ekin, J. W. Experimental Techniques for Low-Temperature Measurements. Oxford University Press, 2006. ISBN: 978–0–19–857054–7. [29] Emerson, D. ASP Conference Series: Single-Dish Radio Astronomy: Techniques and Applications, 278:27–43, 2002. [30] Erickson, N. R. IEEE MTT-S International Microwave Symposium Digest, 2:1175–1178, 2001. [31] Erickson, N. R. and Grosslein, R. M. IEEE Transactions on Microwave Theory and Techniques, 55(12):2495–2501, 2007. [32] Erickson, N. R., Grosslein, R. M., Erickson, R. B., and Weinreb, S. IEEE Transactions on Microwave Theory and Techniques, 47(12):2212–2219, 1999. [33] Esteban, J. and Rebollar, J. M. IEEE Antennas and Propagation Society International Symposium, 4:2146–2149, 1992. [34] Franco, M. J. IEEE Antennas and Propagation Magazine, 53(3):142–146, 2011. [35] Galuscak, R., Hazdra, P., and Mazanek, M. International Journal of Antennas and Propagation, 2012. [36] Giovanelli, R., Haynes, M. P., Kent, B. R., et al. The Astrophysical Journal, 130(6):2598–2612, 2005. [37] Granet, C. IEEE Antennas and Propagation Magazine, 40(2):76–82, 1998. [38] Granet, C. IEEE Antennas and Propagation Magazine, 40(3):82–89, 1998. [39] Granet, C. and James, G. L. IEEE Transactions on Antennas and Propagation, 47(2):76–84, 2005. [40] Granet, C., James, G. L., Bolton, R., and Moorey, G. IEEE Transactions on Antennas and Propagation, 52(3):848–854, 2004. [41] Green, J. A., Caswell, J. L., Fuller, G. A., et al. Monthly Notices of the Royal Astronomical Society, 392(2):783–794, 2008. [42] Gupta, K. C., Garg, R., and Chadha, R. Computer-aided design of microwave circuits. Artech House, 1981. ISBN: 978-0-890-06106-0. [43] Haiman, Z., Mohr, J. J., and Holder, G. P. The Astrophysical Journal, 553(2):545–56, 2001. [44] Hogan, C. L. Rev. Mod. Phys., 25(1):253–262, 1953. [45] Holland, W. S., Bintley, D., Chapin, E. L., et al. Monthly Notices of the Royal Astronomical Society, 430(4):2513–2533, 2013. [46] Hu, W., Hedman, M. M., and Zaldarriaga, M. Phys. Rev. D, 67:043004–1, 2003. [47] Hu, W. and White, M. New Astronomy, 2(4):323–344, 1997. [48] Hui, H., Ade, P. A. R., Ahmed, Z., et al. Proc. SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, 10708:1–15, 2018. [49] Ihmels, R., Papziner, U., and Arndt, F. IEEE MTT-S International Microwave Symposium Digest, 2:909–912, 1993. [50] Inoue, Y. The thermal design of the POLARBEAR-2 experiment. PhD thesis, Graduate University for Advanced Studies, 2013. [51] Inoue, Y., Ade, P. A. R., Akiba, Y., et al. Proc. SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, 9914:372–380, 2016. [52] Inoue, Y., Matsumura, T., Hazumi, M., et al. Appl. Opt., 53(9):1727–1733, 2014. [53] Jackson, J. D. Classical Electrodynamics, 3rd ed. Wiley, 1998. ISBN: 978-0-471-30932-1. [54] Jakob, G. and Lizona, J. SPIE Proceedings, Modern Technologies in Space- and Ground-based Telescopes and Instrumentation, 7739:1–17, 2010. [55] Jenning, M., Kurras, M., and Plettemeier, D. IEEE International Workshop on Antenna Technology, pages 1–4, 2010. [56] Karwa, R. Heat and Mass Transfer. Springer, 2017. ISBN: 978-981-10-1556-4. [57] Kingery, W. D., Bowen, H. K., and Uhlmann R. Introduction to Ceramics, 2nd Edition. Wiley, 1976. ISBN: 978-0-471-47860-7. [58] Kocharyan, K. N., Afsar, M., and Tkachovr, I. I. IEEE Transactions on Microwave Theory and Techniques, 47(12):2636–264, 1999. [59] Koller, D., Kerr, A. R., and Ediss, G. A. ALMA Memo, (397), 2001. [60] Koller, D., Kerr, A. R., Ediss, G. A., and Boyd, D. ALMA Memo, (377), 2001. [61] Kovac, J. M., Leitch, E. M., Pryke, C., et al. Nature, 420:772–787, 2002. [62] Kumar, C., Srinivasan, V. V., Lakshmeesha, V. K., and Pal, S. IEEE Antennas and Wireless Propagation Letters, 8:826–829, 2009. [63] Labay, V. A. and Bornemann, J. IEEE Microwave and Guided Wave Letters, 2(2):49–51, 1992. [64] Lah, P., Chengalur, J. M., Briggs, F. H., et al. Monthly Notices of the Royal Astronomical Society, 376(3):1357–1366, 2007. [65] Lawrence, C. R., Church, S., Gaier, T., et al. WorkShop: Technology Development For A CMB Probe Of Inflation, 2008. [66] Leal-Sevillano, C. A., Cooper, K. B., Ruiz-Cruz, J. A., et al. IEEE Transactions on Terahertz Science and Technology, 3(5):574–583, 2013. [67] Leech, J., Tan, B. K., Yassin, G., et al. IEEE Transactions on Terahertz Science and Technology, 2(1):61–70, 2012. [68] Leitch, E. M., Kovac, J. M., Pryke, C., et al. Nature, 420:763––771, 2002. [69] Leong, Y. C. and Weinreb, S. IEEE MTT-S International Microwave Symposium Digest, 4:1435–1438, 1999. [70] Leppanen, K. J., Zensus, J. A., and Diamond, P. J. The Astrophysical Journal, 110(5):2749, 1995. [71] Li, E. S., Tong, G. X., and Niu, D. C. IEEE Microwave and Wireless Components Letters, 22(1):4–6, 2013. [72] Liu, A. S., Wu, R. B., and Lin, Y. C. IEICE Transactions on Electronics, E88-C(8):1764–1771, 2005. [73] Mennella, A., Bersanelli, M., Seiffert, M., et al. A A, 410(3):1089–1100, 2003. [74] Molla, J., Ibarra, A., Margineda, J., et al. IEEE Transactions on Instrumentation and Measurement, 42(4):817–821, 1993. [75] Montgomery, J. P. IEEE Transactions on Microwave Theory and Techniques, 19(6):547–555, 1971. [76] Neininger, N., Guélin, M., Ungerechts, H., et al. Nature, 395:871–873, 1998. [77] Newburgh, L. The Q-band Receiver Array Instrument and Observations. PhD thesis, Columbia University, 2010. [78] O’Dea, D., Challinor, A., and Johnson, B. R. Monthly Notices of the Royal Astronomical Society, 376(4):1767–1783, 2007. [79] Olver, A. D., Clarricoats, P. J. B., Kishk, A. A., and Shafai. L. Microwave Horns and Feeds. The Institution of Engineering and Technology, 1994. ISBN: 978-0-852-96809-3. [80] Padin, S., Staniszewski, S., Keisler, R., et al. Appl. Opt., 47(24):4418–4428, 2008. [81] A. Pandey. Waveguide to microstrip line transitions for mm-wave applications. https://anilkrpandey.wordpress.com/. [82] Parma, V. Cryostat design. arXiv:1501.07154, 2013. [83] Parris, W. J. Patent US3475757A, 1966. [84] Patrick, M. K., Raffin, P., Huang, Y. D., et al. Publications of the Astronomical Society of the Pacific, 123(900):198–212, 2011. [85] Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. A A, 586(A141):1–17, 2016. [86] Planck Collaboration, Akrami, Y., Ashdown, M., et al. A A, 641(A4):1–74, 2020. [87] Potter, P. D. Microwave J., 6:71–78, 1963. or JPL technical report no.32-354. [88] Pozar, D. M. Microwave engineering, 3rd ed. Wiley, 2005. ISBN: 978-0-471-44878-5. [89] Pérez-Escudero, J. M., Torres-García, A. E., Ramón, G., and Ederra, I. Electronics, 7(10):215, 2018. [90] QUIET Collaboration, Bischoff, C., Brizius, A., Buder, I., et al. The Astrophysical Journal, 768(1):9, 2013. [91] Ragan, G. L. Microwave Transmission Circuits, MIT Rad. lab. Series, vol.9. Mc-Graw Hill, 1948. chap.6, p.401-403. [92] Roshi, D. A., Shillue, W., Simon, B., et al. The Astrophysical Journal, 155(5):202, 2018. [93] Runyan, M. C., Ade, P. A. R., Bhatia, R. S., et al. The Astrophysical Journal Supplement Series, 149(2):265–287, 2003. [94] Samoska, L. IEEE Transactions on Terahertz Science and Technology, 1(1):9–24, 2011. [95] Samoska, L., Deal, W. R., Chattopadhyay, G., et al. IEEE Transactions on Microwave Theory and Techniques, 56(6):1380–1388, 2008. [96] Schneider, M. V., Glance, B., and Bodtmann, W. F. The Bell System Technical Journal, 48(6):1703–1726, 1969. [97] Schrank, H. E. IEEE Antennas and Propagation Society International Symposium, 20:227–230, 1982. [98] Seljak, U. and Zaldarriaga, M. Phys. Rev. Lett., 78(11):2054–2057, 1997. [99] Sieth, M., Devaraj, K., Voll, K., et al. Proc. SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, 9153:219–230, 2014. [100] Simmons, A. J. IRE Transactions on Microwave Theory and Techniques, 3(6):18–21, 1955. [101] Siringo, G., Kreysa1, E., Kovács, A., et al. A A, 497(3):945–962, 2009. [102] Snitzer, E. Journal of the Optical Society of America, 51(5):491–498, 1961. [103] Somasundaram, S., Pillai, A. M., Rajendra, A., and Sharma, A. K. Journal of Alloys and Compounds, 643:263–269, 2015. [104] Su, H. Y., Hu, R., and Wu, C. IEEE Microwave and Wireless Components Letters, 21(9):489–491, 2011. [105] Takashi, H., Masato, S., and Lin, Y. T. Publications of the Astronomical Society of Japan, 72(5):1–23, 2020. [106] Teng, H. F., Wu, J. H., Li, H. H., et al. Proc. SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, 7741:774116–1–12, 2010. [107] Teng, S. F., Zhang, U. H., Chiueh, T. H., et al. IEEE Transactions on Instrumentation and Measurement, 64(2):299–307, 2015. [108] Thome, F., Leuther, A., Gallego, J. D., et al. IEEE MTT-S International Microwave Symposium Digest, pages 1495–1498, 2018. [109] Valenziano, L., Zannoni, M., Mariotti, S., et al. Proc. SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, 9153:857–866, 2012. [110] Verheijen, M. A. W., Oosterloo, T. A., van Cappellen, W. A., et al. AIP Conference Proceedings, 1035:265–271, 2008. [111] Voll, P., Samoska, L., Church, S., et al. International Journal of Microwave and Wireless Technologies, 4(3):283–289, 2012. [112] Wang, L. and Steinhardt, P. L. The Astrophysical Journal, 508(2):483–490, 1998. [113] Weinreb, S., Lai, R., Erickson, N., et al. IEEE MTT-S International Microwave Symposium Digest, 1:101–104, 1999. [114] White, G. K. Experimental techniques in low-temperature physics, 4th ed. Oxford University Press, 1987. ISBN: 978-0-198-51428-2. [115] Wollack, E.J., Grammer, W., and Kingsley, J. ALMA Memo, (425), 2002. [116] Wong, S. K., Li, H. H., Shiao Jerry, Y. S., et al. Proc. SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, 7741:77412T–1–5, 2010. [117] Yagoubov, P., Mroczkowski, T., Belitsky, V., et al. A A, 634(3):A46, 2020 [118] Young, L. and Sobol, H. Advances in Microwaves, Volume 8. Academic Press, 1974. ISBN: 978-1-483-21557-0. [119] Zaman, A. U., Vassilev, V., Zirath, H., and Rorsman, N. IEEE Microwave and Wireless Components Letters, 27(12):1098–1100, 2017. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8133 | - |
dc.description.abstract | 近年因毫米波望遠鏡的接收器靈敏度逐漸接近量子極限,前級接收機的研究以寬頻、廣角、與能觀測天文極化為主。尤其是多像素 (multi-pixel),這種將幾十甚至幾百顆接收器放置在一起以增加接收面積的方法,能大幅加快毫米波望遠鏡的巡天速度。配備多像素接收機的干涉陣列將能同時達成高空間解析度與廣角觀測。因此,我們設計了一座寬頻 (80-116GHz)、能觀測天文極化 (dual-polarization) 的七像素前級接收機。在接收機裡,墊片極化器 (septum polarizer) 的頻寬被提升到了 42\% (77-118 GHz),是以往的兩倍以上。極化器量測顯示其Stokes I/Q Leakage在 2\% 以內,Stokes Q/U Leakage在 1\% 以內。因墊片極化器比正交極化轉換器 (orthomode transducer) 適合觀測線型極化,配備墊片極化器的天文望遠鏡將更具優勢。同時我們也設計了一個有 40 dB 增益的 75-110 GHz 低噪音放大器,以及有 15 dB 隔離度的法拉第隔離器。最後我們針對十九像素接收機及其光學元件做了詳細的熱學計算。此論文討論了建立多像素接收機的各項細節,以為將來毫米波陣列的巡天觀測做準備。 | zh_TW |
dc.description.abstract | While the current detectors in millimeter/sub-millimeter telescopes reach the quantum noise level, wide-band polarization measurement and fast mapping provide advantages. A telescope equipped with multi-pixel feeds directly increases its survey efficiency. We have developed a 7-pixel, coherent, wide-band (80-116 GHz), and polarization-capable front-end receiver, aiming for astrophysical observations. The critical receiver components include the septum polarizer and low noise amplifiers. The septum polarizer reported a 42\% bandwidth without any resonances, at least twice as wide as the previous polarizer's bandwidth. Polarizer measurements show that I to Q/U leakage is below ±2\% and the Q−U mutual leakage is below ±1\%. A single low noise amplifier provides a high gain of 40dB in 75-110GHz. We also estimate the thermal load of the 19-pixel cryostat and the receiver optics. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T00:49:09Z (GMT). No. of bitstreams: 1 U0001-1702202102284800.pdf: 4356036 bytes, checksum: bb0f8437db1a9c8125b389053a499b73 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 口試委員會審定書iii 誌謝v 摘要vii Abstract ix 1 Introduction 1 1.1 Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 SZ-effect Galaxy Cluster Survey . . . . . . . . . . . . . . . . . . 1 1.1.2 CMB Polarization Measurement . . . . . . . . . . . . . . . . . . 2 1.1.3 CO Line and Intensity Mapping . . . . . . . . . . . . . . . . . . 3 1.2 Multi-Pixel Telescopes . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Examples of the Focal Plane Array . . . . . . . . . . . . . . . . 4 1.2.2 Incoherent and Coherent detector . . . . . . . . . . . . . . . . . 5 1.2.3 Phased array and Interferometer array . . . . . . . . . . . . . . . 6 1.2.4 Multi-pixel Interferometer Array . . . . . . . . . . . . . . . . . . 7 1.3 The Front-end Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Instrumental Challenge . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 NTU-Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 7-pixel Front-end Receiver 13 2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Receiver Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Dish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Off-axis Horn in Multi-pixel Optics . . . . . . . . . . . . . . . . 16 2.2.3 Vacuum Window . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.4 IR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.5 Feedhorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.6 Circular Stainless Waveguide . . . . . . . . . . . . . . . . . . . 26 2.3 Septum Polarizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 Septum Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.2 Polarizer Measurement . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.3 Measurement A . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.4 Measurement B . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 LNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.1 LNA Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4.2 Transition Probe Measurement . . . . . . . . . . . . . . . . . . . 40 2.4.3 One-chip LNA Measurement . . . . . . . . . . . . . . . . . . . . 40 2.4.4 Two-chip LNA measurement . . . . . . . . . . . . . . . . . . . . 41 2.5 RF Components after LNA . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.5.1 Waveguide Bend . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.5.2 Stainless Waveguide . . . . . . . . . . . . . . . . . . . . . . . . 46 2.5.3 Faraday rotation Isolator . . . . . . . . . . . . . . . . . . . . . . 48 2.5.4 Faraday Rotation Isolator Measurement . . . . . . . . . . . . . . 49 2.5.5 High-Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.5.6 Waveguide Feed through . . . . . . . . . . . . . . . . . . . . . . 51 2.5.7 Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 Discussion of Critical RF Components 53 3.1 Resonance-Free Septum Polarizer . . . . . . . . . . . . . . . . . . . . . 53 3.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.2 Summary of Historic Review . . . . . . . . . . . . . . . . . . . . 55 3.1.3 Comparison of Septum Polarizer and OMT . . . . . . . . . . . . 56 3.1.4 Polarization Leakage . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.5 Result of Polarization Leakage . . . . . . . . . . . . . . . . . . . 62 3.1.6 Calibration for removing Stokes I . . . . . . . . . . . . . . . . . 65 3.1.7 D-band and G-band Results . . . . . . . . . . . . . . . . . . . . 67 3.2 Discussion of Cryogenic LNA Housing . . . . . . . . . . . . . . . . . . 71 3.2.1 Comparison of Amplifiers and Bolometers . . . . . . . . . . . . 71 3.2.2 Waveguide to Microstrip line Transition . . . . . . . . . . . . . . 73 3.2.3 Simulation of Transition Probes . . . . . . . . . . . . . . . . . . 75 3.2.4 Silver adhesives . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.5 Impedance of Wire bonds . . . . . . . . . . . . . . . . . . . . . 77 3.2.6 Simulation of Bond Wires . . . . . . . . . . . . . . . . . . . . . 78 3.2.7 Cryogenic LNA Housing for Receivers . . . . . . . . . . . . . . 80 3.3 Development of Faraday Rotation Isolator . . . . . . . . . . . . . . . . . 80 3.3.1 Introduction to Faraday Rotation . . . . . . . . . . . . . . . . . . 80 3.3.2 Dielectric components . . . . . . . . . . . . . . . . . . . . . . . 82 3.3.3 Higher-mode suppression . . . . . . . . . . . . . . . . . . . . . 83 3.3.4 Simulation of Faraday Rotation Isolator . . . . . . . . . . . . . . 84 3.3.5 Electrical property at Cryogenic temperature . . . . . . . . . . . 85 4 Cryogenic 87 4.1 Introduction to Receiver Cryostat . . . . . . . . . . . . . . . . . . . . . . 87 4.2 Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2.2 Thermal Conduction through Solids . . . . . . . . . . . . . . . . 90 4.2.3 Thermal Radiation . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2.4 Heat Transfer in other ways . . . . . . . . . . . . . . . . . . . . 92 4.3 Thermal Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.3.1 Thermal load of the First Stage . . . . . . . . . . . . . . . . . . . 93 4.3.2 Thermal load of the Second Stage . . . . . . . . . . . . . . . . . 97 4.3.3 Discussion of the Thermal Load . . . . . . . . . . . . . . . . . . 99 5 Conclusion 101 A Polarization Leakage 103 B Adhesives operation 107 Bibliography 109 | |
dc.language.iso | en | |
dc.title | 台大陣列七像素毫米波致冷接收機 | zh_TW |
dc.title | A 7-pixel 80-116 GHz Cryogenic Front-end Receiver for NTU-Array | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王明杰(Ming-Jye Wang),朱國瑞(Kwo-Ray Chu),胡樹(Robert Hu),賴詩萍(Shih-Ping Lai) | |
dc.subject.keyword | 接收機,天文儀器,毫米波,干涉陣列,多像素,天文極化觀測,低溫物理,低噪音放大器, | zh_TW |
dc.subject.keyword | Front-end receiver,Instrumentation,Millimeter wave,Interferometry array,Multi-pixel,Polarimeters,Cryogenics,Low noise anplifier, | en |
dc.relation.page | 118 | |
dc.identifier.doi | 10.6342/NTU202100711 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2021-02-17 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1702202102284800.pdf | 4.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。