請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8132
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王聖耀(Sheng-Yao Wang) | |
dc.contributor.author | Nian-Yao Zheng | en |
dc.contributor.author | 鄭年堯 | zh_TW |
dc.date.accessioned | 2021-05-20T00:49:09Z | - |
dc.date.available | 2021-08-31 | |
dc.date.available | 2021-05-20T00:49:09Z | - |
dc.date.copyright | 2020-08-24 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-19 | |
dc.identifier.citation | 田金平, 林阿洋 廖俊亨. 2000. 市售雞蛋, 鴨蛋及皮蛋重金屬 (鉛, 銅) 含量調查. 藥物食品檢驗局調查研究年報, 180-186. Acton, J. Dick, R. 1984. Protein-protein interaction in processed meats. Reciprocal Meat Conference Proceedings. Ahmed, J., Ramaswamy, H. S., Alli, I. Raghavan, V. G. 2007. Protein denaturation, rheology, and gelation characteristics of radio-frequency heated egg white dispersions. International Journal of Food Properties, 10, 145-161. Ai, M., Zhou, Q., Guo, S., Ling, Z., Zhou, L., Fan, H., Cao, Y. Jiang, A. 2019. Effects of tea polyphenol and Ca(OH)2 on the intermolecular forces and mechanical, rheological, and microstructural characteristics of duck egg white gel. Food Hydrocolloids, 94, 11-19. Ai, M., Zhou, Q., Guo, S., Fan, H., Cao, Y., Ling, Z., Zhou, L. Jiang, A. 2020a. Characteristics of intermolecular forces, physicochemical, textural and microstructural properties of preserved egg white with Ca (OH)2 addition. Food Chemistry, 314, 126206. Ai, M., Zhou, Q., Xiao, N., Guo, S., Cao, Y., Fan, H., Ling, Z., Zhou, L., Li, S., Long, J. Jiang, A. 2020b. Enhancement of gel characteristics of NaOH-induced duck egg white gel by adding Ca(OH)2 with/without heating. Food Hydrocolloids, 103:105654. Aktaş, N. Genccelep, H. 2006. Effect of starch type and its modifications on physicochemical properties of bologna-type sausage produced with sheep tail fat. Meat Science, 74, 404-408. Alleoni, A. C. C. 2006. Albumen protein and functional properties of gelation and foaming. Scientia Agricola, 63, 291-298. Almeida, C. M., Wagner, R., Mascarin, L. G., Zepka, L. Q. Campagnol, P. C. B. 2014. Production of low‐fat emulsified cooked sausages using amorphous cellulose gel. Journal of Food Quality, 37, 437-443. Andersson, A., Andersson, K. Tornberg, E. 2000. A comparison of fat‐holding between beefburgers and emulsion sausages. Journal of the Science of Food and Agriculture, 80, 555-560. Bader, R. Henneker, W. 1965. The ionic bond. Journal of the American Chemical Society, 87, 3063-3068. Badii, F. Howell, N. K. 2006. Fish gelatin: structure, gelling properties and interaction with egg albumen proteins. Food Hydrocolloids, 20, 630-640. Barbut, S. Mittal, G. 1989. Effects of salt reduction on the rheological and gelation properties of beef, pork and poultry meat batters. Meat science, 26, 177-191. Beveridge, T. Arntfield, S. 1979. Heat induced changes in sulphydryl levels in egg white. Canadian Institute of Food Science and Technology Journal, 12, 173-176. Casco, G., Veluz, G. Alvarado, C. 2013. SavorPhos as an all-natural phosphate replacer in water-and oil-based marinades for rotisserie birds and boneless-skinless breast. Poultry Science, 92, 3236-3243. Castro-Giráldez, M., Fito, P. J., Toldrá, F. Fito, P. 2010. Physical sensors for quality control during processing. Handbook of Meat Processing. Wiley-Blackwell, Oxford, 443-456. Chen, Z., Li, J., Tu, Y., Zhao, Y., Luo, X., Wang, J. Wang, M. 2015. Changes in gel characteristics of egg white under strong alkali treatment. Food Hydrocolloids, 45, 1-8. Cho, M. G., Bae, S. M. Jeong, J. Y. 2017. Egg shell and oyster shell powder as alternatives for synthetic phosphate: Effects on the quality of cooked ground pork products. Korean Journal for Food Science of Animal Resources, 37, 571. Choi, J.-H., Jeong, J.-Y., Han, D.-J., Choi, Y.-S., Kim, H.-Y., Lee, M.-A., Lee, E.-S., Paik, H.-D. Kim, C.-J. 2008. Effects of pork/beef levels and various casings on quality properties of semi-dried jerky. Meat Science, 80, 278-286. Clark, A. 1992. Gels and gelling. Physical Chemistry of Foods, 7, 263-305. DeMan, J. M. Melnychyn, P. 1971. Symposium: Phosphates in Food Processing, University of Guelph, Ontario, Canada, 1970. Symposium on Phosphates in Food Processing (1970: University of Guelph). Conn., Avi. Devine, C. Dikeman, M. 2014. Encyclopedia of Meat Sciences. Elsevier. Foegeding, E. Ramsey, S. 1987. Rheological and water‐holding properties of gelled meat batters containing iota carrageenan, kappa carrageenan or xanthan gum. Journal of Food Science, 52, 549-553. Foegeding, E. A. 2006. Food biophysics of protein gels: A challenge of nano and macroscopic proportions. Food Biophysics, 1, 41-50. Froning, G. Neelakantan, S. 1971. Emulsifying characteristics of prerigor and postrigor poultry muscle. Poultry Science, 50, 839-845. FUKAZAWA, T., HASHIMOTO, Y. YASUI, T. 1961. The Relationship Between the Components of Myofibrillar Protein and the Effect of Various Phosphates that Influence the Binding Quality of Sausage a, b. Journal of Food Science, 26, 550-555. Fuxin, Z. 2004. Changes of Alkalinity during Preserved Chicken Egg Processing [J]. Food and Fermentation Industries, 10. Ganasen, P. Benjakul, S. 2011a. Chemical composition, physical properties and microstructure of pidan white as affected by different divalent and monovalent cations. Journal of Food Biochemistry, 35, 1528-1537. Ganasen, P. Benjakul, S. 2011b. Effect of three cations on the stability and microstructure of protein aggregate from duck egg white under alkaline condition. Food Sci Technol Int, 17, 343-9. Ganesan, P., Benjakul, S. Baharin, B. S. 2014. Maillard Reaction of Pidan White as Inhibited by Chinese Black Tea Extract (Camellia sinensis) in the Pickling Solution. Korean J Food Sci Anim Resour, 34, 403-7. García-García, E. Totosaus, A. 2008. Low-fat sodium-reduced sausages: Effect of the interaction between locust bean gum, potato starch and κ-carrageenan by a mixture design approach. Meat Science, 78, 406-413. Gharbi, N. Labbafi, M. 2018. Effect of processing on aggregation mechanism of egg white proteins. Food Chemistry, 252, 126-133. Giansanti, F., Leboffe, L., Pitari, G., Ippoliti, R. Antonini, G. 2012. Physiological roles of ovotransferrin. Biochim Biophys Acta, 1820, 218-225. Gomez-Guillen, M., Borderı́as, A. Montero, P. 1997. Chemical interactions of nonmuscle proteins in the network of sardine (Sardina pilchardus) muscle gels. LWT-Food Science and Technology, 30, 602-608. Gu, B., Zhang, F., Wang, Z. Zhou, H. 2008. The solvation of NaCl in model water with different hydrogen bond strength. The Journal of Chemical Physics, 129, 184505. Handa, A., Takahashi, K., Kuroda, N. FRONING, G. W. 1998. Heat‐induced egg white gels as affected by pH. Journal of Food Science, 63, 403-407. Heertje, I. 2014. Structure and function of food products: A review. Food structure, 1, 3-23. Hiidenhovi, J. 2007. Ovomucin. Bioactive egg compounds. Springer. 61-68. Hong, G. P., Lee, S. Min, S. G. 2004. Effects of substituted level of added water for fat on the quality characteristics of spreadable liver sausage. Food Science and Biotechnology, 13, 397-402. Huang, J., and C. Lin. 2011. Production, composition, and quality of duck eggs, Improving the safety and quality of eggs and egg products. Elsevier. 487-508. Huang, X., Li, J., Chang, C., Gu, L., Su, Y. Yang, Y. 2019. Effects of NaOH/NaCl pickling on heat-induced gelation behaviour of egg white. Food Chemistry, 297, 124939. Iwashita, K., Handa, A. Shiraki, K. 2017. Co-aggregation of ovalbumin and lysozyme. Food Hydrocolloids, 67, 206-215. Jastrzębska, A. 2006. Determination of sodium tripolyphosphate in meat samples by capillary zone electrophoresis with on-line isotachophoretic sample pre-treatment. Talanta, 69, 1018-1024. Jeong, J. Y. 2018. Determining the optimal level of natural calcium powders and whey protein concentrate blends as phosphate replacers in cooked ground pork products. Korean Journal for Food Science of Animal Resources, 38, 1246. Ji, L., Liu, H., Cao, C., Liu, P., Wang, H. Wang, H. 2013. Chemical and structural changes in preserved white egg during pickled by vacuum technology. Food Science and Technology International, 19, 123-131. Kao, W. Lin, K. 2006. Quality of Reduced‐Fat Frankfurter Modified by Konjac–Starch Mixed Gels. Journal of Food Science, 71, S326-S332. Kitabatake, N., Hatta, H. Doi, E. 1987. Heat-induced and transparent gel prepared from hen egg ovalbumin in the presence of salt by a two-step heating method. Agricultural and Biological Chemistry, 51, 771-778. Kleemann, C., Selmer, I., Smirnova, I. Kulozik, U. 2018. Tailor made protein based aerogel particles from egg white protein, whey protein isolate and sodium caseinate: Influence of the preceding hydrogel characteristics. Food Hydrocolloids, 83, 365-374. Knipe, C., Olson, D. Rust, R. 1985. Effects of sodium hydroxide and selected inorganic phosphates on the characteristics of reduced sodium meat emulsions. Journal of Food Science, 50, 1017-1020. Li, J., Zhang, Y., Fan, Q., Teng, C., Xie, W., Shi, Y., Su, Y. Yang, Y. 2018. Combination effects of NaOH and NaCl on the rheology and gel characteristics of hen egg white proteins. Food Chemistry, 250, 1-6. Manuszak, M. A., Borish, E. T. Wickett, R. R. 1996. The kinetics of disulfide bond reduction in hair by ammonium thioglycolate and dithiodiglycolic acid. Journal of the Society of Cosmetic Chemists, 47, 49. Matsuda, T., Watanabe, K. Sato, Y. 1982. Interaction between ovomucoid and lysozyme. Journal of Food Science, 47, 637-641. Matsudomi, N., K. Nakano, A. Soma, and A. Ochi. 2002. Improvement of gel properties of dried egg white by modification with galactomannan through the Maillard reaction. Journal of Agricultural and Food Chemistry 50(14):4113-4118. Matsudomi, N., Oka, H. Sonoda, M. 2002b. Inhibition against heat coagulation of ovotransferrin by ovalbumin in relation to its molecular structure. Food Research International, 35, 821-827. Mine, Y. 2008. Egg Bioscience and Biotechnology. John Wiley Sons. Nasabi, M., Labbafi, M., Mousavi, M. E. Madadlou, A. 2017. Effect of salts and nonionic surfactants on thermal characteristics of egg white proteins. International Journal of Biological Macromolecules, 102, 970-976. Nunez de Gonzalez, M., Boleman, R., Miller, R., Keeton, J. Rhee, K. 2008. Antioxidant properties of dried plum ingredients in raw and precooked pork sausage. Journal of Food Science, 73, H63-H71. Offer, G. Trinick, J. 1983. On the mechanism of water holding in meat: the swelling and shrinking of myofibrils. Meat Science, 8, 245-281. Öztürk, B. Serdaroğlu, M. 2018. Effects of jerusalem artichoke powder and sodium carbonate as phosphate replacers on the quality characteristics of emulsified chicken meatballs. Korean Journal for Food Science of Animal Resources, 38, 26-42. Pérez-Mateos, M., Lourenço, H., Montero, P. Borderías, A. J. 1997. Rheological and biochemical characteristics of high-pressure-and heat-induced gels from blue whiting (Micromesistius poutassou) muscle proteins. Journal of Agricultural and Food Chemistry, 45, 44-49. Park, K.-S., Choi, Y.-I., Lee, S.-H., Kim, C.-H. Auh, J.-H. 2008. Application of functional carbohydrates as a substitute for inorganic polyphosphate in pork meat processing. Korean Journal of Food Science and Technology, 40, 118-121. Powell, M. J., Sebranek, J. G., Prusa, K. J. Tarté, R. 2019. Evaluation of citrus fiber as a natural replacer of sodium phosphate in alternatively-cured all-pork Bologna sausage. Meat Science, 157, 107883. Rhee, K. Ziprin, Y. 2001. Pro-oxidative effects of NaCl in microbial growth-controlled and uncontrolled beef and chicken. Meat Science, 57, 105-112. Saffle, R. L. Galbreath, J. 1964. Quantitative determination of salt-soluble protein in various types of meat. Food Technology, 18, 1943-1944. Sagis, L. M., Veerman, C., Ganzevles, R., Ramaekers, M., Bolder, S. G. van der Linden, E. 2002. Mesoscopic structure and viscoelastic properties of β-lactoglobulin gels at low pH and low ionic strength. Food Hydrocolloids, 16, 207-213. Santhi, D., Kalaikannan, A. Sureshkumar, S. 2017. Factors influencing meat emulsion properties and product texture: A review. Critical Reviews in Food Science and Nutrition, 57, 2021-2027. Shand, P. 2000. Textural, water holding, and sensory properties of low‐fat pork bologna with normal or waxy starch hull‐less barley. Journal of Food Science, 65, 101-107. Steiner, T. 2002. The hydrogen bond in the solid state. Angewandte Chemie International Edition, 41, 48-76. Stone, A. Stanley, D. 1994. Muscle protein gelation at low ionic strength. Food Research International, 27, 155-163. Su, H. P. Lin, C. W. 1993. A new process for preparing transparent alkalised duck egg and its quality. Journal of the Science of Food and Agriculture, 61, 117-120. Su, Y., Dong, Y., Niu, F., Wang, C., Liu, Y. Yang, Y. 2015. Study on the gel properties and secondary structure of soybean protein isolate/egg white composite gels. European Food Research and Technology, 240, 367-378. Tani, F., Murata, M., Higasa, T., Goto, M., Kitabatake, N. Doi, E. 1993. Heat-induced transparent gel from hen egg lysozyme by a two-step heating method. Bioscience, Biotechnology, and Biochemistry, 57, 209-214. Totosaus, A., Montejano, J. G., Salazar, J. A. Guerrero, I. 2002. A review of physical and chemical protein‐gel induction. International Journal of Food Science Technology, 37, 589-601. Trout, G. Schmidt, G. 1983. Utilization of phosphates in meat products. Tu, Y.-g., Zhao, Y., Xu, M.-s., Li, X. Du, H.-y. 2013. Simultaneous determination of 20 inorganic elements in preserved egg prepared with different metal ions by ICP-AES. Food Analytical Methods, 6, 667-676. Van der Plancken, I., Van Loey, A. Hendrickx, M. E. 2005. Changes in sulfhydryl content of egg white proteins due to heat and pressure treatment. Journal of Agricultural and Food Chemistry, 53, 5726-5733. Vasanthi, C., Venkataramanujam, V. Dushyanthan, K. 2007. Effect of cooking temperature and time on the physico-chemical, histological and sensory properties of female carabeef (buffalo) meat. Meat Science, 76, 274-280. Veerman, C., Sagis, L. M., Heck, J. van der Linden, E. 2003. Mesostructure of fibrillar bovine serum albumin gels. International Journal of Biological Macromolecules, 31, 139-146. Von Hippel, P. H. Schleich, T. 1969. Ion effects on the solution structure of biological macromolecules. Accounts of Chemical Research, 2, 257-265. Wang, J. Fung, D. Y. 1996. Alkaline-fermented foods: a review with emphasis on pidan fermentation. Crit Rev Microbiol, 22, 101-138. Wee, M. S. M., Goh, A. T., Stieger, M. Forde, C. G. 2018. Correlation of instrumental texture properties from textural profile analysis (TPA) with eating behaviours and macronutrient composition for a wide range of solid foods. Food Function, 9, 5301-5312. Weijers, M., van de Velde, F., Stijnman, A., van de Pijpekamp, A. Visschers, R. W. 2006. Structure and rheological properties of acid-induced egg white protein gels. Food Hydrocolloids, 20, 146-159. Woodward, S. Cotterill, O. 1986. Texture and microstructure of heat‐formed egg white gels. Journal of Food Science, 51, 333-339. Yarnpakdee, S., Benjakul, S., Visessanguan, W. Kijroongrojana, K. 2009. Thermal properties and heat-induced aggregation of natural actomyosin extracted from goatfish (Mulloidichthys martinicus) muscle as influenced by iced storage. Food Hydrocolloids, 23, 1779-1784. Yang, Y., Zhao, Y., Tu, Y., Huang, X., Li, J., Luo, X. Wang, J. 2012. Change of alkalinity, pH and texture properties during pidan pickling. Sci. Tech. Food Ind.(Chinese), 33, 111-114. Yano, Y. F. 2012. Kinetics of protein unfolding at interfaces. J Phys Condens Matter, 24, 503101. Yapar, A., Atay, S., Kayacier, A. Yetim, H. 2006. Effects of different levels of salt and phosphate on some emulsion attributes of the common carp (Cyprinus carpio L., 1758). Food Hydrocolloids, 20, 825-830. Yoo, S.-S., Kook, S.-H., Park, S.-Y., Shim, J. H. Chin, K.-B. 2005. Evaluation of curing and flavor ingredients, and different cooking methods on the product quality and flavor compounds of low-fat sausages. Food Science and Biotechnology, 14, 634. Youssef, M. Barbut, S. 2011. Fat reduction in comminuted meat products-effects of beef fat, regular and pre-emulsified canola oil. Meat Science, 87, 356-360. Yuno-Ohta, N., Kato, T., Ashizawa, S., Kimura, Y., Maruyama, N. Nishizu, T. 2016. Role of ovomucoid in the gelation of a β-lactoglobulin-ovomucoid mixture. Colloid and Polymer Science, 294, 1065-1073. Zhang, X., Jiang, A., Chen, M., Ockerman, H. W. Chen, J. 2015. Effect of different alkali treatments on the chemical composition, physical properties, and microstructure of pidan white. Journal of Food Science and Technology, 52, 2264-2271. Zhao, W., Yang, R., Tang, Y., Zhang, W. Hua, X. 2009. Investigation of the protein− protein aggregation of egg white proteins under pulsed electric fields. Journal of Agricultural and Food Chemistry, 57, 3571-3577. Zhao, Y., Cao, D., Shao, Y., Xiong, C., Li, J. Tu, Y. 2020. Changes in physico-chemical properties, microstructures, molecular forces and gastric digestive properties of preserved egg white during pickling with the regulation of different metal compounds. Food Hydrocolloids, 98, 105281. Zhao, Y., Chen, Z., Li, J., Xu, M., Shao, Y. Tu, Y. 2016a. Changes of microstructure characteristics and intermolecular interactions of preserved egg white gel during pickling. Food Chemistry, 203, 323-330. Zhao, Y., Chen, Z., Li, J., Xu, M., Shao, Y. Tu, Y. 2016b. Formation mechanism of ovalbumin gel induced by alkali. Food Hydrocolloids, 61, 390-398. Zhao, Y., Tu, Y., Li, J., Xu, M., Yang, Y., Nie, X., Yao, Y. Du, H. 2014a. Effects of alkaline concentration, temperature, and additives on the strength of alkaline-induced egg white gel. Poult Science, 93, 2628-2635. Zhao, Y., Tu, Y., Xu, M., Li, J. Du, H. 2014b. Physicochemical and nutritional characteristics of preserved duck egg white. Poultry Science, 93, 3130-3137. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8132 | - |
dc.description.abstract | 本研究利用鴨蛋白鹼性凝膠機制,製作類似皮蛋蛋白具彈性之半透明膠體以增加其保存性與利用性,藉此提升鴨蛋白之附加價值與多元應用。近年來研究指出蛋白鹼性凝膠在強鹼持續作用下會導致膠體結構不穩定,因此如何縮短鹼性凝膠時間又能保持蛋白膠體安定性與加工應用性乃本研究之目的。 為建立分離鴨蛋白鹼性凝膠之穩定條件,本試驗首先以不同濃度之氫氧化鈉溶液與鴨蛋白製成凝膠,透過黏度變化來確立膠體形成時間,另外觀察反應時間對於膠體強度之影響,以評估最適氫氧化鈉濃度,結果顯示含0.125 M以下氫氧化鈉之混合蛋白液不易形成凝膠,然而超過0.175 M氫氧化鈉之混合蛋白液,其膠體強度會隨反應時間延長而顯著減弱(p < 0.05),並產生液化現象。藉由上述試驗篩選出適當氫氧化鈉濃度(0.15 M),並利用掃描式電子顯微鏡、膠體蛋白質硫醇基與雙硫鍵含量分析,以確認不同反應溫度處理之膠體結構與理化性質差異,結果顯示反應溫度超過25°C能夠顯著提高鴨蛋白凝膠速度(p < 0.05),但高於35°C時則會導致膠體不穩定甚至液化,再者,經實驗發現膠體形成後保存於15°C以下能有效延緩液化之進程。進一步探討鹼性凝膠於加工食品之應用性,關於第二部分將針對其熱安定性進行評估,採用前述條件製備之膠體,於60-100°C水浴中加熱10分鐘後分析其色澤、安定性與理化特性,其中膠體強度會隨著加熱溫度的提高而顯著下降(p < 0.05);若與市售皮蛋蛋白進行比較,則發現當膠體經加熱處理後並不會顯著提升游離鹼之濃度,推測膠體受熱後仍可保持膠體穩定性及鹼性成分釋出。因此分離鴨蛋白透過上述試驗條件處理後,能夠快速穩定形成凝膠且經高溫處理後仍具安定性,頗具加工應用之潛力。本研究第三部分將評估鴨蛋白鹼性凝膠應用於肉製品之可行性,由於鴨蛋白鹼性凝膠本身富彈性、水合效果佳且具較高pH值,對於乳化型肉製品之質地與保水性提升應具有正面效果,結果顯示額外添加3%鴨蛋白鹼性凝膠不但可以減少磷酸鹽使用量、提高乳化型肉製品之保水性與彈性(p < 0.05),並且可以增加產品接受度。 綜上所述,透過本研究建立鹼濃度與溫度條件可將分離鴨蛋白快速製備出膠體穩定、具彈性與熱安定性之鹼性凝膠,除了類似皮蛋蛋白可應用於熱食並可添加於乳化型肉製品,製作出特殊質地與風味之新型態產品,以提高鴨蛋白之利用性。 | zh_TW |
dc.description.abstract | The alkali treatment is the alternative and practical processing method for creating transparent and elastic protein gels, and it is beneficial to increase added value and usage diversities of separated duck egg white in Taiwan. Recent researches indicated that excess sodium hydroxide (NaOH) causes congealed egg white gel to liquefy. Thus, the purpose of this study was to prepare stable alkali-induced egg white gel efficiently and evaluate its application on meat product. First, the suitable gelation time was determined with different concentrations of NaOH solution mixing with duck egg white. Besides, we investigated the effects of reaction time on gel strength to decide the optimal NaOH concentration. Results indicated that the low-concentration-NaOH environment is unsuitable for gel formation. By contrast, the high-concentration-NaOH one rapidly increased the bloom strength of the duck egg white gel. As a result, 0.15 M NaOH in duck egg white solution was the optimal concentration to form the most stable egg white gels. In this study, reaction as well as storage temperature, rheological properties analysis, bloom strength test, thiol and disulfide bond content, and scanning-electron-microscope (SEM) were assayed. According to current results, it revealed that reaction temperature higher than 25°C could significantly increase the rate of gelation (p <0.05) during the gelation process; however, the temperature higher than 35°C would lead to instability or liquefaction. Moreover, the storage temperature of the gel below 15°C could prevent liquefaction effectively. In the second part of this study, through the thermal stability test, the results showed that the gel strength decrease significantly with the raising heating temperature (p <0.05), but the free alkalinity of prepared duck egg white gel was considerably lower than the commercial preserved egg white. Therefore, it showed that the alkali-induced duck egg white gel could remain stable after heating, which indicates its potential for further processed applications. Alkali-induced duck egg white gel was elastic, high pH value, and superior hydration. The texture and water-holding capacity of emulsified meat products were improved by adding alkaline duck egg white, which attributed to the characteristics as mentioned above. Therefore, it suggested that the optimal added amount is 3% alkaline gel with a 50% phosphate reduction. In conclusion, the optimal NaOH concentration and reaction and storage temperature conditions for prepared stable alkali-induced duck egg white gel were determined, and this product could also improve the taste and water holding capacity of emulsified meat products effectively. Overall, the application of alkaline-induced duck egg white gel on emulsified meat products or other food might be available and promising. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T00:49:09Z (GMT). No. of bitstreams: 1 U0001-1808202015125800.pdf: 6082399 bytes, checksum: 3259cde40aa80e4f62b941484a14ac3b (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 目錄 中文摘要 1 英文摘要 3 壹、前言 5 貳、文獻探討 6 一、蛋白之特性 6 二、鴨蛋白之蛋白質 8 (一)卵白蛋白(ovalbumin) 8 (二)類卵黏蛋白(ovomucoid) 11 (三)卵黏蛋白(ovomucin) 11 (四)卵運鐵蛋白(ovotransferrin) 11 (五)溶菌酶(lysozyme) 12 三、分離鴨蛋白之凝膠特性探討 14 (一)鴨蛋白凝膠與形成機制特性 14 四、鴨蛋白鹼性凝膠機制之探討 15 (一) 鹼性凝膠機制 15 (二) 現有鹼處理加工蛋品-皮蛋 16 五、構成鹼性蛋白凝膠之作用力 18 (一) 離子鍵(ionic bond) 18 (二) 氫鍵(hydrogen bond) 19 (三) 疏水交互作用(hydrophobic interactions) 19 (四) 雙硫鍵(disulfide bond) 19 (五) 醇基-雙硫鍵交換(thiol-disulfide exchange) 20 六、影響鹼性蛋白凝膠結構及安定性之因子 21 (一) 鹼性溶液種類 21 (二) 鹼性溶液濃度 22 (三) 鹼處理作用時間 22 (四) 溫度 23 (五) 離子強度(ionic strength) 23 (六) 重金屬 25 七、鹼性蛋白凝膠之熱穩定性 27 八、鴨蛋白鹼性凝膠應用至乳化型肉製品(emulsified meat product) 29 (一) 乳化(emulsion) 29 (二) 鹽溶性蛋白質(salt-soluble protein) 29 (三) 脂肪(fat) 30 (四) 現有之乳化型肉製品 30 九、保水性(water holding capacity) 31 (一) pH值對肉製品保水性之影響 31 (二) 加熱處理對保水性的影響 31 (三) 磷酸鹽對肉製品保水性之影響 32 (四) 食鹽對肉製品保水性之影響 32 十、鹼性凝膠應用於乳化型肉製品之探討 33 (一) 磷酸鹽類替代物對於乳化肉漿之pH值、水分含量與保水力之影響. ..……………………………………………………………………….33 (二) 磷酸鹽類替代物對於乳化肉漿流變性之影響 33 (三) 磷酸鹽類替代物對於乳化型肉製品質地特性之影響 34 參、材料與方法 35 一、實驗流程 35 二、實驗材料 36 三、鴨蛋蛋白鹼性凝膠穩定性之條件建立 36 (一) 分離鴨蛋白鹼性凝膠製備 36 (二) 鴨蛋白鹼性凝膠之穩定性條件試驗 36 (三) 凝膠前黏度變化分析 37 (四) 凝膠前流變性分析 37 (五) 鴨蛋白鹼性凝膠之膠體強度(bloom strength)測定 38 (六) 掃描式電子顯微鏡 39 (七) 硫醇基與雙硫鍵含量測定 39 (八) 蛋白質定量 40 (九) 聚丙烯醯胺電泳法(sodium dodecyl sulphate polyacrylamide gel electrophoresis; SDS-PAGE) 40 四、鴨蛋白鹼性凝膠之熱安定性之評估 43 (一) 加熱後鴨蛋白鹼性凝膠之膠體強度測定 43 (二) 加熱後鴨蛋白鹼性凝膠之雙硫鍵含量測定 43 (三) 加熱後鴨蛋白鹼性凝膠之游離鹼度測定 44 (四) 加熱後鴨蛋白鹼性凝膠之色澤測定 45 (五) 加熱後鴨蛋白鹼性凝膠之顯微構造 46 五、鴨蛋白鹼性凝膠應用製乳化型肉製品之評估 47 (一) 添加鴨蛋白鹼性凝膠之肉漿黏度分析 49 (二) 添加鴨蛋白鹼性凝膠之肉漿pH值分析 49 (三) 乳化型肉製品(熱狗)之水分含量 49 (四) 乳化型肉製品(熱狗)之烹煮損失(cooking loss) 50 (五) 乳化型肉製品(熱狗)之centrifugation loss 50 (六) 乳化型肉製品(熱狗)之purge loss 50 (七) 乳化型肉製品(熱狗)之質地分析(texture profile analysis) 51 (八) 乳化型肉製品(熱狗)之色澤分析 53 (九) 官能品評 53 八、統計分析 55 肆、結果與討論 56 一、分離鴨蛋白鹼性凝膠製作與凝膠條件確立 56 (一) 氫氧化鈉濃度對於分離鴨蛋白液黏度與凝膠時間之影響 56 (二) 氫氧化鈉濃度對於鹼性蛋白凝膠膠體特性之影響 58 (三) 溫度對鹼性蛋白凝膠形成過程之流變性影響 60 (四) 不同溫度對於鹼性蛋白凝膠內部硫醇基與雙硫鍵含量之影響 61 (五) 不同溫度對蛋白凝膠之膠體強度影響 62 (六) 鹼性蛋白凝膠之蛋白質電泳分析 63 二、評估鴨蛋白鹼性凝膠熱之安定性 78 (一) 加熱處理對鴨蛋白鹼性凝膠膠體強度與外觀之影響 78 (二) 加熱處理對鴨蛋白鹼性凝膠之色澤影響 79 (三) 加熱處理對鴨蛋白鹼性凝膠存在雙硫鍵含量之影響 80 (四) 加熱處理對於鴨蛋白鹼性凝膠游離鹼度之影響 80 (五) 加熱處理對於鴨蛋白鹼性凝膠顯微構造之影響 81 三、應用於乳化型肉製品(熱狗) 88 (一) 鹼性蛋白凝膠對於乳化肉漿之pH值之影響 88 (二) 鹼性蛋白凝膠對於乳化肉漿黏度之影響 89 (三) 鹼性蛋白凝膠添加對於乳化型肉製品質地特性之影響 89 (四) 鹼性蛋白凝膠對新型態乳化型肉製品保水力之影響 90 (五) 聚合磷酸鹽與鹼性蛋白凝膠添加量對乳化肉漿與成品色澤之影響………………………………………………………………………......91 (六) 新型態乳化型肉製品之官能品評結果 92 伍、結論 102 陸、參考文獻 103 柒、附錄 117 | |
dc.language.iso | zh-TW | |
dc.title | 探討分離鴨蛋白鹼性凝膠之穩定性及其應用 | zh_TW |
dc.title | Studies on stability of alkali-induced duck egg white gel and its application | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳億乘(Yi-Chen Chen) | |
dc.contributor.oralexamcommittee | 劉嚞睿(Je-Ruei Liu),李滋泰(Tzu-Tai Lee),陳彥伯 (Yen-Po Chen) | |
dc.subject.keyword | 鴨蛋蛋白,鹼性凝膠,乳化型肉製品, | zh_TW |
dc.subject.keyword | duck egg white,alkali-induced gel,emulsified meat products, | en |
dc.relation.page | 117 | |
dc.identifier.doi | 10.6342/NTU202003982 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2020-08-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1808202015125800.pdf | 5.94 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。