請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81329完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳章甫(Chang-Fu Wu) | |
| dc.contributor.author | Cheuk Wai Yip | en |
| dc.contributor.author | 葉卓衛 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:43:32Z | - |
| dc.date.available | 2021-07-20 | |
| dc.date.available | 2022-11-24T03:43:32Z | - |
| dc.date.copyright | 2021-07-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-19 | |
| dc.identifier.citation | 1.Abdi, H., Williams, L. J. (2010). Principal component analysis. WIREs Computational Statistics, 2(4), 433-459. doi:https://doi.org/10.1002/wics.101 2.Aryal, A., Harmon, A. C., Dugas, T. R. (2021). Particulate matter air pollutants and cardiovascular disease: Strategies for intervention. Pharmacology Therapeutics, 223, 107890. doi:https://doi.org/10.1016/j.pharmthera.2021.107890 3.Baccarelli, A., Martinelli, I., Zanobetti, A., Grillo, P., Hou, L. F., Bertazzi, P. A., . . . Schwartz, J. (2008). Exposure to particulate air pollution and risk of deep vein thrombosis. Arch Intern Med, 168(9), 920-927. doi:10.1001/archinte.168.9.920 4.Bai, H., Zheng, Z., Zhang, Y., Huang, H., Wang, L. (2021). Comparison of Satellite-based PM2.5 Estimation from Aerosol Optical Depth and Top-of-atmosphere Reflectance. Aerosol and Air Quality Research, 21(2), 200257. doi:10.4209/aaqr.2020.05.0257 5.Barnett, A. G., Williams, G. M., Schwartz, J., Best Trudi, L., Neller Anne, H., Petroeschevsky, A. L., Simpson, R. W. (2006). The Effects of Air Pollution on Hospitalizations for Cardiovascular Disease in Elderly People in Australian and New Zealand Cities. Environmental Health Perspectives, 114(7), 1018-1023. doi:10.1289/ehp.8674 6.Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., . . . Yoshida, R. (2016). An Introduction to Himawari-8/9 - Japan's New-Generation Geostationary Meteorological Satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2), 151-183. doi:10.2151/jmsj.2016-009 7.Birmili, W., Allen, A. G., Bary, F., Harrison, R. M. (2006). Trace Metal Concentrations and Water Solubility in Size-Fractionated Atmospheric Particles and Influence of Road Traffic. Environmental Science Technology, 40(4), 1144-1153. doi:10.1021/es0486925 8.Brokamp, C., Jandarov, R., Rao, M. B., LeMasters, G., Ryan, P. (2017). Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmospheric Environment, 151, 1-11. doi:https://doi.org/10.1016/j.atmosenv.2016.11.066 9.Cakmak, S., Dales, R., Kauri, L. M., Mahmud, M., Van Ryswyk, K., Vanos, J., . . . Weichenthal, S. (2014). Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology. Environmental Pollution, 189, 208-214. doi:https://doi.org/10.1016/j.envpol.2014.03.004 10.Chan, C.-C., Chuang, K.-J., Chen, W.-J., Chang, W.-T., Lee, C.-T., Peng, C.-M. (2008). Increasing cardiopulmonary emergency visits by long-range transported Asian dust storms in Taiwan. Environmental Research, 106(3), 393-400. doi:https://doi.org/10.1016/j.envres.2007.09.006 11.Chen, J., de Hoogh, K., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., . . . Hoek, G. (2020). Development of Europe-Wide Models for Particle Elemental Composition Using Supervised Linear Regression and Random Forest. Environmental Science Technology, 54(24), 15698-15709. doi:10.1021/acs.est.0c06595 12.Chen, P.-L. (2017). A Yunlin Douliu study on the correlation between the change of PM2.5 concentration and the optical properties of aerosol and meteorological conditions. Retrieved from http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=103621001 13.Chen, Y. M., Lin, W. Y., Chan, C. C. (2014). The impact of petrochemical industrialisation on life expectancy and per capita income in Taiwan: an 11-year longitudinal study. BMC Public Health, 14(1), 247. doi:10.1186/1471-2458-14-247 14.Chuang, K. J., Chan, C. C., Su, T. C., Lin, L. Y., Lee, C. T. (2007). Associations between particulate sulfate and organic carbon exposures and heart rate variability in patients with or at risk for cardiovascular diseases. J Occup Environ Med, 49(6), 610-617. doi:10.1097/JOM.0b013e318058205b 15.Dirgawati, M., Heyworth, J. S., Wheeler, A. J., McCaul, K. A., Blake, D., Boeyen, J., . . . Hinwood, A. (2016). Development of Land Use Regression models for particulate matter and associated components in a low air pollutant concentration airshed. Atmospheric Environment, 144, 69-78. doi:https://doi.org/10.1016/j.atmosenv.2016.08.013 16.Dockery, D. W., Pope, C. A., 3rd, Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., . . . Speizer, F. E. (1993). An association between air pollution and mortality in six U.S. cities. N Engl J Med, 329(24), 1753-1759. doi:10.1056/nejm199312093292401 17.Dong, Q., Lin, Y., Huang, J., Chen, Z. (2020). Has urbanization accelerated PM2.5 emissions? An empirical analysis with cross-country data. China Economic Review, 59, 101381. doi:https://doi.org/10.1016/j.chieco.2019.101381 18.Ebisu, K., Bell Michelle, L. (2012). Airborne PM2.5 Chemical Components and Low Birth Weight in the Northeastern and Mid-Atlantic Regions of the United States. Environmental Health Perspectives, 120(12), 1746-1752. doi:10.1289/ehp.1104763 19.Elbayoumi, M., Ramli, N. A., Md Yusof, N. F. F., Yahaya, A. S. B., Al Madhoun, W., Ul-Saufie, A. Z. (2014). Multivariate methods for indoor PM10 and PM2.5 modelling in naturally ventilated schools buildings. Atmospheric Environment, 94, 11-21. doi:https://doi.org/10.1016/j.atmosenv.2014.05.007 20.Environmental Protection Agency. (2020). Particulate Matter (PM) Pollution. Retrieved from https://www.epa.gov/pm-pollution/particulate-matter-pm-basics 21.EPA. (2019). 2019 PM2.5 Chemical Composition Monitoring and Analyzing Report. Retrieved from 22.Fang, G. C., Zhuang, Y. J., Kuo, Y. C., Cho, M. H. (2016). Ambient air metallic elements (Mn, Fe, Zn, Cr, Cu, and Pb) pollutants sources study at a rural resident area near Taichung Thermal Power Plant and Industrial Park: 6-month observations. Environment Earth Sciences. doi:https://doi.org/10.1007/s12665-016-5347-5 23.Fernando, M. (2017). Top of Atmosphere Reflectance on Sentinel 3. Retrieved from https://www.earthstartsbeating.com/2017/04/27/top-of-atmosphere-reflectance-on-sentinel-3/#:~:text=Top%20of%20Atmosphere%20(TOA)%20Reflectance,and%20the%20solar%20zenith%20angle 24.Forello, A. C., Bernardoni, V., Calzolai, G., Lucarelli, F., Massabò, D., Nava, S., . . . Vecchi, R. (2019). Exploiting multi-wavelength aerosol absorption coefficients in a multi-time resolution source apportionment study to retrieve source-dependent absorption parameters. Atmos. Chem. Phys., 19(17), 11235-11252. doi:10.5194/acp-19-11235-2019 25.Goyal, P., Chan, A. T., Jaiswal, N. (2006). Statistical models for the prediction of respirable suspended particulate matter in urban cities. Atmospheric Environment, 40(11), 2068-2077. doi:https://doi.org/10.1016/j.atmosenv.2005.11.041 26.Gupta, R. K., Majumdar, D., Trivedi, J. V., Bhanarkar, A. D. (2012). Particulate matter and elemental emissions from a cement kiln. Fuel Processing Technology, 104, 343-351. doi:https://doi.org/10.1016/j.fuproc.2012.06.007 27.Guseva, T. V., Potapova, E. N., Tichonova, I. O., Shchelchkov, K. A. (2021). Nitrogen oxide emissions reducing in cement production. IOP Conference Series: Materials Science and Engineering, 1083(1), 012083. doi:10.1088/1757-899x/1083/1/012083 28.Halsey, L. G. (2019). The reign of the p-value is over: what alternative analyses could we employ to fill the power vacuum? Biology Letters, 15(5), 20190174. doi:10.1098/rsbl.2019.0174 29.Harris, G., Thompson, W. D., Fitzgerald, E., Wartenberg, D. (2014). The association of PM2.5 with full term low birth weight at different spatial scales. Environmental Research, 134, 427-434. doi:https://doi.org/10.1016/j.envres.2014.05.034 30.Harrison, R. M. (2020). Airborne particulate matter. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2183), 20190319. doi:10.1098/rsta.2019.0319 31.Hsu, C.-H., Cheng, F.-Y. (2016). Classification of weather patterns to study the influence of meteorological characteristics on PM2.5 concentrations in Yunlin County, Taiwan. Atmospheric Environment, 144, 397-408. doi:https://doi.org/10.1016/j.atmosenv.2016.09.001 32.Hsu, C. Y., Chiang, H.-C., Lin, S.-L., Chen, M.-J., Lin, T.-Y., Chen, Y.-C. (2016). Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Science of The Total Environment, 541, 1139-1150. doi:https://doi.org/10.1016/j.scitotenv.2015.09.122 33.Huang, C.-S., Lin, T.-H., Hung, H., Kuo, C.-P., Ho, C.-C., Guo, Y.-L., . . . Wu, C.-F. (2019). Incorporating satellite-derived data with annual and monthly land use regression models for estimating spatial distribution of air pollution. Environmental Modelling Software, 114, 181-187. doi:https://doi.org/10.1016/j.envsoft.2019.01.010 34.Işıklı, B., Demir, T. A., Akar, T., Berber, A., Ürer, S. M., Kalyoncu, C., Canbek, M. (2006). Cadmium exposure from the cement dust emissions: A field study in a rural residence. Chemosphere, 63(9), 1546-1552. doi:https://doi.org/10.1016/j.chemosphere.2005.09.059 35.JAXA Earth Observation Research Center. (2018). JAXA Himawari Monitor Aerosol Products. Retrieved from https://www.eorc.jaxa.jp/ptree/documents/Himawari_Monitor_Aerosol_Product_v5.pdf 36.Kalafatoğlu, E., Örs, N., Sain Özdemir, S., Munlafalioğlu, I. (2001). Trace Element Emissions from some Cement Plants in Turkey. Water, Air, and Soil Pollution, 129(1), 91-100. doi:10.1023/A:1010371019712 37.Kayode, O. T., Aizebeokhai, A. P., Odukoya, A. M. (2021). Arsenic in agricultural soils and implications for sustainable agriculture. IOP Conference Series: Earth and Environmental Science, 655(1), 012081. doi:10.1088/1755-1315/655/1/012081 38.Krall, J., R., Anderson, G. B., Dominici, F., Bell, M., L., Peng, R., D. (2013). Short-term Exposure to Particulate Matter Constituents and Mortality in a National Study of U.S. Urban Communities. Environmental Health Perspectives, 121(10), 1148-1153. doi:10.1289/ehp.1206185 39.Lee, C.-S., Chang, K.-H., Kim, H. (2018). Long-term (2005–2015) trend analysis of PM2.5 precursor gas NO2 and SO2 concentrations in Taiwan. Environmental Science and Pollution Research, 25(22), 22136-22152. doi:10.1007/s11356-018-2273-y 40.Li, N., Chen, J.-P., Tsai, I. C., He, Q., Chi, S.-Y., Lin, Y.-C., Fu, T.-M. (2016). Potential impacts of electric vehicles on air quality in Taiwan. Science of The Total Environment, 566-567, 919-928. doi:https://doi.org/10.1016/j.scitotenv.2016.05.105 41.Lin, L.-F., Wu, S. H., Lin, S.-L., Mwangi, J. K., Lin, Y.-M., Lin, C.-W., . . . Chang-Chien, G.-P. (2013). Atmospheric Arsenic Deposition in Chiayi County in Southern Taiwan. Aerosol and Air Quality Research, 13(3), 932-942. doi:10.4209/aaqr.2012.11.0315 42.Lin, Y. C., Hsu, S. C., Lin, C. Y., Lin, S. H., Huang, Y. T., Chang, Y., Zhang, Y. L. (2018). Enhancements of airborne particulate arsenic over the subtropical free troposphere: impact of southern Asian biomass burning. Atmos. Chem. Phys., 18(19), 13865-13879. doi:10.5194/acp-18-13865-2018 43.Lin, Y. C., Tsai, C. J., Wu, Y. C., Zhang, R., Chi, K. H., Huang, Y. T., . . . Hsu, S. C. (2015). Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio. Atmos. Chem. Phys., 15(8), 4117-4130. doi:10.5194/acp-15-4117-2015 44.Liu, J., Weng, F., Li, Z. (2019). Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm. Atmospheric Environment, 208, 113-122. doi:https://doi.org/10.1016/j.atmosenv.2019.04.002 45.Lough, G. C., Schauer, J. J., Park, J.-S., Shafer, M. M., DeMinter, J. T., Weinstein, J. P. (2005). Emissions of Metals Associated with Motor Vehicle Roadways. Environmental Science Technology, 39(3), 826-836. doi:10.1021/es048715f 46.Luo, Y., Zhou, X., Zhang, J., Xiao, Y., Wang, Z., Zhou, Y., Wang, W. (2018). PM2.5 pollution in a petrochemical industry city of northern China: Seasonal variation and source apportionment. Atmospheric Research, 212, 285-295. doi:https://doi.org/10.1016/j.atmosres.2018.05.029 47.Lyamani, H., Olmo, F. J., Alados-Arboledas, L. (2008). Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain. Atmospheric Environment, 42(11), 2630-2642. doi:https://doi.org/10.1016/j.atmosenv.2007.10.070 48.Mao, F., Hong, J., Min, Q., Gong, W., Zang, L., Yin, J. (2021). Estimating hourly full-coverage PM2.5 over China based on TOA reflectance data from the Fengyun-4A satellite. Environmental Pollution, 270, 116119. doi:https://doi.org/10.1016/j.envpol.2020.116119 49.Mokhtar, M. M., Taib, R. M., Hassim, M. H. (2014). Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies. Journal of the Air Waste Management Association, 64(8), 867-878. doi:10.1080/10962247.2014.897271 50.Munir, S., Habeebullah, T. M., Seroji, A. R., Morsy, E. A., Mohammed, A. M. F., Saud, W. A., . . . Awad, A. H. (2013). Modeling Particulate Matter Concentrations in Makkah, Applying a Statistical Modeling Approach. Aerosol and Air Quality Research, 13(3), 901-910. doi:10.4209/aaqr.2012.11.0314 51.NASA. (2021). Moderate Resolution Imaging Spectroradiometer. Retrieved from https://modis.gsfc.nasa.gov/about/specifications.php 52.National Statistics (Taiwan). (2020). Statistics Index. Retrieved from https://www1.stat.gov.tw/point.asp?index=9 53.Ostro, B., Lipsett, M., Reynolds, P., Goldberg, D., Hertz, A., Garcia, C., . . . Bernstein, L. (2010). Long-Term Exposure to Constituents of Fine Particulate Air Pollution and Mortality: Results from the California Teachers Study. Environmental Health Perspectives, 118(3), 363-369. doi:10.1289/ehp.0901181 54.Pacyna, E. G., Pacyna, J. M., Fudala, J., Strzelecka-Jastrzab, E., Hlawiczka, S., Panasiuk, D., . . . Friedrich, R. (2007). Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmospheric Environment, 41(38), 8557-8566. doi:https://doi.org/10.1016/j.atmosenv.2007.07.040 55.Pacyna, J. M., Pacyna, E. G. (2001). An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews, 9(4), 269-298. doi:10.1139/a01-012 56.Pekney, N. J., Davidson, C. I., Bein, K. J., Wexler, A. S., Johnston, M. V. (2006). Identification of sources of atmospheric PM at the Pittsburgh Supersite, Part I: Single particle analysis and filter-based positive matrix factorization. Atmospheric Environment, 40, 411-423. doi:https://doi.org/10.1016/j.atmosenv.2005.12.072 57.Peters, A., Liu, E., Verrier, R. L., Schwartz, J., Gold, D. R., Mittleman, M., . . . Dockery, D. W. (2000). Air pollution and incidence of cardiac arrhythmia. Epidemiology, 11(1), 11-17. doi:10.1097/00001648-200001000-00005 58.Pope, C. A., 3rd, Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287(9), 1132-1141. doi:10.1001/jama.287.9.1132 59.Qiu, H., Yu Ignatius, T.-s., Tian, L., Wang, X., Tse Lap, A., Tam, W., Wong Tze, W. (2012). Effects of Coarse Particulate Matter on Emergency Hospital Admissions for Respiratory Diseases: A Time-Series Analysis in Hong Kong. Environmental Health Perspectives, 120(4), 572-576. doi:10.1289/ehp.1104002 60.Remer, L. A., Mattoo, S., Levy, R. C., Munchak, L. A. (2013). MODIS 3 km aerosol product: algorithm and global perspective. Atmos. Meas. Tech., 6(7), 1829-1844. doi:10.5194/amt-6-1829-2013 61.Rohr, A. C., Wyzga, R. E. (2012). Attributing health effects to individual particulate matter constituents. Atmospheric Environment, 62, 130-152. doi:https://doi.org/10.1016/j.atmosenv.2012.07.036 62.Song, Y.-Z., Yang, H.-L., Peng, J.-H., Song, Y.-R., Sun, Q., Li, Y. (2015). Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data. PLOS ONE, 10(11), e0142149. doi:10.1371/journal.pone.0142149 63.Sugiyama, T., Ueda, K., Seposo, X. T., Nakashima, A., Kinoshita, M., Matsumoto, H., . . . Nitta, H. (2020). Health effects of PM2.5 sources on children's allergic and respiratory symptoms in Fukuoka, Japan. Science of The Total Environment, 709, 136023. doi:https://doi.org/10.1016/j.scitotenv.2019.136023 64.Sun, X., Luo, X., Zhao, C., Zhang, B., Tao, J., Yang, Z., . . . Liu, T. (2016). The associations between birth weight and exposure to fine particulate matter (PM2.5) and its chemical constituents during pregnancy: A meta-analysis. Environmental Pollution, 211, 38-47. doi:https://doi.org/10.1016/j.envpol.2015.12.022 65.Tripathy, S., Tunno, B. J., Michanowicz, D. R., Kinnee, E., Shmool, J. L. C., Gillooly, S., Clougherty, J. E. (2019). Hybrid land use regression modeling for estimating spatio-temporal exposures to PM2.5, BC, and metal components across a metropolitan area of complex terrain and industrial sources. Science of The Total Environment, 673, 54-63. doi:https://doi.org/10.1016/j.scitotenv.2019.03.453 66.Tsai, P.-J., Young, L.-H., Hwang, B.-F., Lin, M.-Y., Chen, Y.-C., Hsu, H.-T. (2020). Source and health risk apportionment for PM2.5 collected in Sha-Lu area, Taiwan. Atmospheric Pollution Research, 11(5), 851-858. doi:https://doi.org/10.1016/j.apr.2020.01.013 67.Tseng, C.-Y. (2016). Characteristics of Atmospheric PM2.5 in a Densely Populated City with Multi-Emission Sources. Aerosol and Air Quality Research, 16(9), 2145-2158. doi:10.4209/aaqr.2016.06.0269 68.Tunno, B. J., Shmool, J. L. C., Michanowicz, D. R., Tripathy, S., Chubb, L. G., Kinnee, E., . . . Clougherty, J. E. (2016). Spatial variation in diesel-related elemental and organic PM2.5 components during workweek hours across a downtown core. Science of The Total Environment, 573, 27-38. doi:https://doi.org/10.1016/j.scitotenv.2016.08.011 69.Uzoigwe, J., Prum, T., Bresnahan, E., Garelnabi, M. (2013). The Emerging Role of Outdoor and Indoor Air Pollution in Cardiovascular Disease. North American journal of medical sciences, 5, 445-453. doi:10.4103/1947-2714.117290 70.Wåhlin, P., Berkowicz, R., Palmgren, F. (2006). Characterisation of traffic-generated particulate matter in Copenhagen. Atmospheric Environment, 40(12), 2151-2159. doi:https://doi.org/10.1016/j.atmosenv.2005.11.049 71.Wang, F., Chen, T., Chang, Q., Kao, Y.-W., Li, J., Chen, M., . . . Shia, B.-C. (2021). Respiratory diseases are positively associated with PM2.5 concentrations in different areas of Taiwan. PLOS ONE, 16(4), e0249694. doi:10.1371/journal.pone.0249694 72.Wang, X., Sun, W. (2019). Meteorological parameters and gaseous pollutant concentrations as predictors of daily continuous PM2.5 concentrations using deep neural network in Beijing–Tianjin–Hebei, China. Atmospheric Environment, 211, 128-137. doi:https://doi.org/10.1016/j.atmosenv.2019.05.004 73.Wang, X., Sun, W., Wang, Z., Wang, Y., Ren, H. (2019). Meteorological Parameters and Gaseous Pollutant Concentrations as Predictors of Ground-level PM2.5 Concentrations in the Beijing-Tianjin-Hebei Region, China. Aerosol and Air Quality Research, 19(8), 1844-1855. doi:10.4209/aaqr.2018.12.0449 74.Wang, Y.-F., Huang, K.-L., Li, C.-T., Mi, H.-H., Luo, J.-H., Tsai, P.-J. (2003). Emissions of fuel metals content from a diesel vehicle engine. Atmospheric Environment, 37(33), 4637-4643. doi:https://doi.org/10.1016/j.atmosenv.2003.07.007 75.Willey, J. D., Kiefer, R. H. (1993). ATMOSPHERIC DEPOSITION IN SOUTHEASTERN NORTH CAROLINA: COMPOSITION AND QUANTITY. Journal of the Elisha Mitchell Scientific Society, 109(1), 1-19. Retrieved from http://www.jstor.org/stable/24335206 76.World Health Organization. (2016). Ambient air pollution: a global assessment of exposure and burden of disease. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/250141/9789241511353-eng.pdf?sequence=1 77.Yang, L., Xu, H., Yu, S. (2020). Estimating PM(2.5) concentrations in Yangtze River Delta region of China using random forest model and the Top-of-Atmosphere reflectance. J Environ Manage, 272, 111061. doi:10.1016/j.jenvman.2020.111061 78.Yang, L. J., Xu, H. Q., Yu, S. D. (2020). Estimating PM2.5 concentrations in Yangtze River Delta region of China using random forest model and the Top-of-Atmosphere reflectance. Journal of Environmental Management, 272, 111061. doi:https://doi.org/10.1016/j.jenvman.2020.111061 79.Yin, J., Mao, F., Zang, L., Chen, J., Lu, X., Hong, J. (2021). Retrieving PM2.5 with high spatio-temporal coverage by TOA reflectance of Himawari-8. Atmospheric Pollution Research, 12(4), 14-20. doi:https://doi.org/10.1016/j.apr.2021.02.007 80.Zanobetti, A., Franklin, M., Koutrakis, P., Schwartz, J. (2009). Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environ Health, 8, 58. doi:10.1186/1476-069x-8-58 81.Zhai, Y., Liu, X., Chen, H., Xu, B., Zhu, L., Li, C., Zeng, G. (2014). Source identification and potential ecological risk assessment of heavy metals in PM2.5 from Changsha. Science of The Total Environment, 493, 109-115. doi:https://doi.org/10.1016/j.scitotenv.2014.05.106 82.Zhang, H., Kondragunta, S. (2021). Daily and Hourly Surface PM2.5 Estimation From Satellite AOD. Earth and Space Science, 8(3), e2020EA001599. doi:https://doi.org/10.1029/2020EA001599 83.Zhang, R., Gehui, W., Song, G., L., Z. M., Qi, Y., Yun, L., . . . Yuan, W. (2015). Formation of Urban Fine Particulate Matter. Chemical Reviews, 115(10), 3803-3855. doi:10.1021/acs.chemrev.5b00067 84.Zhang, T., Zang, L., Wan, Y., Wang, W., Zhang, Y. (2019). Ground-level PM2.5 estimation over urban agglomerations in China with high spatiotemporal resolution based on Himawari-8. Science of The Total Environment, 676, 535-544. doi:https://doi.org/10.1016/j.scitotenv.2019.04.299 85.Zhang, X., Chu, Y., Wang, Y., Zhang, K. (2018). Predicting daily PM2.5 concentrations in Texas using high-resolution satellite aerosol optical depth. Science of The Total Environment, 631-632, 904-911. doi:https://doi.org/10.1016/j.scitotenv.2018.02.255 86.Zhang, Y., Wang, X., Chen, H., Yang, X., Chen, J., Allen, J. O. (2009). Source apportionment of lead-containing aerosol particles in Shanghai using single particle mass spectrometry. Chemosphere, 74(4), 501-507. doi:https://doi.org/10.1016/j.chemosphere.2008.10.004 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81329 | - |
| dc.description.abstract | 空氣中的細懸浮微粒 (PM2.5)被認為與不良健康結果有關。近年來,台灣的PM2.5濃度雖逐漸下降,但目前仍高於世界衛生組織訂定的空氣品質標準10 μg/m3。由於暴露於PM2.5的人數眾多,因此此議題須更加受到重視。基於多年的研究基礎,科學界對PM2.5已有充分的認識,研究指出特定的 PM2.5成分,如鈣、鎘、鎳、釩和鋅,對人體的危害比其他成分更大。因此本研究的目的之一為基於台灣六個空氣品質監測站的監測資料透過統計模型建模的方式推估PM2.5以及PM成分濃度。 本研究選擇六處空氣品質監測站(板橋、忠明、斗六、嘉義、小港、花蓮)的監測資料作為PM2.5和PM成分模型建立基礎,這六處測站每六日進行二十四小時採樣。利用來自 Himawari-8 衛星的大氣頂反射率與其他變項以Stepwise AIC的方式建立迴歸模型。本研究中使用四種不同模型情境,包括添加氣象變項、氣體污染物與加入主成分分析的應用。 本研究結果顯示,在所有四種方法中,六個空氣品質監測站的 PM2.5模型都一致顯現出使用大氣頂反射率波段、氣象變項、氣體污染物、與主成分分析為最佳模型(本研究的方法 4 )。小港測站的PM2.5濃度推估模型預測能力較強(CV R2 = 0.70),其餘測站濃度推估模型則有中等偏強的預測能力(CV R2 >= 0.50)。 在PM成分預測模型中,方法4也顯示出最佳的模型表現,各測站以小港和忠明測站的預測模型表現較佳,而花蓮測站預測模型表現較差。銅、鎘、鐵、錳和鋅,在不同測站的預測模型中多有良好的表現,這些成分都有至少三至四個測站的CV R2 >= 0.40。本研究也呈現透過模型預測2017至2020年各測站的錳推估濃度,以達到在無量測日期填補推估值之目的。 本研究發現大氣頂反射率、氣體污染物和氣象變項有助於推估 PM 成分濃度,大氣頂反射率波段可用於不同預測模型中。但本研究的模型未能把推估模型應用在六處測站以外的測站和地區,未來研究可考慮在更多地點及更頻繁地量測台灣不同地區的PM 成分濃度,讓大氣頂反射率推估模型能預測和了解台灣不同地方的PM 成分濃度。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:43:32Z (GMT). No. of bitstreams: 1 U0001-1907202113251600.pdf: 4461514 bytes, checksum: 6fa49e0a6f2d2906f4d4a0287e2cdc64 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 i 摘要 ii Abstract iii Chapter 1 Introduction 1 1.1 Atmospheric particles and health effects 2 1.1.1 Causes of PM 2 1.1.2 Health hazards of PM2.5 2 1.1.3 Air pollutant monitoring situation in Taiwan 3 1.2 Air quality estimations 3 1.3 Importance of PM composition and estimation 4 1.4 Comparison of satellite products 6 1.5 Study objectives 7 Chapter 2 Material and methods 9 2.1 Study area 9 2.2 Measurements of air pollutants 9 2.3 Satellite Himawari-8 products 13 2.4 Data processing and model construction 15 2.4.1 Data processing 15 2.4.2 Principal component analysis 16 2.4.3 Model building 17 Chapter 3 Results and discussion 19 3.1 Descriptive statistics of PM2.5 concentration and TOAR 19 3.2 TOAR – PM2.5 matched pairs 22 3.3 Prediction models 23 3.3.1 PM2.5 models 23 3.3.2 PCA factor loading interpretation 28 3.3.3 PM composition models 32 3.4 Prediction model across stations 44 3.5 Application of prediction models at individual stations 48 3.6 Prediction models for OC, EC, and ions 56 3.7 Potentials of TOAR models 57 3.8 Comparison with other TOAR models 58 3.9 Study limitations 61 Chapter 4 Conclusion 62 References 63 Appendix 77" | |
| dc.language.iso | en | |
| dc.subject | 主成分分析 | zh_TW |
| dc.subject | PM2.5 | zh_TW |
| dc.subject | PM 成分 | zh_TW |
| dc.subject | 統計模型 | zh_TW |
| dc.subject | 大氣頂反射率 | zh_TW |
| dc.subject | statistical model | en |
| dc.subject | top of atmosphere reflectance | en |
| dc.subject | PM2.5 | en |
| dc.subject | PM composition | en |
| dc.subject | principal component analysis | en |
| dc.title | 以大氣頂反射率應用統計模型預測地面細懸浮微粒與成分濃度 | zh_TW |
| dc.title | Application of Satellite Top of Atmosphere Reflectance with Statistical Modelling for Ground-Level Fine Particulate Matter and Composition Concentration Estimation | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡詩偉(Hsin-Tsai Liu),林唐煌(Chih-Yang Tseng) | |
| dc.subject.keyword | PM2.5,PM 成分,統計模型,大氣頂反射率,主成分分析, | zh_TW |
| dc.subject.keyword | PM2.5,PM composition,statistical model,top of atmosphere reflectance,principal component analysis, | en |
| dc.relation.page | 116 | |
| dc.identifier.doi | 10.6342/NTU202101566 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-20 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1907202113251600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
