Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81317
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝馬利歐(Mario Hofmann)
dc.contributor.authorYun-Wei Loen
dc.contributor.author駱允蔚zh_TW
dc.date.accessioned2022-11-24T03:42:48Z-
dc.date.available2021-11-08
dc.date.available2022-11-24T03:42:48Z-
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-09-29
dc.identifier.citation[1] Schirhagl, R., Chang, K., Loretz, M., Degen, C. L. (2014). Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem, 65, 83-105. https://doi.org/10.1146/annurev-physchem-040513-103659 [2] Liu, X., Wang, G., Song, X., Feng, F., Zhu, W., Lou, L., Wang, J., Wang, H., Bao, P. (2012). Energy transfer from a single nitrogen-vacancy center in nanodiamond to a graphene monolayer. Applied Physics Letters, 101(23). https://doi.org/10.1063/1.4769367 [3] Davies, G., Hamer, M. F. (1976). Optical studies of the 1.945 eV vibronic band in diamond. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 348(1653), 285-298. https://doi.org/10.1098/rspa.1976.0039 [4] Gruber, A., Dräbenstedt, A., Tietz, C., Fleury, L., Wrachtrup, J., Von Borczyskowski, C. (1997). Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers. Science, 276(5321), 2012-2014. https://doi.org/10.1126/science.276.5321.2012 [5] Tetienne, J. P., Dontschuk, N., Broadway, D. A., Stacey, A., Simpson, D. A., Hollenberg, L. C. L. (2017). Quantum imaging of current flow in graphene. Sci Adv, 3(4), e1602429. https://doi.org/10.1126/sciadv.1602429 [6] Childress, L., Hanson, R. (2013). Diamond NV centers for quantum computing and quantum networks. MRS Bulletin, 38(2), 134-138. https://doi.org/10.1557/mrs.2013.20 [7] Brenneis, A., Gaudreau, L., Seifert, M., Karl, H., Brandt, M. S., Huebl, H., Garrido, J. A., Koppens, F. H., Holleitner, A. W. (2015). Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene. Nat Nanotechnol, 10(2), 135-139. https://doi.org/10.1038/nnano.2014.276 [8] Cong, C., Shang, J., Wang, Y., Yu, T. (2018). Optical Properties of 2D Semiconductor WS2. Advanced Optical Materials, 6(1). https://doi.org/10.1002/adom.201700767 [9] Eftekhari, A. (2017). Tungsten dichalcogenides (WS2, WSe2, and WTe2): materials chemistry and applications. Journal of Materials Chemistry A, 5(35), 18299-18325. https://doi.org/10.1039/c7ta04268j [10] Fan, X., Zheng, W., Liu, H., Zhuang, X., Fan, P., Gong, Y., Li, H., Wu, X., Jiang, Y., Zhu, X., Zhang, Q., Zhou, H., Hu, W., Wang, X., Duan, X., Pan, A. (2017). Nonlinear photoluminescence in monolayer WS2: parabolic emission and excitation fluence-dependent recombination dynamics. Nanoscale, 9(21), 7235-7241. https://doi.org/10.1039/c7nr01345k [11] Sheng, Y., Chen, T., Lu, Y., Chang, R. J., Sinha, S., Warner, J. H. (2019). High-Performance WS2 Monolayer Light-Emitting Tunneling Devices Using 2D Materials Grown by Chemical Vapor Deposition. ACS Nano, 13(4), 4530-4537. https://doi.org/10.1021/acsnano.9b00211 [12] Jia, C., Huang, X., Wu, D., Tian, Y., Guo, J., Zhao, Z., Shi, Z., Tian, Y., Jie, J., Li, X. (2020). An ultrasensitive self-driven broadband photodetector based on a 2D-WS2/GaAs type-II Zener heterojunction. Nanoscale, 12(7), 4435-4444. https://doi.org/10.1039/c9nr10348a [13] Gao, Y., Liu, Z., Sun, D. M., Huang, L., Ma, L. P., Yin, L. C., Ma, T., Zhang, Z., Ma, X. L., Peng, L. M., Cheng, H. M., Ren, W. (2015). Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat Commun, 6, 8569. https://doi.org/10.1038/ncomms9569 [14] Puchert, R. P., Steiner, F., Plechinger, G., Hofmann, F. J., Caspers, I., Kirschner, J., Nagler, P., Chernikov, A., Schuller, C., Korn, T., Vogelsang, J., Bange, S., Lupton, J. M. (2017). Spectral focusing of broadband silver electroluminescence in nanoscopic FRET-LEDs. Nat Nanotechnol, 12(7), 637-641. https://doi.org/10.1038/nnano.2017.48 [15] Yuan, L., Huang, L. (2015). Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale, 7(16), 7402-7408. https://doi.org/10.1039/c5nr00383k [16] Pham, L. M., Bar-Gill, N., Le Sage, D., Belthangady, C., Stacey, A., Markham, M., Twitchen, D. J., Lukin, M. D., Walsworth, R. L. (2012). Enhanced metrology using preferential orientation of nitrogen-vacancy centers in diamond. Physical Review B, 86(12). https://doi.org/10.1103/PhysRevB.86.121202 [17] Doherty, M. W., Manson, N. B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L. C. L. (2013). The nitrogen-vacancy colour centre in diamond. Physics Reports, 528(1), 1-45. https://doi.org/10.1016/j.physrep.2013.02.001 [18] Jacques, V., Neumann, P., Beck, J., Markham, M., Twitchen, D., Meijer, J., Kaiser, F., Balasubramanian, G., Jelezko, F., Wrachtrup, J. (2009). Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. Phys Rev Lett, 102(5), 057403. https://doi.org/10.1103/PhysRevLett.102.057403 [19] Manson, N. B., Harrison, J. P., Sellars, M. J. (2006). Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics. Physical Review B, 74(10), 104303. https://doi.org/10.1103/PhysRevB.74.104303 [20] Tamarat, P., Manson, N. B., Harrison, J. P., McMurtrie, R. L., Nizovtsev, A., Santori, C., Beausoleil, R. G., Neumann, P., Gaebel, T., Jelezko, F., Hemmer, P., Wrachtrup, J. (2008). Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond. New Journal of Physics, 10(4), 045004. https://doi.org/10.1088/1367-2630/10/4/045004 [21] Zhang, S.-C., Li, S., Du, B., Dong, Y., Zheng, Y., Lin, H.-B., Zhao, B.-W., Zhu, W., Wang, G.-Z., Chen, X.-D., Guo, G.-C., Sun, F.-W. (2019). Thermal-demagnetization-enhanced hybrid fiber-based thermometer coupled with nitrogen-vacancy centers. Optical Materials Express, 9(12). https://doi.org/10.1364/ome.9.004634 [22] Zeng, H., Liu, G. B., Dai, J., Yan, Y., Zhu, B., He, R., Xie, L., Xu, S., Chen, X., Yao, W., Cui, X. (2013). Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep, 3, 1608. https://doi.org/10.1038/srep01608 [23] Wei, K., Liu, Y., Yang, H., Cheng, X., Jiang, T. (2016). Large range modification of exciton species in monolayer WS<sub>2</sub>. Appl Opt, 55(23), 6251-6255. https://doi.org/10.1364/AO.55.006251 [24] Clapp, A. R., Medintz, I. L., Mattoussi, H. (2006). Forster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem, 7(1), 47-57. https://doi.org/10.1002/cphc.200500217 [25] Jares-Erijman, E. A., Jovin, T. M. (2003). FRET imaging. Nat Biotechnol, 21(11), 1387-1395. https://doi.org/10.1038/nbt896 [26] Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D., Valev, V. K. (2019). Raman Techniques: Fundamentals and Frontiers. Nanoscale Res Lett, 14(1), 231. https://doi.org/10.1186/s11671-019-3039-2 [27] Chang, Y. R., Lee, H. Y., Chen, K., Chang, C. C., Tsai, D. S., Fu, C. C., Lim, T. S., Tzeng, Y. K., Fang, C. Y., Han, C. C., Chang, H. C., Fann, W. (2008). Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol, 3(5), 284-288. https://doi.org/10.1038/nnano.2008.99 [28] Yu, S.-J., Kang, M.-W., Chang, H.-C., Chen, K.-M., Yu, Y.-C. (2005). Bright Fluorescent Nanodiamonds : No Photobleaching and Low Cytotoxicity. Journal of the American Chemical Society, 127(50), 17604-17605. https://doi.org/10.1021/ja056708 [29] Bayat, K., Choy, J., Baroughi, M. F., Meesala, S., Loncar, M. (2014). Efficient, uniform, and large area microwave magnetic coupling to NV centers in diamond using double split-ring resonators. Nano Lett, 14(3), 1208-1213. https://doi.org/10.1021/nl404072s [30] Wang, X., Kang, K., Godin, K., Fu, S., Chen, S., Yang, E.-H. (2019). Effects of solvents and polymer on photoluminescence of transferred WS2 monolayers. Journal of Vacuum Science Technology B, 37(5). https://doi.org/10.1116/1.5094543 [31] Levine, E. V., Turner, M. J., Kehayias, P., Hart, C. A., Langellier, N., Trubko, R., Glenn, D. R., Fu, R. R., Walsworth, R. L. (2019). Principles and techniques of the quantum diamond microscope. Nanophotonics, 8(11), 1945-1973. https://doi.org/10.1515/nanoph-2019-0209 [32] Yang, M., Wang, L., Hou, T., Li, Y. (2017). Controlling of the electronic properties of WS2 and graphene oxide heterostructures from first-principles calculations. Journal of Materials Chemistry C, 5(1), 201-207. https://doi.org/10.1039/c6tc04487e
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81317-
dc.description.abstract鑽石中的一種缺陷-氮空缺中心因在室溫下的光學和自旋特性,具有多種應用在生物學、磁場、電場和量子技術中。二維過渡金屬二硫屬化物因電子和光電特性,而引起了廣泛關注。然而,二維過渡金屬二硫屬化物顯示出低的光致發光量子產率。在這份研究中,我們探討了氮空缺中心和單層二硫化鎢之間的交互作用,因NV-和二硫化鎢的光致發光峰值相距非常接近,使得它們更有機會產生交互作用。藉由在奈米鑽石上轉移單層二硫化鎢,我們證明單層二硫化鎢的光致發光強度增加。我們發現電荷轉移發生在氮空缺中心和單層二硫化鎢之間。在共振頻率下,NV-中的電子處於亞穩態,接著躍遷到二硫化鎢的激發態,隨後電子釋放出光子,導致二硫化鎢的光致發光強度增加。奈米鑽石和單層二硫化鎢的結合提供了基本性能的改進,有利於未來在光電子中的應用,並且為電子自旋轉移的現象開闢了道路。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:42:48Z (GMT). No. of bitstreams: 1
U0001-2007202117244400.pdf: 4067422 bytes, checksum: d9f897c94f4798516ca4ea52f8ef5295 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i 中文摘要 ii Abstraction iii Contents v Chapter 1 Introduction 1 Chapter 2 Theory and Equipment Instruments 5 2.1 NV center 5 2.1.1 Optical and spin properties 6 2.1.2 Optically detected magnetic resonance (ODMR) 7 2.1.3 Magnetometer 9 2.2 WS2 physical properties 11 2.3 Interaction between nanoparticles and two dimensional materials 14 2.3.1 Non-radiative energy transfer 14 2.3.2 Fӧrster resonance energy transfer (FRET) 16 2.4 Raman spectrum system 18 2.5 Photoluminescence spectrum system 20 Chapter 3 Experimental method 22 3.1 Sample fabrication 22 3.1.1 Silicon substrate cleaning 22 3.1.2 Synthesis of nanodiamond 23 3.1.3 Thin film nanodiamond 23 3.1.4 Synthesis of WS2 24 3.1.5 PMMA-assisted wet transfer 25 3.2 Antenna fabrication 27 3.2.1 Return loss of fabricated antenna 29 3.3 Experimental setup of ODMR 30 Chapter 4 Results and Discussions 32 4.1 Optical properties of NV center and WS2 32 4.1.1 Bulkdiamond and nanodiamond 32 4.1.2 WS2 and nanodiamond 33 4.2 Interaction between NV center and WS2 38 4.2.1 Mapping imaging 38 4.2.2 Single point focusing 43 4.2.3 Mechanism of interaction between NV center and WS2 52 Chapter 5 Conclusion 55 Reference 56
dc.language.isoen
dc.subject光致發光zh_TW
dc.subject鑽石zh_TW
dc.subject氮-空缺中心zh_TW
dc.subject二維材料zh_TW
dc.subject過渡金屬二硫屬化物zh_TW
dc.subject二硫化鎢zh_TW
dc.subject2D materialsen
dc.subjectphotoluminescenceen
dc.subjecttungsten disulfideen
dc.subjectdiamonden
dc.subjectnitrogen-vacancy centeren
dc.subjecttransition metal dichalcogenidesen
dc.title氮-空缺中心與二維材料之間的光學交互作用zh_TW
dc.titleOptical Interaction Between Nitrogen-Vacancy Center and Two Dimensional Materialen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝雅萍(Hsin-Tsai Liu),張顏暉(Chih-Yang Tseng),陳永芳
dc.subject.keyword鑽石,氮-空缺中心,二維材料,過渡金屬二硫屬化物,二硫化鎢,光致發光,zh_TW
dc.subject.keyworddiamond,nitrogen-vacancy center,2D materials,transition metal dichalcogenides,tungsten disulfide,photoluminescence,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202101603
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
U0001-2007202117244400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved