請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81313完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉德銘(Der-Ming Yeh) | |
| dc.contributor.author | Yu-Ching Cheng | en |
| dc.contributor.author | 鄭育青 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:42:35Z | - |
| dc.date.available | 2021-08-10 | |
| dc.date.available | 2022-11-24T03:42:35Z | - |
| dc.date.copyright | 2021-08-10 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-29 | |
| dc.identifier.citation | 劉明宗. 2016. 重瓣及香氣孤挺花品種之選育. 國立臺灣大學園藝暨景觀學系博士論文. 臺北 甘培玟. 2017. 岩桐屬植物花朵與葉片顏色遺傳. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 謝吉容、李國昌、梁國魯. 2006. 大岩桐的研究概況及展望. 西南園藝 34:33-36. 趙印泉、劉青林. 2009. 重瓣花的形成機理及遺傳特性研究進展. 西北植物學報4:832-841. 楊恭毅. 1984. 楊氏園藝植物大名典, p. 6490-6497. 楊青造園企業. 中國花卉雜誌社, 臺北. 間藤正美、山形敦子、佐藤孝夫. 2007. 八重咲きトルコギキョウを得る表現型の組み合わせ. 東北農業研究 60:167-168. Almeida1, A.M.R., A. Brown, and C.D. Specht. 2013. Tracking the development of the petaloid fertile stamen in Canna indica: Insights into the origin of androecial petaloidy in the Zingiberales. AoB PLANTS 5: plt009. Angenent, G.C. and L. Colombo. 1996. Molecular control of ovule development. Trends Plant. Sci. 1:228-232. Arias, T., D.M. Riaño-Pachón, and V. Di Stilio. 2020. Facilitating candidate gene discovery in an emerging model plant lineage: Transcriptomic and genomic resources for Thalictrum (Ranunculaceae). bioRxiv. Bell, W.D. 1977. Double flower amaryllis. Proc. Fla. State Hort. Soc. 90:121-122. Berti, F., M. Fambrini, M. Turi, D. Bertini, and C. Pugliesi. 2005. Mutations of corolla symmetry affect carpel and stamen development in Helianthus annuus. Can. J. Bot. 83:1065-1072. Biggs, N. 2004. Sinningia pusilla, p. 193-196. In: M. Rix (ed.). Curtis’s Botanical Magazine. Vol. 21. Blackwell Publishing, New York. Borchert, T., K. Eckardt, J. Fuchs, K. Kruger, and A. Hohe. 2009. 'Who's who' in two different flower types of Calluna vulgaris (Ericaceae): morphological and molecular analyses of flower organ identity. BMC Plant Biol. 9:148. Bowman, J.L., D.R. Smyth, and E.M. Meyerowitz. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1:37-52. Cao, Z., S. Sui, Q. Yang, and Z. Deng. 2017. A single gene controls leaf background color in caladium (Araceae) and is tightly linked to genes for leaf main vein color, spotting and rugosity. Hort. Res. 4:16067. Chen, C.M., T.Y. Wei, and D.M. Yeh. 2012. Morphology and inheritance of double floweredness in Catharanthus roseus. HortScience 47:1679-1681. Cheon, K.S., A. Nakatsuka, and N. Kobayashi. 2016. Mutant PI/GLO homolog confers the hose-in-hose flower phenotype in kurume azaleas. Hort. J. 85:380-387. Chen, Y.S., Chesson P, HW Wu, SH Pao, JW Liu, LF Chien, JWH Yong, and CR Sheue. 2017. Leaf structure affects a plant's appearance: combined multiple-mechanisms intensify remarkable foliar variegation. J Plant Res 130:311-325. Davidson C.G. and L.M. Lenz. 1990. Models of inheritance of flower colour and extra petals in Potentilla fruticosa L. Euphytica 45:237-246. Deng, Z. and B.K. Harbaugh. 2006. Independent inheritance of leaf shape and main vein color in Caladium. J. Amer. Soc. Hort. Sci. 131:53-58. Dodsworth, S. 2017. Petal, sepal, or tepal? B-genes and monocot flowers. Trends Plant Sci. 22:8-10. Fooshee, C.C. and R.J. Henny. 1991. Chlorophyll levels and anatomy of variegated and nonvariegated areas of Aglaonema nitidum leaves. Proc. Florida State Hort. Soc. 103:170-172. Frost, H.B. 1915. The inheritance of doubleness in Matthiola and Petunia. Amer. Naturalist. 49:623-636. Hasan, M.T. and A.C. Deb. 2013. Inheritance of double flower per peduncle and flower colour in chickpea (Cicer arietinum L.). Electron. J. Plant Breed. 4:1228-1231. Hasing, T., E. Rinaldi, S. Manrique, L. Colombo, D.C. Haak, D. Zaitlin, and A. Bombarely. 2019. Extensive phenotypic diversity in the cultivated Florist’s Gloxinia, Sinningia speciosa (Lodd.) Hiern, is derived from the domestication of a single founder population. Plants People Planet 1:363-374. Hara, N. 1957. Study of the variegated leaves, with special reference to those caused by spaces. Jpn. J. Bot. 16:86-101. Henny, R.J. 1982. Inheritance of foliar variegation in two Dieffenbachia cultivars. J. Hered. 73:384. Henny, R.J. 1983. Inheritance of the midrib in Dieffenbachia maculate and its linkage with the gene for foliar variegation. J. Hered. 74:484-485. Henny, R.J. 1986. Inheritance of the foliar variegation in Dieffenbachia maculate ‘Camille’. J. Hered. 77:285-286. Henny, R.J. 1992. Inheritance of the foliar variegation pattern from Aglaonema nitidum (Jack) Kunth ‘Ernesto’s Favorite’. HortScience 27:274. Hofer, K.A., R. Ruonala, and V.A. Albert. 2012. The double-corolla phenotype in the Hawaiian.pdf. EvoDevo. 3:26. Heursel, J. 1976. Die Vererbung des Merkmals “hose in hose” (Doppelkronigkeit) bei Azaleen. Gartenwelt 76:111-113. Hu, L., T. Zheng, M. Cai, H. Pan, J. Wang, and Q. Zhang. 2019. Transcriptome analysis during floral organ development provides insights into stamen petaloidy in Lagerstroemia speciosa. Plant Physiol. bioch. 142:510-518. Irish, V. 2017. The ABC model of floral development. Curr Biol. 27:887-890. Kan, P.W., Y.C. Cheng, and D.M. Yeh. 2021. Mechanism of Leaf Vein Coloration and Inheritance of Leaf Vein Color, Flower Form, and Floral Symmetry in Gloxinia. J. Amer. Soc. Hort. 146:178-183. Kalivas, A., K. Pasentsis, A. N. Polidoros, and A. S. Tsaftaris. 2007. Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation. DNA Sequence. 18:120-130. Kashiwamura, Y., R. Matsuzawa, Y. Ishikawa, M. Shibata, and Y. Higuchi. 2020. Reduced expression of C-class genes is associated with the multiple-petal phenotype in Nelumbo nucifera. Hort. J. 89:619-627. Kanno, A., H. Saeki, T. Kameya, H. Saedler, and G. Theissen. 2003. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol. Biol. 52:831-841. Landis, J.B., L.L. Barnett, and L.C. Hileman. 2012. Evolution of petaloid sepals independent of shifts in B-class MADS box gene expression. Dev Genes Evol 222:19-28. Li, J., B. Dudas, M A. Webster, H.E. Cook, B.H. Davies, and P.M. Gilmartin. 2010. Hose in hose, an S locus–linked mutant of Primula vulgaris, is caused by an unstable mutation at the Globosa locus. PNAS. 107:5664-5668. Liu, M.C. and D.M. Yeh. 2015. ‘T.S.S. No.1-Pink Pearl’: A double-flowered and fragrant amaryllis cultivar. HortScience 50:1588-1590. Lin, Z., R.N. Damaris, T. Shi, J. Li, and P. Yang. 2018. Transcriptomic analysis identifies the key genes involved in stamen petaloid in lotus (Nelumbo nucifera). BMC Genomics 19:554. Liu, J., X. Fu, Y. Dong, J. Lu, M. Ren, N. Zhou, and C. Wang. 2018. MIKC(C)-type MADS-box genes in Rosa chinensis: the remarkable expansion of ABCDE model genes and their roles in floral organogenesis. Hort. Res. 5:25. Liu, J., C.Q. Li, Y. Dong, X. Yang, and Y.Z. Wang. 2018. Dosage imbalance of B- and C-class genes causes petaloid-stamen relating to F1 hybrid variation. BMC Plant Biol. 18:341. Mahajan, M. and S.K. Yadav. 2014. Gain of function mutation in tobacco MADS box promoter switch on the expression of flowering class B genes converting sepals to petals. Mol Biol Rep. 41:705-12. Mitoma, M., Y. Kajino, R. Hayashi, M. Endo, S. Kubota, and A. Kanno. 2019. Molecular mechanism underlying pseudopeloria in Habenaria radiata (Orchidaceae). Plant J. 99:439-451. Noor, S.H., K. Ushijima, A. Murata, K.Yoshida, M. Tanabe, T. Tanigawa, Y. Kubo, and R. Nakano. 2014. Double flower formation induced by silencing of C-class MADS-box genes and its variation among petunia cultivars. Scientia Hort. 178:1-7. Nugent, P.E. and R.J. Snyder. 1967. The inheritance of floret doubleness, floret center color, and plant habit in Pelargonium hortorum Bailey. Proc. Amer. Soc. Hort. Sci. 91:680-690. Pao, S.H., J.W. Liu, J.Y. Yang, P. Chesson, C.R. Sheue,, 2020. Uncovering the mechanisms of novel foliar variegation patterns caused by structures and pigments. Taiwania 65, 74-80. https://doi.org/10.6165/tai.2020.65.74. Pu, Z. Q. and Z.Q. Xu. 2021. Functions of the E-class floral homeotic genes in several common dicotyledons. J Plant Res 130:311-325. Rife, D.C. 1944. The genetics of certain common variations in Coleus. Ohio J. Sci. 44:18-24. Rife, D.C. 1948. Simple inherited variations in Coleus. J. Hered. 39:85-91. Scovel, G., H. Ben-Meir, M. Ovadis, H. Itzhaki, and A. Vainstein. 1998. RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor. Appl. Genet. 96:117-122. Shalit, P. 2000. Breeding gesneriads, p., 155-173. In: D.J. Callaway and M.B. Callaway (eds.). Breeding ornamental plants, Timber Press, Portland, Ore. Sharma, B. and E.M. Kramer. 2017. Aquilegia B gene homologs promote petaloidy of the sepals and maintenance of the C domain boundary. Evodevo 8:22. Sheue, C.R., S.H. Pao, L.F. Chien, P. Chesson, and C.I. Peng. 2012. Natural foliar variegation without costs? The case of Begonia. Ann. Bot. 109:1065-1074. Shuh, D.M. and J.F. Fontenot. 1990. Gene transfer of multiple flowers and pubescent leaf from Capsicum chinense into Capsicum annuum. J. Amer. Soc. Hort. Sci. 115:499-502. Shupert, D.A., D.H. Byrne, and H. Brent Pemberton. 2007. Inheritance of flower traits, leaflet number and prickles in roses. Acta Hort. 751:331-335. Smaczniak, C., R.G.H. Immink, G.C. Angenent, and K. Kaufmann. 2012. Developmental and evolutionary diversity of plant MADS-domain factors: Insights from recent studies. Development 139:3081-3098. Sommer, H., J.p. Beltrán, p. Huijser, H. pape, W.E. lönnig, H. Saedler, and Z. Schwarz-Sommer. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9:605-613. Spurr, A.R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. ultrastruct res. 26:31-43. Subramanya, R. 1983. Transfer of genes for multiple flowers from Capsicum chinense to Capsicum annuum. HortScience 18:747-749. Takuro, S., T. Takahiro,Y. Asuka, M. Takatoshi, K. Toshihiro, S. Kazunao, and N.Chisako. 2015. Inheritance of the double-flowered trait in decorative Hydrangea flowers. Hort. J. 84:253–260. Theissen, G., R. Melzer, and F. Rumpler. 2016. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143:3259-71. Varkonyi-Gasic, E., S.M. Moss, C. Voogd, R. Wu, R.H. Lough, Y.Y. Wan, and R.P. Hellens. 2011. Identification and characterization of flowering genes in kiwifruit: Sequence conservation and role in kiwifruit flower development. BMC Plant Biol. 11:72. Webster, M. A. and C. J. Grant. 1990. The inheritance of calyx morph variants in Primula vulgaris (Huds.). Heredity 64:121-124. Xia, Y., M. Shi, W. Chen, R. Hu, D. Jing, D. Wu, S. Wang, Q. Li, H. Deng, Q. Guo, and G. Liang. 2019. Expression pattern and functional characterization of PISTILLATA ortholog associated with the formation of petaloid sepals in double-flower Eriobotrya japonica (Rosaceae). Front Plant Sci. 10:1685. Yanofsky, M.F., H. Ma, J.l. Bowman, G.N. Drews, A. Kenneth, K.A. Feldmann, and E.M. Meyerowitz. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 346:35-39. Zahn, L.M., J. Leebens-Mack, C.W. DePamphilis, H. Ma, and G. Theissen. 2005. To B or not to B a flower: The role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J. Hered. 96:225-240. Zainol, R., D.P. Stimart, and R.F. Evert. 1998. Anatomical analysis of double-flower morphogenesis in a Nicotiana alata mutant. J. Amer. Soc. Hor. Sci. 123:967-972. Zainol, R. and D.P. Stimart. 2001. A monogenic recessive gene, fw, conditions flower doubling in Nicotiana alata. HortScience 36:128-130. Zaitlin, D. 2012. Intraspecific diversity in Sinningia speciosa (Gesneriaceae: Sinningieae), and possible origins of the cultivated florist’s gloxinia. AoB PLANTS. pls039. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81313 | - |
| dc.description.abstract | 岩桐屬(Sinningia)植物中大岩桐[Sinningia speciosa (Lodd.) Hiern]為重要室內盆花,大岩桐的花色花型多樣,白脈亦具有觀賞價值,為探討葉脈呈色機制及重瓣與白脈的遺傳模式,本研究以重瓣品種絲織品(Brocade),與其他具特殊性狀之原生種與單株為材料,量測大岩桐白脈之葉片光合作用與白脈成因之構造解剖,釐清大岩桐重瓣與白脈遺傳模式和其他岩桐屬植物花萼瓣化與雄蕊瓣化之遺傳模式,並選育同時具有重瓣與白脈性狀之大岩桐,最後為了探討其B類群基因GLO和花萼瓣化的關聯性,分離並檢測GLO在各輪器官之表現分析。 為了釐清葉脈呈色機制,以塑膠包埋切片法觀察大岩桐品系‘SS’ × ‘Brocade Red/White Bicolour’ 之F2 子代中綠脈和白脈的解剖構造,結果顯示綠脈之表皮組織與柵狀組織間緊密相接無氣隙,而白脈之塑膠切片結果為表皮組織與柵狀組織間有許多明顯孔隙。 大岩桐品種SS之白脈區域與綠色葉身區域之光合作用速率、氣孔導度、細胞間二氧化碳濃度與蒸散作用速率皆無顯著差異。顯示白脈區域與綠色葉肉區域無光合作用差異,白脈並不會使葉片之光合作用下降。 大岩桐重瓣與白脈遺傳試驗中,以重瓣綠脈大岩桐‘Brocade Red/White Bicolour’與單瓣白脈大岩桐品種SS雜交,子代花型分離比例符合1重瓣:1白脈之比例,在此品系第一代中挑選花型為半重辦,葉脈為白脈之單株進行自交,F2子代有綠脈性狀出現,子代性狀比例符合9白脈/重瓣:3白脈/單瓣:3綠脈/重瓣:1綠脈/單瓣之比例,顯示花型與葉脈顏色為獨立遺傳,並無聯鎖關係。在此F2子代中選拔出同時具有白脈與重瓣之大岩桐子代,F2子代之完全重瓣花型具有多一輪雄蕊的瓣化器官重複伴隨雌蕊完全花瓣化,同個品系中亦出現兩側對稱和輻射對稱兩種花朵對稱性狀。 為了釐清岩桐屬植物花萼瓣化的遺傳模式,以單瓣原生種S. eumorpha與花萼正常種‘Moonlight’雜交後,後代花萼與雌蕊皆正常;以正常花萼之‘Moonlight’與花萼瓣化‘UN1128’雜交後,後代分離比符合1單瓣:1花萼瓣化之比例。顯示花萼瓣化性狀由一對基因(H/h)所控制,異型合子(Hh)顯性時為花萼瓣化,此基因型之植株雄蕊仍然正常具有稔性但是雌蕊扭曲畸形,因此無法作為母本自交與雜交;同型合子隱性(hh)時表現型為單瓣。 一般的迷你岩桐的雄蕊正常且具有花粉,突變種中具有雄蕊瓣化的性狀,五枚雄蕊會完全瓣化但瓣化程度不一,外觀上形成兩輪花冠筒之重瓣花。為了釐清雄蕊瓣化的遺傳模式,將正常雄蕊之迷你岩桐自交,子代全數皆為單瓣,正常雄蕊與雄蕊瓣化品種雜交,第一代之分離比符合4雄蕊瓣化:12單瓣之分離比例,顯示迷你岩桐雄蕊瓣化為隱性上位性遺傳。雄蕊瓣化植株無法產生花粉,但此瓣化性狀不影響雌蕊功能,雌蕊並無畸形或扭曲。 花朵成長階段外觀與表皮細胞形態的觀察顯示單瓣岩桐S. cardinalis之花萼為綠色齧齒型,且在花冠筒延伸時花萼已停止延長;花萼瓣化品種Party Dress之花萼為深紅色螯合型,其花萼會隨花冠筒延伸時繼續延伸,形成似兩層花冠筒貌,器官構造拆解顯示花萼瓣化之花萼顏色與內側斑點分布與花瓣極為相像。以SEM觀察單瓣岩桐S. cardinalis與花萼瓣化品種Party Dress完全展開之花朵背腹側之花萼與花瓣,S. cardinalis之背側花萼具有氣孔,花萼瓣化品種Party Dress則無氣孔分布,而細胞形狀亦與花瓣較為相似,呈現橢圓形突起。 萃取單瓣岩桐S. cardinalis與花萼瓣化‘Party Dress’全花苞之RNA並以反轉錄聚合酶連鎖反應(RT-PCR)與GLO引子成功分離出兩基因。基因樹(phylogenetic tree)支持分離之基因類群屬於GLO類群。RT-PCR結果顯示在單瓣S. cardinalis中GLO僅侷限表現在第二、三輪器官;然而在花萼瓣化品種Party Dress中GLO異位表現至第一、四輪,即花萼、花瓣、雄蕊和雌蕊皆有GLO表現,推測花萼瓣化和此基因之異位表達有相關性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:42:35Z (GMT). No. of bitstreams: 1 U0001-2007202119425600.pdf: 4074230 bytes, checksum: af73df93e28f89cea795eed1b77ca2af (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝(Acknowledgement) i 摘要 i Abstrast iii 目錄 v 圖目錄 vi 表目錄 viii 前言 1 前人研究 3 一、 岩桐屬栽培歷史 3 二、 葉斑與白脈呈色機制 3 三、 葉斑與葉脈顏色遺傳 5 四、 重瓣花起源 6 五、 重瓣花之遺傳模式 7 六、 花萼瓣化之遺傳模式 9 七、 ABCDE花器官發育模型 10 八、 MADS-box與B類群基因 11 九、 四聚體模式 12 十、 B類群基因的異位表現導致花萼瓣化 12 十一、 非B類群基因異位表現導致花萼瓣化 13 材料與方法(Materials and Methods) 15 試驗一、大岩桐白脈之呈色機制與光合作用 15 試驗二、大岩桐重瓣白脈遺傳與品系選拔 17 試驗三、岩桐屬植物重瓣性狀遺傳分析 18 試驗四、岩桐屬植物單瓣與花萼瓣化之形態觀察 19 試驗五、岩桐屬GLO基因之親緣基因樹 19 試驗六、GLO 在四輪花器之基因表達分析 19 結果(Results) 21 試驗一、 大岩桐白脈之呈色機制與光合作用 21 試驗二、 大岩桐重瓣白脈遺傳與品系選拔 21 試驗三、 岩桐屬植物重瓣性狀遺傳分析 22 試驗四、 岩桐屬植物單瓣與花萼瓣化之形態觀察 24 試驗五、 岩桐屬GLO基因之親緣基因樹 24 試驗六、 GLO 在四輪花器之基因表達分析 25 圖 26 表 46 討論(Discussion) 51 參考文獻(References) 58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 異位表達 | zh_TW |
| dc.subject | 氣隙型 | zh_TW |
| dc.subject | 光合作用速率 | zh_TW |
| dc.subject | 花萼瓣化 | zh_TW |
| dc.subject | 雄蕊瓣化 | zh_TW |
| dc.subject | ectopic expression | en |
| dc.subject | intercellular space | en |
| dc.subject | photosynthesis rate | en |
| dc.subject | petaloid calyx | en |
| dc.subject | petaloid stamen | en |
| dc.title | 岩桐屬植物之葉脈呈色及花萼瓣化機制 | zh_TW |
| dc.title | Mechanism of Leaf Vein Coloration and Petaloid Sepals in Sinningia (Gesneriaceae) | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王俊能(Hsin-Tsai Liu),楊雯如(Chih-Yang Tseng),陳香君 | |
| dc.subject.keyword | 氣隙型,光合作用速率,花萼瓣化,雄蕊瓣化,異位表達, | zh_TW |
| dc.subject.keyword | intercellular space,photosynthesis rate,petaloid calyx,petaloid stamen,ectopic expression, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202101607 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-30 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2007202119425600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
