請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81297完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉(Shang-Lien Lo) | |
| dc.contributor.author | Yuan-Han Liu | en |
| dc.contributor.author | 劉元涵 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:41:33Z | - |
| dc.date.available | 2021-08-06 | |
| dc.date.available | 2022-11-24T03:41:33Z | - |
| dc.date.copyright | 2021-08-06 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-23 | |
| dc.identifier.citation | Appleman, T.D., Dickenson, E.R.V., Bellona, C. and Higgins, C.P. (2013) Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids. Journal of Hazardous Materials 260, 740-746. Banks, D., Jun, B.M., Heo, J., Her, N., Park, C.M. and Yoon, Y. (2020) Selected advanced water treatment technologies for perfluoroalkyl and polyfluoroalkyl substances: A review. Separation and Purification Technology 231. Bao, Y., Deng, S., Jiang, X., Qu, Y., He, Y., Liu, L., Chai, Q., Mumtaz, M., Huang, J., Cagnetta, G. and Yu, G. (2018) Degradation of PFOA Substitute: GenX (HFPO-DA Ammonium Salt): Oxidation with UV/Persulfate or Reduction with UV/Sulfite? Environ Sci Technol 52(20), 11728-11734. Bao, Y.X., Huang, J., Cagnetta, G. and Yu, G. (2019) Removal of F-538 as PFOS alternative in chrome plating wastewater by UV/Sulfite reduction. Water Research 163. Bentel, M.J., Yu, Y.C., Xu, L.H., Li, Z., Wong, B.M., Men, Y.J. and Liu, J.Y. (2019b) Defluorination of Per- and Polyfluoroalkyl Substances (PFASs) with Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and Management. Environmental Science Technology 53(7), 3718-3728. Botlaguduru, V.S. (2016) UV-Sulfite Based Advanced Reduction Treatment of Disinfection Byproducts and Perfluorooctanoic Acid. Doctoral Dissertation, Civil Engineering, Texas A M University. Boulanger, B., Vargo, J.D., Schnoor, J.L. and Hornbuckle, K.C. (2005) Evaluation of perfluorooctane surfactants in a wastewater treatment system and in a commercial surface protection product. Environmental Science Technology 39(15), 5524-5530. Brendel, S., Fetter, E., Staude, C., Vierke, L. and Biegel-Engler, A. (2018) Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH. Environmental Sciences Europe 30. Buck, R.C., Franklin, J., Berger, U., Conder, J.M., Cousins, I.T., de Voogt, P., Jensen, A.A., Kannan, K., Mabury, S.A. and van Leeuwen, S.P.J. (2011) Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integrated Environmental Assessment and Management 7(4), 513-541. Buxton, G.V., Greenstock, C.L., Helman, W.P. and Ross, A.B. (1988) Critical-Review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (.OH/.O-) in aqueous-solution. Journal of Physical and Chemical Reference Data 17(2), 513-886. Cai, M., Zhao, Z., Yin, Z., Ahrens, L., Huang, P., Cai, M., Yang, H., He, J., Sturm, R., Ebinghaus, R. and Xie, Z. (2012) Occurrence of Perfluoroalkyl Compounds in Surface Waters from the North Pacific to the Arctic Ocean. Environmental Science Technology 46(2), 661-668. Cao, M.H., Wang, B.B., Yu, H.S., Wang, L.L., Yuan, S.H. and Chen, J. (2010) Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation. Journal of Hazardous Materials 179(1-3), 1143-1146. Carter, K.E. and Farrell, J. (2010) Removal of Perfluorooctane and Perfluorobutane Sulfonate from Water via Carbon Adsorption and Ion Exchange. Separation Science and Technology 45(6), 762-767. Cui, J.K., Gao, P.P. and Deng, Y. (2020) Destruction of Per- and Polyfluoroalkyl Substances (PFAS) with Advanced Reduction Processes (ARPs): A Critical Review. Environmental Science Technology 54(7), 3752-3766. Dong, G.-H., Tung, K.-Y., Tsai, C.-H., Liu, M.-M., Wang, D., Liu, W., Jin, Y.-H., Hsieh, W.-S., Lee, Y.L. and Chen, P.-C. (2013) Serum Polyfluoroalkyl Concentrations, Asthma Outcomes, and Immunological Markers in a Case-Control Study of Taiwanese Children. Environmental Health Perspectives 121(4), 507-513. Du, Z.W., Deng, S.B., Bei, Y., Huang, Q., Wang, B., Huang, J. and Yu, G. (2014) Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents-A review. Journal of Hazardous Materials 274, 443-454. Eriksen, T.E. (1974) pH Effects on the pulse radiolysis of deoxygenated aqueous solutions of sulphur dioxide. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 70(1), 208-215. Fischer, M. and Warneck, P. (1996) Photodecomposition and photooxidation of hydrogen sulfite in aqueous solution. Journal of Physical Chemistry 100(37), 15111-15117. Fletcher, T. (2011) Monitoring the Health of Populations With Polluted Drinking Water. The Example of Perfluorinated Compounds. Epidemiology 22(1), S58-S58. Fujii, S., Polprasert, C., Tanaka, S., Lien, N.P.H. and Qiu, Y. (2007) New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds - a review paper. Journal of Water Supply Research and Technology-Aqua 56(5), 313-326. Gannot, I., Kotschau, R., Eckhardt, H.-S., Klein, K.-F., Behler, K. and Hillrichs, G. (2003) Gas analysis in the UV region using a long-length hollow core waveguide. Gewurtz, S.B., Bradley, L.E., Backus, S., Dove, A., McGoldrick, D., Hung, H. and Dryfhout-Clark, H. (2019) Perfluoroalkyl Acids in Great Lakes Precipitation and Surface Water (2006-2018) Indicate Response to Phase-outs, Regulatory Action, and Variability in Fate and Transport Processes. Environmental Science Technology 53(15), 8543-8552. Giesy, J.P. and Kannan, K. (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environmental Science Technology 35(7), 1339-1342. Gomez-Ruiz, B., Ribao, P., Diban, N., Rivero, M.J., Ortiz, I. and Urtiaga, A. (2018) Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2 -rGO catalyst. Journal of Hazardous Materials 344, 950-957. Gu, Y.R., Dong, W.Y., Luo, C. and Liu, T.Z. (2016b) Efficient Reductive Decomposition of Perfluorooctanesulfonate in a High Photon Flux UV/Sulfite System. Environmental Science Technology 50(19), 10554-10561. Gu, Y.R., Liu, T.Z., Wang, H.J., Han, H.L. and Dong, W.Y. (2017a) Hydrated electron based decomposition of perfluorooctane sulfonate (PFOS) in the VUV/sulfite system. Science of the Total Environment 607, 541-548. Gu, Y.R., Liu, T.Z., Zhang, Q. and Dong, W.Y. (2017b) Efficient decomposition of perfluorooctanoic acid by a high photon flux UV/sulfite process: Kinetics and associated toxicity. Chemical Engineering Journal 326, 1125-1133. Haug, L.S., Thomsen, C., Brantsaeter, A.L., Kvalem, H.E., Haugen, M., Becher, G., Alexander, J., Meltzer, H.M. and Knutsen, H.K. (2010) Diet and particularly seafood are major sources of perfluorinated compounds in humans. Environment International 36(7), 772-778. Hayon, E., Treinin, A. and Wilf, J. (1972) Electronic-spectra, photochemistry, and autoxidation mechanism of sulfite-bisulfite-pyrosulfite systems - SO2-, SO3-, SO4-, and SO5- radicals. Journal of the American Chemical Society 94(1), 47-57. Hoffman, K., Webster, T.F., Weisskopf, M.G., Weinberg, J. and Vieira, V.M. (2010) Exposure to Polyfluoroalkyl Chemicals and Attention Deficit/Hyperactivity Disorder in U.S. Children 12-15 Years of Age. Environmental Health Perspectives 118(12), 1762-1767. Hori, H., Hayakawa, E., Einaga, H., Kutsuna, S., Koike, K., Ibusuki, T., Kiatagawa, H. and Arakawa, R. (2004) Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environmental Science Technology 38(22), 6118-6124. Hori, H., Nagaoka, Y., Yamamoto, A., Sano, T., Yamashita, N., Taniyasu, S., Kutsuna, S., Osaka, I. and Arakawa, R. (2006) Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environmental Science Technology 40(3), 1049-1054. Houde, M., De Silva, A.O., Muir, D.C.G. and Letcher, R.J. (2011) Monitoring of Perfluorinated Compounds in Aquatic Biota: An Updated Review PFCs in Aquatic Biota. Environmental Science Technology 45(19), 7962-7973. Jeong, J., Song, W.H., Cooper, W.J., Jung, J. and Greaves, J. (2010) Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere 78(5), 533-540. Jian, J.-M., Chen, D., Han, F.-J., Guo, Y., Zeng, L., Lu, X. and Wang, F. (2018) A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs). Science of the Total Environment 636, 1058-1069. Li, F., Duan, J., Tian, S., Ji, H., Zhu, Y., Wei, Z. and Zhao, D. (2020) Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chemical Engineering Journal 380. Li, X., Fang, J., Liu, G., Zhang, S., Pan, B. and Ma, J. (2014) Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process. Water Res 62, 220-228. Liao, Z.H. and Farrell, J. (2009) Electrochemical oxidation of perfluorobutane sulfonate using boron-doped diamond film electrodes. Journal of Applied Electrochemistry 39(10), 1993-1999. Lin, Y.-C., Lai, W.W.-P., Tung, H.-h. and Lin, A.Y.-C. (2015) Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan. Environmental Monitoring and Assessment 187(5). Loos, R., Carvalho, R., Antonio, D.C., Cornero, S., Locoro, G., Tavazzi, S., Paracchini, B., Ghiani, M., Lettieri, T., Blaha, L., Jarosova, B., Voorspoels, S., Servaes, K., Haglund, P., Fick, J., Lindberg, R.H., Schwesig, D. and Gawlik, B.M. (2013) EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research 47(17), 6475-6487. Lyu, X.J., Li, W.W., Lam, P.K.S. and Yu, H.Q. (2015) Insights into perfluorooctane sulfonate photodegradation in a catalyst-free aqueous solution. Scientific Reports 5, 6. Martin, J.W., Smithwick, M.M., Braune, B.M., Hoekstra, P.F., Muir, D.C.G. and Mabury, S.A. (2004) Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environmental Science Technology 38(2), 373-380. Misik, V., Miyoshi, N. and Riesz, P. (1995) EPR spin-trapping tudy of the onolysis of H2O/D2O mixtures - probing the temperatures of cavitation regions. Journal of Physical Chemistry 99(11), 3605-3611. Moeller, A., Ahrens, L., Surm, R., Westerveld, J., van der Wielen, F., Ebinghaus, R. and de Voogt, P. (2010) Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed. Environmental Pollution 158(10), 3243-3250. Mudumbi, J.B.N., Ntwampe, S.K.O., Muganza, F.M. and Okonkwo, J.O. (2014) Perfluorooctanoate and perfluorooctane sulfonate in South African river water. Water Science and Technology 69(1), 185-194. Niu, J.F., Li, Y., Shang, E.X., Xu, Z.S. and Liu, J.Z. (2016) Electrochemical oxidation of perfluorinated compounds in water. Chemosphere 146, 526-538. Ochoa-Herrera, V. and Sierra-Alvarez, R. (2008) Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere 72(10), 1588-1593. Olsen, G.W., Burris, J.M., Ehresman, D.J., Froehlich, J.W., Seacat, A.M., Butenhoff, J.L. and Zobel, L.R. (2007) Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environmental Health Perspectives 115(9), 1298-1305. Park, H., Vecitis, C.D., Cheng, J., Choi, W., Mader, B.T. and Hoffmann, M.R. (2009) Reductive Defluorination of Aqueous Perfluorinated Alkyl Surfactants: Effects of Ionic Headgroup and Chain Length. Journal of Physical Chemistry A 113(4), 690-696. Petrie, B., Barden, R. and Kasprzyk-Hordern, B. (2015) A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research 72, 3-27. Qiao, J.L., Feng, L.Y., Dong, H.Y., Zhao, Z.W. and Guan, X.H. (2019) Overlooked Role of Sulfur-Centered Radicals During Bromate Reduction by Sulfite. Environmental Science Technology 53(17), 10320-10328. Qu, Y., Zhang, C.J., Chen, P., Zhou, Q. and Zhang, W.X. (2014) Effect of initial solution pH on photo-induced reductive decomposition of perfluorooctanoic acid. Chemosphere 107, 218-223. Qu, Y., Zhang, C.J., Li, F., Chen, J. and Zhou, Q. (2010) Photo-reductive defluorination of perfluorooctanoic acid in water. Water Research 44(9), 2939-2947. Rahman, M.F., Peldszus, S. and Anderson, W.B. (2014) Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Research 50, 318-340. Ribao, P., Rivero, M.J. and Ortiz, I. (2017) TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid. Environmental Science and Pollution Research 24(14), 12628-12637. Schaefer, C.E., Andaya, C., Burant, A., Condee, C.W., Urtiaga, A., Strathmann, T.J. and Higgins, C.P. (2017) Electrochemical treatment of perfluorooctanoic acid and perfluorooctane sulfonate: Insights into mechanisms and application to groundwater treatment. Chemical Engineering Journal 317, 424-432. Schroder, H.F., Jose, H.J., Gebhardt, W., Moreira, R. and Pinnekamp, J. (2010) Biological wastewater treatment followed by physicochemical treatment for the removal of fluorinated surfactants. Water Science and Technology 61(12), 3208-3215. Song, Z., Tang, H.Q., Wang, N. and Zhu, L.H. (2013) Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system. Journal of Hazardous Materials 262, 332-338. Steinle-Darling, E. and Reinhard, M. (2008) Nanofiltration for trace organic contaminant removal: Structure, solution, and membrane fouling effects on the rejection of perfluorochemicals. Environmental Science Technology 42(14), 5292-5297. Sun, M., Zhou, H., Xu, B. and Bao, J. (2018a) Distribution of perfluorinated compounds in drinking water treatment plant and reductive degradation by UV/SO3(2-) process. Environ Sci Pollut Res Int 25(8), 7443-7453. Sun, M., Zhou, H., Xu, B. and Bao, J.X. (2018b) Distribution of perfluorinated compounds in drinking water treatment plant and reductive degradation by UV/SO32- process. Environmental Science and Pollution Research 25(8), 7443-7453. Tang, C.Y.Y., Fu, Q.S., Robertson, A.P., Criddle, C.S. and Leckie, J.O. (2006) Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environmental Science Technology 40(23), 7343-7349. Taniyasu, S., Yamashita, N., Yamazaki, E., Petrick, G. and Kannan, K. (2013) The environmental photolysis of perfluorooctanesulfonate, perfluorooctanoate, and related fluorochemicals. Chemosphere 90(5), 1686-1692. Tartar, H.V. and Garretson, H.H. (1941) The Thermodynamic Ionization Constants of Sulfurous Acid at 25°1. Journal of the American Chemical Society 63(3), 808-816. Vecitis, C.D., Park, H., Cheng, J., Mader, B.T. and Hoffmann, M.R. (2008) Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products. Journal of Physical Chemistry A 112(18), 4261-4270. Vecitis, C.D., Wang, Y.J., Cheng, J., Park, H., Mader, B.T. and Hoffmann, M.R. (2010) Sonochemical Degradation of Perfluorooctanesulfonate in Aqueous Film-Forming Foams. Environmental Science Technology 44(1), 432-438. Vellanki, B.P., Batchelor, B. and Abdel-Wahab, A. (2013) Advanced Reduction Processes: A New Class of Treatment Processes. Environmental Engineering Science 30(5), 264-271. Wu, M.H., Sun, R., Wang, M.N., Liang, H.H., Ma, S.H., Han, T., Xia, X.Y., Ma, J., Tang, L., Sun, Y.F. and Xu, G. (2017) Analysis of perfluorinated compounds in human serum from the general population in Shanghai by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Chemosphere 168, 100-105. Xu, W., Wang, X. and Cai, Z. (2013) Analytical chemistry of the persistent organic pollutants identified in the Stockholm Convention: A review. Analytica Chimica Acta 790, 1-13. Yang, L., He, L.Y., Xue, J.M., Ma, Y.F., Shi, Y., Wu, L. and Zhang, Z.L. (2020) UV/SO 3 2? based advanced reduction processes of aqueous contaminants: Current status and prospects. Chemical Engineering Journal 397. Yangali-Quintanilla, V., Maeng, S.K., Fujioka, T., Kennedy, M., Li, Z.Y. and Amy, G. (2011) Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse. Desalination and Water Treatment 34(1-3), 50-56. Yu, Q., Zhang, R.Q., Deng, S.B., Huang, J. and Yu, G. (2009) Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Research 43(4), 1150-1158. Zhang, C.J., Qu, Y., Zhao, X.Y. and Zhou, Q. (2015) Photoinduced Reductive Decomposition of Perflurooctanoic Acid in Water: Effect of Temperature and Ionic Strength. Clean-Soil Air Water 43(2), 223-228. Zhao, P., Xia, X., Dong, J., Xia, N., Jiang, X., Li, Y. and Zhu, Y. (2016) Short- and long-chain perfluoroalkyl substances in the water, suspended particulate matter, and surface sediment of a turbid river. Science of the Total Environment 568, 57-65. Zhao, Z., Cheng, X., Hua, X., Jiang, B., Tian, C., Tang, J., Li, Q., Sun, H., Lin, T., Liao, Y. and Zhang, G. (2020) Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers. Environmental Pollution 263. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81297 | - |
| dc.description.abstract | "全氟化物為良好的介面活性劑,具有熱穩定性和化學穩定性之化學特性,並常被用於工業產品中,許多文獻證實長碳鏈全氟化物全氟辛酸 (Perfluorooctanoic acid, PFOA) 與全氟辛烷磺酸 (Perfluorooctanesulfonic acid, PFOS)對環境與人體具有危害性,已被許多國家限制使用,故轉而使用短碳鏈全氟丁烷磺酸(Perfluorobutanesulfonic Acid, PFBS),作為長碳鏈全氟化物的替代化學品,現今許多環境水體中已測出PFBS,因此開發有效的PFBS處理方法勢在必行。 本研究利用UV/亞硫酸鹽系統光催化誘發水合電子,以還原降解PFBS,並探討不同實驗參數對UV/亞硫酸鹽系統降解PFBS之影響。由結果顯示,濃度20.0 mg/L PFBS溶液之最佳降解參數為亞硫酸鹽濃度0.02M,初始pH值為11,系統溫度45℃,攪拌速率300rpm,於系統反應360分鐘後,可達到去除率79.2 %、脫氟率58.3 %,且生成短鏈全氟羧酸和氟離子,而PFBS去除之反應速率常數為0.33 hr-1,脫氟之反應速率常數為0.21 hr-1。PFBS處理效能與初始pH值和反應溫度呈正相關,曝氮氣呈負相關,而系統中亞硫酸鹽濃度過高,會抑制PFBS之處理效能。由中間產物分析結果表明,水合電子還原降解PFBS主要有三種降解途徑分別為脫磺酸反應、H/F交換反應以及C–C的斷鍵反應。 本研究以最佳參數降解PFOA與PFOS,利用反應動力學比較PFBS、PFOA與PFOS三者,其結果顯示擬一階降解的反應速率常數PFOA > PFOS > PFBS,而降解之反應活化能(Ea)分別為90.2 kJ/mole、319.4 kJ/mole與364.6 kJ/mole。PFBS、PFOA與PFOS三者之去除與脫氟的反應速率會與官能基、氟烷基鏈長度與C–F鍵低鍵離解能的位置和數量有關。同時本研究開發二階反應模型,可準確預測UV/亞硫酸鹽系統在15℃ ~ 45℃之溫度範圍下,PFBS、PFOA與PFOS於各反應時間下之去除率與脫氟率。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:41:33Z (GMT). No. of bitstreams: 1 U0001-2207202111283900.pdf: 7417372 bytes, checksum: 49b9acc06ce31ef441a2ce80a141eb9c (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xi 第一章 前言 1 1.1研究緣起 1 1.2研究目的 2 1.3研究內容 2 第二章 文獻回顧 4 2.1全氟化物 4 2.1.1全氟化物之污染來源與環境危害 4 2.1.2短碳鏈全氟化物使用現況 5 2.1.3短碳鏈全氟化物特性與環境分布 5 2.2全氟化物之處理方法 8 2.2.1活性碳吸附法 8 2.2.2濾膜法 9 2.2.3直接光解與光催化氧化法 9 2.2.4電化學氧化法 10 2.2.5超聲波氧化法 10 2.3 高級還原處理法—UV/亞硫酸鹽還原方法 12 2.3.1 UV/亞硫酸鹽系統 12 2.3.2 UV/亞硫酸鹽生系統水合電子生成反應 14 2.3.3初始pH值對降解全氟化物之影響 15 2.3.4亞硫酸鹽濃度對全氟化物降解之影響 15 2.3.5水中溶氧對全氟化物降解之影響 16 2.3.6溫度濃度對全氟化物降解之影響 17 2.3.7反應動力學探討 17 2.3.8全氟羧酸化合物之降解機制 20 2.3.9全氟磺酸化合物之降解機制 22 第三章 材料與方法 24 3.1 研究內容與架構 24 3.2 實驗試劑與設備 26 3.2.1 實驗試劑 26 3.2.2 實驗設備 28 3.3分析方法 30 3.4實驗操作與參數設定 39 3.4.1背景實驗 39 3.4.2最佳參數實驗 40 3.4.3反應動力學實驗 41 3.5品質管制 42 第四章 結果與討論 43 4.1背景實驗 43 4.1.1反應槽吸附實驗 43 4.1.2控制實驗—紫外光光解實驗 43 4.1.3控制實驗—亞硫酸鹽 45 4.2最佳參數實驗 49 4.2.1初始pH值對UV/亞硫酸鹽系統去除PFBS的影響 49 4.2.2亞硫酸鹽濃度對UV/亞硫酸鹽系統去除PFBS的影響 51 4.2.3曝氮氣對UV/亞硫酸鹽系統去除PFBS的影響 53 4.3 UV/亞硫酸鹽系統反應動力學探討 55 4.3.1溫度對UV/亞硫酸鹽系統去除PFBS的影響 55 4.3.2溫度對UV/亞硫酸鹽系統去除PFOA與PFOS的影響 57 4.3.3擬一階反應動力學模型 60 4.3.4二階反應動力學模型 66 4.4 UV/亞硫酸鹽系統降解之中間產物 74 4.4.1降解PFBS中間產物分析結果 74 4.4.2降解PFOA中間產物分析結果 79 4.4.3降解PFOS中間產物分析結果 81 4.5 UV/亞硫酸鹽系統降解PFBS機制 83 4.6 UV/亞硫酸鹽系統pH值分析結果 86 4.7 EPR自由基鑑定結果 88 第五章 結論與建議 91 5.1結論 91 5.2建議 92 參考資料 93 附錄 100 | |
| dc.language.iso | zh-TW | |
| dc.subject | 全氟辛酸 | zh_TW |
| dc.subject | 全氟丁烷磺酸 | zh_TW |
| dc.subject | 水合電子 | zh_TW |
| dc.subject | UV/亞硫酸鹽 | zh_TW |
| dc.subject | 全氟辛烷磺酸 | zh_TW |
| dc.subject | hydrated electron | en |
| dc.subject | Perfluorobutanesulfonic acid (PFBS) | en |
| dc.subject | Perfluorooctane sulfonate (PFOS) | en |
| dc.subject | Perfluorooctanoic acid (PFOA) | en |
| dc.subject | UV/sulfite | en |
| dc.title | 以UV/亞硫酸鹽光催化還原全氟丁烷磺酸之研究 | zh_TW |
| dc.title | The Study of UV/Sulfite Photo-reduction of Perfluorobutanesulfonic Acid | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭繼汾(Hsin-Tsai Liu),胡景堯(Chih-Yang Tseng) | |
| dc.subject.keyword | 全氟丁烷磺酸,全氟辛烷磺酸,全氟辛酸,UV/亞硫酸鹽,水合電子, | zh_TW |
| dc.subject.keyword | Perfluorobutanesulfonic acid (PFBS),Perfluorooctane sulfonate (PFOS),Perfluorooctanoic acid (PFOA),UV/sulfite,hydrated electron, | en |
| dc.relation.page | 125 | |
| dc.identifier.doi | 10.6342/NTU202101658 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-07-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2207202111283900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
