Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81288
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴飛羆(Fei-Pei Lai)
dc.contributor.authorPei-Chen Chenen
dc.contributor.author陳珮甄zh_TW
dc.date.accessioned2022-11-24T03:40:58Z-
dc.date.available2021-08-04
dc.date.available2022-11-24T03:40:58Z-
dc.date.copyright2021-08-04
dc.date.issued2021
dc.date.submitted2021-07-26
dc.identifier.citation[1] D. J. Robinaugh et al., 'Assessing vulnerability to panic: a systematic review of psychological and physiological responses to biological challenges as prospective predictors of panic attacks and panic disorder,' General psychiatry, vol. 32, no. 6, 2019. [2] D. Caldirola and G. Perna, 'Toward a personalized therapy for panic disorder: preliminary considerations from a work in progress,' Neuropsychiatric disease and treatment, vol. 15, p. 1957, 2019. [3] M. Elgendi and C. Menon, 'Assessing anxiety disorders using wearable devices: Challenges and future directions,' Brain sciences, vol. 9, no. 3, p. 50, 2019. [4] H.-A. Chang, C.-C. Chang, N.-S. Tzeng, T. B. Kuo, R.-B. Lu, and S.-Y. Huang, 'Decreased cardiac vagal control in drug-naïve patients with posttraumatic stress disorder,' Psychiatry investigation, vol. 10, no. 2, p. 121, 2013. [5] L. Cruz, J. Rubin, R. Abreu, S. Ahern, H. Eldardiry, and D. G. Bobrow, 'A wearable and mobile intervention delivery system for individuals with panic disorder,' in Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia, 2015, pp. 175-182. [6] U. Lueken et al., 'Separating depressive comorbidity from panic disorder: a combined functional magnetic resonance imaging and machine learning approach,' Journal of affective disorders, vol. 184, pp. 182-192, 2015. [7] T. Hahn et al., 'Predicting treatment response to cognitive behavioral therapy in panic disorder with agoraphobia by integrating local neural information,' JAMA psychiatry, vol. 72, no. 1, pp. 68-74, 2015. [8] B. Sundermann et al., 'Support vector machine analysis of functional magnetic resonance imaging of interoception does not reliably predict individual outcomes of cognitive behavioral therapy in panic disorder with agoraphobia,' Frontiers in psychiatry, vol. 8, p. 99, 2017. [9] N. B. Schmidt, M. J. Zvolensky, and J. K. Maner, 'Anxiety sensitivity: Prospective prediction of panic attacks and Axis I pathology,' Journal of psychiatric research, vol. 40, no. 8, pp. 691-699, 2006. [10] M. Brijain, R. Patel, M. Kushik, and K. Rana, 'A survey on decision tree algorithm for classification,' 2014. [11] T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, 'How many trees in a random forest?' in International workshop on machine learning and data mining in pattern recognition, 2012: Springer, pp. 154-168. [12] S. Balakrishnama and A. Ganapathiraju, 'Linear discriminant analysis-a brief tutorial,' Institute for Signal and information Processing, vol. 18, no. 1998, pp. 1-8, 1998. [13] D. D. Margineantu and T. G. Dietterich, 'Pruning adaptive boosting,' in ICML, 1997, vol. 97: Citeseer, pp. 211-218. [14] T. Chen and C. Guestrin, 'Xgboost: A scalable tree boosting system,' in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016, pp. 785-794. [15] R. Johnson and T. Zhang, 'Learning nonlinear functions using regularized greedy forest,' IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 5, pp. 942-954, 2013. [16] A. G. Schwing and R. Urtasun, 'Fully connected deep structured networks,' arXiv preprint arXiv:1503.02351, 2015. [17] A. F. Agarap, 'Deep learning using rectified linear units (relu),' arXiv preprint arXiv:1803.08375, 2018. [18] D. P. Kingma and J. Ba, 'Adam: A method for stochastic optimization,' arXiv preprint arXiv:1412.6980, 2014. [19] K.-S. Na, S.-E. Cho, and S.-J. Cho, 'Machine learning-based discrimination of panic disorder from other anxiety disorders,' Journal of Affective Disorders, vol. 278, pp. 1-4, 2021. [20] N. C. Jacobson, D. Lekkas, R. Huang, and N. Thomas, 'Deep learning paired with wearable passive sensing data predicts deterioration in anxiety disorder symptoms across 17–18 years,' Journal of Affective Disorders, vol. 282, pp. 104-111, 2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81288-
dc.description.abstract恐慌症是一種焦慮症,在全球的患病率約為2-6%。典型的恐慌發作是突然和反覆的強烈恐懼發作,並在恐懼感幾分鐘內達到高峰。恐慌症患者通常會擔心下一次發作的時間,並試圖避免與驚恐發作相關的地點、情況或行為來預防發作。病患為了避免恐慌症的發作經常會導致他們生活各方面出現嚴重問題,甚至可能導致恐懼症。 本研究招募了初步診斷為恐慌症且年齡在 20-75 歲之間的參與者。本研究使用的數據包括生理數據、環境數據和問卷數據。收集這些數據的工具包括穿戴式裝置(Garmin Vivo smart4)、手機應用程式和政府的環境開放數據平台。我們嘗試了六個機器學習的模型來達到預測恐慌發作的目的。這些模型包括隨機森林、決策樹、線性判別分析、自適應提升、極端梯度提升和正則化貪婪森林。此外,本研究也使用了基於深度學習的模型,具有四個全連接層。 我們使用生理數據(生活型態數據)、環境數據和問卷數據作為預測模型的輸入。在這項研究中,總共招募了 59 名參與者。對7天內恐慌發作預測,結果顯示最佳的模型是具有 94.6% 敏感性和 96.8% F1-score 的隨機森林模型。接收者操作特徵曲線分析表明,預測恐慌發作的模型曲線下面積大於0.9。最重要的特徵是貝克焦慮量表值、貝克抑鬱量表值、平均心率和休息心率。 我們通過使用可穿戴設備、環境開放數據、臨床問卷和有監督的預測算法,在預測未來7天內發生恐慌症取得不錯的效果。通過本研究開發的預測模型,可以產生恐慌症的早期預警,提醒患者和個案管理師提前預防。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:40:58Z (GMT). No. of bitstreams: 1
U0001-2307202114595900.pdf: 2043810 bytes, checksum: 046f714428eca266bc0ccc3ddbb4fc93 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"致謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Background 1 1.2 Previous Work 2 1.3 Aim of this Study 3 Chapter 2 Related Work 4 2.1 Machine Learning Model 4 2.1.1 Decision Tree 4 2.1.2 Random Forest 4 2.1.3 Linear Discriminant Analysis 5 2.1.4 Adaptive Boosting 5 2.1.5 Extreme Gradient Boosting 6 2.1.6 Regularized Greedy Forest 7 2.2 Deep Neural Network 7 2.2.1 Fully-Connected Layer Activation Function 7 2.2.2 Loss Function 9 2.2.3 Optimizer 10 Chapter 3 Method 11 3.1 Participants 11 3.2 Data Collection 11 3.2.1 Physiological data and environment data 11 3.2.2 Questionnaire data 12 3.2.3 Smartphone application 12 3.3 System Architecture 15 3.4 Data Preprocessing, Data Mapping, and Data Labeling 17 3.5 Classification Models 18 3.6 DNN Classification 19 3.7 Model Validating and Model Assessment 22 Chapter 4 Result 25 4.1 Patients Characteristics 25 4.2 Performance of Panic Attack Prediction Model 27 4.3 Performance of PAs Prediction Model with Different Data Combinations 29 4.4 Feature Importance 31 Chapter 5 Discussion 32 5.1 Principal Findings 32 5.2 Comparison with other Work 32 5.3 Limitations 33 Chapter 6 Conclusion Future Work 34 REFERENCE 35 "
dc.language.isoen
dc.subject深度學習zh_TW
dc.subject恐慌症zh_TW
dc.subject恐慌發作預測zh_TW
dc.subject穿戴式裝置zh_TW
dc.subject智慧型手機應用程式zh_TW
dc.subject開放環境數據zh_TW
dc.subject機器學習zh_TW
dc.subjectmachine learningen
dc.subjectdeep learningen
dc.subjectpanic attack predictionen
dc.subjectwearable deviceen
dc.subjectpanic disorderen
dc.subjectsmartphone applicationen
dc.subjectenvironment open dataen
dc.title使用可穿戴設備資料和臨床評估資料的恐慌症機器學習預測模型zh_TW
dc.titleMachine Learning Prediction Models for Panic Disorder Using Wearable Device Data and Clinical Evaluation Dataen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-5692-8700
dc.contributor.oralexamcommittee許凱平(Hsin-Tsai Liu),陳啟煌(Chih-Yang Tseng),戴浩志
dc.subject.keyword恐慌症,恐慌發作預測,穿戴式裝置,智慧型手機應用程式,開放環境數據,機器學習,深度學習,zh_TW
dc.subject.keywordpanic disorder,panic attack prediction,wearable device,smartphone application,environment open data,machine learning,deep learning,en
dc.relation.page38
dc.identifier.doi10.6342/NTU202101687
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-2307202114595900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved