Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81248
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor于宏燦(Hon-Tsen Yu)
dc.contributor.authorHsiao-Jou Wuen
dc.contributor.author吳筱柔zh_TW
dc.date.accessioned2022-11-24T03:38:34Z-
dc.date.available2021-08-06
dc.date.available2022-11-24T03:38:34Z-
dc.date.copyright2021-08-06
dc.date.issued2021
dc.date.submitted2021-08-02
dc.identifier.citationPaganelli, C.V. (1980) The physics of gas exchange across the avian eggshell. American Zoologist. 20: 329-338. Messens, W., Grijspeerdt, K., and Herman, L. (2005) Eggshell penetration by Salmonella: a review. World's Poultry Science Journal. 61: 71-86. Graveland, J. and Drent, R. (1997) Calcium availability limits breeding success of passerines on poor soils. Journal of Animal Ecology. 66: 279-288. Deeming, D.C. (2009) The role of egg turning during incubation. Avian Biology Research. 2: 67-71. Tyler, G. and Geake, F. (1964) Egg shell strength and its relationship to thickness, with particular reference to individuality in the domestic hen. British Poultry Science. 5: 3-18. Wang, L.C., et al. (2021) Geometrical characteristics of eggs from 3 poultry species. Poultry Science. 100: 100965. Ar, A., Rahn, H., and Paganelli, C.V. (1979) The avian egg: mass and strength. The Condor. 81: 331-337. Anderson, K., Tharrington, J., Curtis, P., and Jones, F. (2004) Shell characteristics of eggs from historic strains of single comb white leghorn chickens and the relationship of egg shape to shell strength. International Journal of Poultry Science. 3: 17-19. Juang, J.Y., Chen, P.Y., Yang, D.C., Wu, S.P., Yen, A., and Hsieh, H.I. (2017) The avian egg exhibits general allometric invariances in mechanical design. Scientific Reports. 7: 1-11. Ferguson, A.L., Varricchio, D.J., Pina, C.I., and Jackson, F.D. (2017) From eggs to hatchlings: nest site taphonomy of American crocodile (Crocodylus acutus) and broad-snouted caiman (Caiman latirostris). Palaios. 32: 337-348. Deeming, D.C. (2004) Reptilian incubation: environment, evolution and behaviour. Nottingham, UK: Nottingham University Press. Rivera, J., et al. (2020) Toughening mechanisms of the elytra of the diabolical ironclad beetle. Nature. 586: 543-548. Huss, J.C., et al. (2020) Topological Interlocking and Geometric Stiffening as Complementary Strategies for Strong Plant Shells. Advanced Materials. 32: 2004519. Tanaka, K., Zelenitsky, D.K., and Therrien, F. (2015) Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs. PLoS One. 10: e0142829. Norell, M.A., Clark, J.M., Chiappe, L.M., and Dashzeveg, D. (1995) A nesting dinosaur. Nature. 378: 774-776. Clark, J.M., Norell, M.A., and Chiappe, L.M. (1999) An Oviraptorid skeleton from the Late Cretaceous of Ukhaa Tolgod, Mongolia, preserved in an avianlike brooding position over an Oviraptorid nest. American Museum Novitates. 3265: 1-36. Varricchio, D.J., Moore, J.R., Erickson, G.M., Norell, M.A., Jackson, F.D., and Borkowski, J.J. (2008) Avian paternal care had dinosaur origin. Science. 322: 1826-1828. Norell, M.A., Balanoff, A.M., Barta, D.E., and Erickson, G.M. (2018) A second specimen of Citipati Osmolskae associated with a nest of eggs from Ukhaa Tolgod, Omnogov Aimag, Mongolia. American Museum Novitates. 2018: 1-44. Love, A.E.H. and Darwin, G.H. (1888) XVI. The small free vibrations and deformation of a thin elastic shell. Philosophical Transactions of the Royal Society A. 179: 491-546. Jia, Y.F., Xuan, F.Z., and Yang, F.Q. (2015) Numerical analysis of indentation of an elastic hemispherical shell. Journal of Mechanics. 32: 245-253. Hertz, H. (1882) Über die berührung fester elastischer körper. Journal für die reine und angewandte Mathematik. 1882: 156-171. Reissner, E. (1946) Stresses and small displacements of shallow spherical shells. Journal of Mathematical Physics. 25: 80-85. Pogorelov, A.V. (1988) Bendings of surfaces and stability of shells. Providence, RI: American Mathematical Society. Lazarus, A., Florijn, H.C.B., and Reis, P.M. (2012) Geometry-induced rigidity in nonspherical pressurized elastic shells. Physical Review Letters. 109: 144301. Tsao, S.-H. (2020) Investigation of protection and fracture mechanism of thin-shell biological materials: a case study on avian eggshell. (Master's thesis). National Taiwan University: Taipei, Taiwan. Wilson, L.E., Chin, K., Jackson, F.D., and Bray, E.S. (2010) Fossil eggshell: Fragments from the past. [Internet] [cited 2021 Jun 17]; Available from: https://ucmp.berkeley.edu/science/eggshell/index.php. Zardoya, R. and Meyer, A. (2001) The evolutionary position of turtles revised. Naturwissenschaften. 88: 193-200. Pough, F., Janis, C., and Heiser, J. (2012) Vertebrate life. 9 ed., London, UK: Pearson. Chiari, Y., Cahais, V., Galtier, N., and Delsuc, F. (2012) Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). Bmc Biology. 10: 1-15. Field, D.J., Gauthier, J.A., King, B.L., Pisani, D., Lyson, T.R., and Peterson, K.J. (2014) Toward consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for turtles. Evolution Development. 16: 189-196. Lee, M.S.Y. (2001) Molecules, morphology, and the monophyly of diapsid reptiles. Contributions to Zoology. 70: 1-22. Rieppel, O. and DeBraga, M. (1996) Turtles as diapsid reptiles. Nature. 384: 453-455. Joyce, W.G. (2007) Phylogenetic relationships of Mesozoic turtles. Bulletin of the Peabody Museum of Natural History. 48: 3-102. Guillon, J.-M., Guéry, L., Hulin, V., and Girondot, M. (2012) A large phylogeny of turtles (Testudines) using molecular data. Contributions to Zoology. 81: 147-158. Shaffer, H.B. (2009) Turtles (Testudines), in The timetree of life, S. Hedges and S. Kumar, Editors., Oxford, UK: Oxford University Press. p. 398-401. De Iuliis, G. and Pulerà, D. (2011) Craniata and Vertebrata, in The Dissection of Vertebrates. Cambridge, MA: Academic Press. p. 1-18. Gemmell, N.J., et al. (2020) The tuatara genome reveals ancient features of amniote evolution. Nature. 584: 403-409. Hedges, S.B. (2012) Amniote phylogeny and the position of turtles. BMC Biology. 10: 64. Jones, M.E.H., et al. (2012) The head and neck anatomy of sea turtles (Cryptodira: Chelonioidea) and skull shape in Testudines. PLoS One. 7: e47852. Chiappe, L.M. (1995) The first 85 million years of avian evolution. Nature. 378: 349-355. Gauthier, J. and de Queiroz, K. (2001) Feathered dinosaurs, flying dinosaurs, crown dinosaurs, and the name Aves, in New perspectives on the origin and early evolution of birds: proceedings of the International Symposium in Honor of John H. Ostrom, G. J.A. and G. L.F., Editors., New Haven, CT: Peabody Museum of Natural History, Yale University. Owen, R. (1863) III. On the archeopteryx of von Meyer, with a description of the fossil remains of a long-tailed species, from the lithographic stone of Solenhofen. Philosophical Transactions of the Royal Society of London: 33-47. Godefroit, P., Cau, A., Dong-Yu, H., Escuillié, F., Wenhao, W., and Dyke, G. (2013) A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature. 498: 359-362. Brusatte, S.L., O’Connor, J.K., and Jarvis, E.D. (2015) The origin and diversification of birds. Current Biology. 25: R888-R898. Fernández, M.S., et al. (2013) A Large Accumulation of Avian Eggs from the Late Cretaceous of Patagonia (Argentina) Reveals a Novel Nesting Strategy in Mesozoic Birds. PLoS One. 8: e61030. Varricchio, D.J. and Barta, D.E. (2015) Revisiting Sabath's 'Larger Avian Eggs' from the Gobi Cretaceous. Acta Palaeontologica Polonica. 60: 11-25. Walker, C.A. (1981) New subclass of birds from the Cretaceous of South America. Nature. 292: 51-53. Sanz, J. and Bonaparte, J.F. (1992) A new order of birds (Class Aves) from the Lower Cretaceous of Spain, in Papers in avian paleontology honoring Pierce Brodkorb. Los Angeles, CA: Natural History Museum of Los Angeles County. p. 39-49. Svtiste. (2006) A stylised dove skeleton. [cited 2021 Jun 17]; Available from: https://commons.wikimedia.org/wiki/File:Squelette_oiseau.JPG. Mikhailov, K.E., Bray, E.S., and Hirsch, K.F. (1996) Parataxonomy of fossil egg remains (Veterovata): principles and applications. Journal of Vertebrate Paleontology. 16: 763-769. Baron, M.G., Norman, D.B., and Barrett, P.M. (2017) A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature. 543: 501-506. Cheng, Y.N., Qiang, J., Wu, X.C., and Shan, H.Y. (2008) Oviraptorosaurian eggs (Dinosauria) with embryonic skeletons discovered for the first time in China. Acta Geologica Sinica‐English Edition. 82: 1089-1094. Osborn, H.F., Kaisen, P.C., and Olsen, G. (1924) Three new theropoda, protoceratops zone, central Mongolia. American Museum Novitates. 144: 1-12. Fanti, F., Currie, P.J., and Badamgarav, D. (2012) New specimens of Nemegtomaia from the Baruungoyot and Nemegt Formations (Late Cretaceous) of Mongolia. PLoS One. 7: e31330. Hendrickx, C., Hartman, S.A., and Mateus, O. (2015) An overview of non-avian Theropod discoveries and classification. PalArch's Journal of Vertebrate Palaeontology. 12: 1-73. Clark, J.M., MaryaŃSka, T., and Barsbold, R. (2004) Therizinosauroidea, in The Dinosauria, D.B. Weishampel, P. Dodson, and H. OsmÓLska, Editors.: University of California Press. p. 151-164. OsmÓLska, H., Currie, P.J., and Barsbold, R. (2004) Oviraptorosauria, in The Dinosauria, H. OsmÓLska, D.B. Weishampel, and P. Dodson, Editors.: University of California Press. p. 165-183. Norell, M., et al. (2009) A review of the Mongolian Cretaceous dinosaur Saurornithoides (Troodontidae, Theropoda). American Museum novitates. 2009: 1-63. Makovicky, P.J. and Norell, M.A. (2004) Troodontidae, in The Dinosauria, D.B. Weishampel, P. Dodson, and H. OsmÓLska, Editors.: University of California Press. p. 184-195. Mikhailov, K.E. (1997) Fossil and recent eggshell in amniotic vertebrates: fine structure, comparative morphology and classification. Lodon, UK: The Palaeontological Association. Pu, H., et al. (2017) Perinate and eggs of a giant caenagnathid dinosaur from the Late Cretaceous of central China. Nature Communications. 8: 14952. Varricchio, D.J., Horner, J.R., and Jackson, F.D. (2002) Embryos and eggs for the Cretaceous theropod dinosaurTroodon formosus. Journal of Vertebrate Paleontology. 22: 564-576. Mikhailov, K.E. (1997) Avian eggshells : an atlas of scanning electron micrographs. British Ornithologists' Club occasional publications ; no.3. Tring, Hertfordshire, UK: British Ornithologists' Club. Schleich, H.H. and Kastle, W. (1988) Reptile egg-shells SEM atlas. Stuttgart, Germany: Gustav Fischer Verlag. Ferguson, M.W.J. (1982) The structure and composition of the eggshell and embryonic membranes of Alligator mississippiensis. The Transactions of the Zoological Society of London. 36: 99-152. Moreno-Azanza, M., Bauluz , B., Canudo, J.I., Puértolas-Pascual, E., and Sellés, A.G. (2014) A re-evaluation of aff. Megaloolithidae eggshell fragments from the uppermost Cretaceous of the Pyrenees and implications for crocodylomorph eggshell structure. Historical Biology. 26: 195-205. Fernández, M.S., Simoncini, M.S., and Dyke, G. (2013) Irregularly calcified eggs and eggshells of Caiman latirostris (Alligatoridae: Crocodylia). Naturwissenschaften. 100: 451-457. Marzola, M., Russo, J., and Mateusa, O. (2015) Identification and comparison of modern and fossil crocodilian eggs and eggshell structures. Historical Biology. 27: 115-133. Packard, M.J., Hirsch, K.F., and Iverson, J.B. (1984) Structure of shells from eggs of kinosternid turtles. Journal of Morphology. 181: 9-20. Packard, M.J., Packard, G.C., and Boardman, T.J. (1982) Structure of eggshells and water relations of reptilian eggs. Herpetologica. 38: 136-155. Kusuda, S., et al. (2013) Diversity in the matrix structure of eggshells in the Testudines (Reptilia). Zoological Science. 30: 366-74. Chang, Y. and Chen, P.Y. (2016) Hierarchical structure and mechanical properties of snake (Naja atra) and turtle (Ocadia sinensis) eggshells. Acta Biomater. 31: 33-49. Choi, S., Han, S., Kim, N.H., and Lee, Y.N. (2018) A comparative study of eggshells of Gekkota with morphological, chemical compositional and crystallographic approaches and its evolutionary implications. PLoS One. 13: e0199496. Mikhailov, K.E. (1991) Classification of fossil eggshells of amniotic vertebrates. Acta Palaeontologica Polonica. 36: 193-238. Kurochkin, E.N., Chatterjee, S., and Mikhailov, K.E. (2013) An embryonic enantiornithine bird and associated eggs from the cretaceous of Mongolia. Paleontological Journal. 47: 1252-1269. Mikhailov, K.E. (1996) The eggs of birds in the Upper Cretaceous of Mongolia. Paleontologicheskii Zhurnal. 30: 114-116. Caldwell, K., Hong, X., Brinker, A., and Yurk, D.J. (2014) Utilisation of weep holes in retaining walls by the Japanese gecko (Gekko japonicus Dumeril Bibron, 1836) in Fukuoka, Japan. Herpetology Notes. 7: 235-240. Varricchio, D.J. and Jackson, F.D. (2016) Reproduction in Mesozoic birds and evolution of the modern avian reproductive mode. AUK. 133: 654-684. Danchin, E. and Wagner, R.H. (1997) The evolution of coloniality: the emergence of new perspectives. Trends in Ecology Evolution. 12: 342-347. Dyke, G., Vremir, M., Kaiser, G., and Naish, D. (2012) A drowned Mesozoic bird breeding colony from the Late Cretaceous of Transylvania. Naturwissenschaften. 99: 435-442. Horner, J.R. (1982) Evidence of colonial nesting and ‘site fidelity’ among ornithischian dinosaurs. Nature. 297: 675-676. Horner, J. (1999) Egg clutches and embryos of two Hadrosaurian dinosaurs. Journal of Vertebrate Paleontology. 19: 607-611. Horner, J.R. and Makela, R. (1979) Nest of juveniles provides evidence of family structure among dinosaurs. Nature. 282: 296-298. Griebeler, E. and Werner, J. (2011) The life cycle of sauropod dinosaurs, in Biology of the sauropod dinosaurs: Understanding the life of giants. Bloomington, IN: Indiana University Press. p. 263-275. Jackson, F.D., Garrido, A., Schmitt, J.G., Chiappe, L.M., Dingus, L., and Loope, D.B. (2004) Abnormal, multilayered titanosaur (Dinosauria: Sauropoda) eggs from in situ clutches at the Auca Mahuevo locality, Neuquén Province, Argentina. Journal of Vertebrate Paleontology. 24: 913-922. Sander, P.M., Peitz, C., Jackson, F.D., and Chiappe, L.M. (2008) Upper Cretaceous titanosaur nesting sites and their implications for sauropod dinosaur reproductive biology. Palaeontographica Abteilung A. 284: 69-107. Kundrát, M., Cruickshank, A.R., Manning, T.W., and Nudds, J. (2008) Embryos of therizinosauroid theropods from the Upper Cretaceous of China: diagnosis and analysis of ossification patterns. Acta Zoologica. 89: 231-251. Tanaka, K., et al. (2019) Exceptional preservation of a Late Cretaceous dinosaur nesting site from Mongolia reveals colonial nesting behavior in a non-avian theropod. Geology. 47: 843-847. Huh, M., Kim, B.S., Woo, Y., Simon, D.J., Paik, I.S., and Kim, H.J. (2014) First record of a complete giant theropod egg clutch from Upper Cretaceous deposits, South Korea. Historical Biology. 26: 218-228. Tanaka, K., et al. (2018) Incubation behaviours of oviraptorosaur dinosaurs in relation to body size. Biology Letters. 14: 1-4. Yang, T.-R., Wiemann, J., Xu, L., Cheng, Y.-N., Wu, X.-C., and Sander, P.M. (2019) Reconstruction of oviraptorid clutches illuminates their unique nesting biology. Acta Palaeontologica Polonica. 64: 581-596. Deeming, D. (2002) Importance and evolution of incubation in avian reproduction, in Avian Incubation: Behaviour, Environment and Evolution, D.C. Deeming, Editor., Oxford, UK: Oxford University Press. p. 1-7. Bailey, R.E. (1952) The Incubation Patch of Passerine Birds. The Condor. 54: 121-136. Bi, S., et al. (2021) An oviraptorid preserved atop an embryo-bearing egg clutch sheds light on the reproductive biology of non-avialan theropod dinosaurs. Science Bulletin. 66: 947-954. Varricchio, D.J., Jackson, F.D., Borkowski, J.J., and Horner, J.R. (1997) Nest and egg clutches of the dinosaur Troodon formosus and the evolution of avian reproductive traits. Nature. 385: 247-250. Varricchio, D.J., Jackson, F., and Trueman, C.N. (1999) A nesting trace with eggs for the Cretaceous theropod dinosaur Troodon formosus. Journal of Vertebrate Paleontology. 19: 91-100. Zhao, Z., Ma, H., and Yang, Y. (1994) Biomechanical Properties of Dinosaur Eggshells (I)--The stress analysis of the dinosaur eggshells under external pressures. Vertebrata Pal Asiatica. 32: 98-106. Thompson, D.A.W. (1917) On Growth and Form. Cambridge, UK: Cambridge University Press. Huxley, J.S. (1932) Problems of Relative Growth. London, UK: Methuen Co. Packard, G.C. (2012) Julian Huxley, Uca pugnax and the allometric method. Journal of Experimental Biology. 215: 569-73. Iwaniuk, A.N., Dean, K.M., and Nelson, J.E. (2005) Interspecific Allometry of the Brain and Brain Regions in Parrots (Psittaciformes): Comparisons with Other Birds and Primates. Brain, Behavior and Evolution. 65: 40-59. Schweitzer, M.H., Jackson, F.D., Chiappe, L.M., Schmitt, J.G., Calvo, J.O., and Rubilar, D.E. (2002) Late Cretaceous avian eggs with embryos from Argentina. Journal of Vertebrate Paleontology. 22: 191-195. Uguteo, G.N. (2016) Heyuannia huangi. [cited 2021 July 27]; Available from: http://gabrielugueto.com/paleoart/. Green-Mamba. (2012) 069--Citipati osmolskae. [cited 2021 July 27]; Available from: https://www.deviantart.com/green-mamba/art/069-CITIPATI-OSMOLSKAE-326014121. (2016) Dinosaur world-Troodon formosus. [cited 2021 July 27]; Available from: http://www.dinosaur-world.com/feathered_dinosaurs/troodon_formosus.htm. Chiang, P.-L. (2019) Investigation of mechanical properties and fracture mechanism of thin-shell biological materials: take eggshell as an example. (Mater's thesis). National Taiwan University: Taipei, Taiwan. Kemps, B., et al. (2004) Development of a methodology for the calculation of Young's modulus of eggshell using vibration measurements. Biosystems Engineering. 89: 215-221. Hahn, E.N., Sherman, V.R., Pissarenko, A., Rohrbach, S.D., Fernandes, D.J., and Meyers, M.A. (2017) Nature's technical ceramic: the avian eggshell. Journal of the Royal Society Interface. 14: 1-11. Lü, J., Xu, L., Liu, Y., Zhang, X., Jia, S., and Ji, Q. (2010) A new troodontid theropod from the Late Cretaceous of central China, and the radiation of Asian troodontids. Acta Palaeontologica Polonica. 55: 381-388. Paul, G.S. (2016) The Princeton Field Guide to Dinosaurs. REV - Revised, 2 ed.: Princeton University Press. Xu, X., et al. (2017) Mosaic evolution in an asymmetrically feathered troodontid dinosaur with transitional features. Nature communications. 8: 14972-14972. Werner, J. and Griebeler, E.M. (2013) New Insights into non-avian dinosaur reproduction and their evolutionary and ecological implications: linking fossil evidence to allometries of extant close relatives. PLOS ONE. 8: e72862. Paul, G.S. (2010) The Princeton field guide to dinosaurs. Princeton, NJ: Princeton University Press. Wiemann, J., et al. (2017) Dinosaur origin of egg color: oviraptors laid blue-green eggs. PeerJ. 5: e3706. Simon, D.J. (2014) Giant dinosaur (theropod) eggs of the oogenus Macroelongatoolithus (Elongatoolithidae) from southeastern Idaho: taxonomic, paleobiogeographic, and reproductive implications. (Mater's thesis). Montana State University: Bozeman, MT. Pabst, W. and Gregorova, E. (2004) Effective elastic properties of alumina-zirconia composite ceramics-Part 2. Micromechanical modeling. Ceramics- Silikaty. 48: 14-23. Pabst, W. and Gregorova, E. (2003) Effective elastic properties of alumina-zirconia composite ceramics-Part 1. Rational continuum theory of linear elasticity. Ceramics- Silikaty. 47: 1-7. Pabst, W., Gregorova, E., Ticha, G., and Tynova, E. (2004) Effective elastic properties of alumina-zirconia composite ceramics- Part 4. Tensile modulus of porous alumina and zirconia. Ceramics- Silikaty. 48: 165-174. Pabst, W., Ticha, G., and Gregorová, E. (2004) Effective elastic properties of alumina-zirconia composite ceramics-Part 3. Calculation of elastic moduli of polycrystalline alumina and zirconia from monocrystal data. Ceramics- Silikaty. 48: 41-48. Pabst, W., Tichá, G., Gregorová, E., and Týnová, E. (2005) Effective elastic properties of alumina–zirconia composite ceramics. Part 5. Tensile modulus of alumina–zirconia composite ceramics. Ceramics- Silikaty. 49: 77-85. Hincke, M.T., Nys, Y., Gautron, J., Mann, K., Rodriguez-Navarro, A.B., and McKee, M.D. (2012) The eggshell: structure, composition and mineralization. Frontiers in Bioscience. 17: 1266-1280. Dunlap, M. and Adaskaveg, J. (1997) Introduction to the scanning electron microscope. Theory, practice, procedures. Davis, CA: Facility for Advance Instrumentation. Wilkinson, A.J. and Britton, T.B. (2012) Strains, planes, and EBSD in materials science. Materials Today. 15: 366-376. Ferguson, M.W. (1982) The structure and composition of the eggshell and embryonic membranes of Alligator mississippiensis. The Transactions of the Zoological Society of London. 36: 99-152. Oppenheim, J., Ma, C., Hu, J., Bindi, L., Steinhardt, P., and Asimow, P. (2017) Shock Synthesis of Decagonal Quasicrystals. Scientific Reports. 7: 1-12. Wu, S.-P. (2018) Investigation and application of mechanical properties of thin-shell biomaterial: take avian egg as an example. (Master's thesis). National Taiwan University: Taipei, Taiwan. Yu, G., Smith, D.K., Zhu, H., Guan, Y., Lam, T.T.Y., and McInerny, G. (2017) ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution. 8: 28-36. Kennett, R., Christian, K.A., and Pritchard, D. (1993) Underwater Nesting by the Tropical Fresh-Water Turtle, Chelodina-Rugosa (Testudinata, Chelidae). Australian Journal of Zoology. 41: 47-52. Lin, J., Puri, V., and Anantheswaran, R. (1995) Measurement of eggshell thermal-mechanical properties. Transactions of the ASAE. 38: 1769-1776. Li, X., et al. (2015) Spear and shield: Survival war between Mantis shrimps and abalones. Advanced Materials Interfaces. 2: 1500250. Spatz, H.-C. and Vincent, J. (1996) Young’s moduli and shear moduli in cortical bone. Proceedings of the Royal Society of London. Series B: Biological Sciences. 263: 287-294. Dalbeck, P. and Cusack, M. (2006) Crystallography (electron backscatter diffraction) and chemistry (electron probe microanalysis) of the avian eggshell. Crystal Growth Design. 6: 2558-2562. Soler, M., Rodríguez‐Navarro, A.B., Pérez‐Contreras, T., García‐Ruiz, J.M., and Soler, J.J. (2019) Great spotted cuckoo eggshell microstructure characteristics can make eggs stronger. Journal of Avian Biology. 50: 1-6. Callister Jr., W.D. (2007) Material Science and Engineering: An Introduction. 7 ed., Hoboken, NJ: John Wiley Sons. Christiansen, P. and Fariña, R.A. (2004) Mass prediction in theropod dinosaurs. Historical biology. 16: 85-92.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81248-
dc.description.abstract現生鳥蛋可被視為一項近乎完美的天然設計,一方面,在孵育期間蛋殼必須具有足夠的堅固度,以承載親鳥坐臥其上的重量 (接觸孵蛋);另一方面,蛋殼又必須夠脆弱以利雛鳥在孵化時破殼而出。先前跨物種的鳥蛋研究中,已定義無因次參數C,用以量化鳥蛋的堅固程度,並已去除形狀所造成的影響以及重量差異,而此數值在現生鳥類物種間為定值。本研究將此無因次參數C的計算應用至爬蟲類動物與恐龍。 過去對於蛋殼機械性質的研究,僅針對單一類群或物種,且未能將機械性質量化,而關於其他生物性材料的機械性質研究,則會探討其與微結構的關聯性。本研究探討的物種橫跨多種爬蟲類 (龜、鱷及壁虎),並以無因次參數C與楊氏係數E進行機械性質的量化,也從蛋殼的碳酸鈣含量,和精密儀器 (掃描式電子顯微鏡、電子背向散射繞射) 拍攝結果來討論化學組成及微結構是否影響機械性質。最後結果顯示,爬蟲蛋的無因次參數C平均高於鳥蛋,顯示其較為堅固,然而,爬蟲蛋殼的楊氏係數E與鳥類蛋殼並無明顯差異。而蛋殼組成結果顯示碳酸鈣含量與楊氏係數間具有正相關之趨勢,而結晶組成比較結果中,晶粒尺寸較小的霰石具有較高之無因次參數C,但楊氏係數在兩種結晶組成間並未呈現顯著差異。 本研究亦將實驗方法應用至非鳥類恐龍蛋,以探討非鳥類恐龍採行接觸孵蛋之可能性,利用有限元素法軟體進行蛋殼壓縮模擬,並探討不同恐龍類群間蛋殼的機械性質 (無因次參數C) 差異。另外,本研究也模擬保存較完整的蛋巢標本,包括傷齒龍科 (Troodontidae) 及竊蛋龍科(Oviraptoridae) 的蛋窩,以探討其孵育時的受力情況。文獻與博物館標本之化石蛋殼樣本總數共計105顆蛋,根據模擬結果,我們發現竊蛋龍類 (Oviraptorosauria) 的蛋與現生鳥蛋相比,具有較低的無因次參數C,顯示其較鳥蛋脆弱。而全巢模擬結果中共包含10窩蛋巢,其中傷齒龍整巢的蛋足以共同負載親龍的體重,因此支持傷齒龍可行接觸孵蛋,;此外,因竊蛋龍具有特殊的巢體結構,親龍坐臥其中時獲得額外的地面支撐力,最終力學分析結果顯示竊蛋龍在孵育過程中並不會壓垮巢中任何蛋。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:38:34Z (GMT). No. of bitstreams: 1
U0001-2707202122510000.pdf: 10851296 bytes, checksum: 892c681b1077d1131fd7cb65e533fe51 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 I 摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 XI 符號表 XII Chapter 1 緒論 1 1.1 論文架構 1 1.2 研究動機與目的 2 Chapter 2 文獻回顧 4 2.1 相關理論 4 2.1.1 薄殼理論 4 2.1.2 橢圓球殼理論 8 2.2 各類群蛋殼 10 2.2.1 現生爬蟲類 10 2.2.2 中生代鳥類 14 2.2.3 非鳥類恐龍 16 2.3 蛋殼微結構 21 2.4 巢與孵蛋模式 29 2.5 異速縮放法則 (Allometric scaling law) 35 Chapter 3 實驗方法與儀器設備 36 3.1樣本取得與資料來源 36 3.1.1 現生爬蟲蛋 36 3.1.2 化石反鳥類與恐龍蛋 37 3.2 基本量測 39 3.3 靜態壓縮試驗 42 3.4 有限元素模型建立 44 3.4.1 蛋殼模型 44 3.4.2 全巢模型 47 3.5 等效楊氏係數 54 3.6 碳酸鈣含量測定 55 3.7 掃描式電子顯微鏡 56 3.8 電子背向散射繞射 57 3.8.1 試片製備 57 3.8.2 儀器與操作原理 59 3.9 定義無因次參數 60 3.10 定義安全係數 62 Chapter 4 結果與討論 63 4.1 爬蟲蛋機械性質 63 4.1.1 無因次參數 65 4.1.2 等效楊氏係數 68 4.2 爬蟲蛋化學組成與微結構 70 4.2.1 碳酸鈣含量 70 4.2.2 電子顯微影像 72 4.2.3 電子背向散射繞射影像 75 4.4 化石蛋殼機械性質 86 4.4.1 蛋殼基本測量數據 87 4.4.2 無因次參數 90 4.5 非鳥類恐龍接觸孵蛋之可能性 95 Chapter 5 結論與未來展望 98 5.1 結論 98 5.2 未來展望 100 參考文獻 101 著作目錄及附錄 109
dc.language.isozh-TW
dc.subject接觸孵蛋zh_TW
dc.subject蛋殼zh_TW
dc.subject無因次參數zh_TW
dc.subject爬蟲蛋zh_TW
dc.subject恐龍蛋zh_TW
dc.subjectdinosaur eggen
dc.subjecteggshellen
dc.subjectcontact-incubationen
dc.subjectdimensionless numberen
dc.subjectreptile eggen
dc.title以力學角度探討恐龍與爬蟲類蛋殼的勁度兼論恐龍接觸孵蛋之可能性zh_TW
dc.titleMechanical Analysis of the Eggshell Stiffness in Dinosaurs and Reptiles and Note on the Feasibility of Contact-incubation for Dinosaursen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor莊嘉揚(Jia-Yang Juang)
dc.contributor.oralexamcommittee李明蒼(Hsin-Tsai Liu),蔡佳霖(Chih-Yang Tseng),楊子睿
dc.subject.keyword蛋殼,無因次參數,爬蟲蛋,恐龍蛋,接觸孵蛋,zh_TW
dc.subject.keywordeggshell,dimensionless number,reptile egg,dinosaur egg,contact-incubation,en
dc.relation.page122
dc.identifier.doi10.6342/NTU202101823
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-03
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
Appears in Collections:生命科學系

Files in This Item:
File SizeFormat 
U0001-2707202122510000.pdf
Access limited in NTU ip range
10.6 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved