Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81204
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳逸昆(I-Kun Chen)
dc.contributor.authorGuo-Hau Luoen
dc.contributor.author羅國豪zh_TW
dc.date.accessioned2022-11-24T03:36:02Z-
dc.date.available2021-08-10
dc.date.available2022-11-24T03:36:02Z-
dc.date.copyright2021-08-10
dc.date.issued2021
dc.date.submitted2021-08-03
dc.identifier.citation[1] Wu,L., Guo, Y.:Geometric correction for diffusive expansion of steady neutron transport equation.Commun Math.Phys. 336:1473-1553(2015) [2] Li, Q., Lu, J., Sun, W.: Validity and regularization of classical half-space equa- tions. J. Stat. Phys. 166 398-433 (2017) [3] Guo, Y., Wu, L.: Geometric correction in diffusive limit of neutron transport equation in 2D convex domains (2016). [math.AP] arXiv:1605.02362 [4] Bensoussan, A., Lions, J.-L., Papanicolaou, G.C.: Boundary layers and homog- enization of transport processes. Publ. Res. Inst. Math. Sci. 15:53-157 (1979)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81204-
dc.description.abstract二維圓盤上的穩態中子遷移方程式基本上算是已經被解決的問題。根據 Bensoussan,Lions 和 Papanicolaou 的結果,在二維圓盤上,穩態中子遷移方程 式的解可以用一階領先內部解加上克努森層的擴散極限去估計。不過 Lei Wu 和 Yan Guo 卻聲稱此結果是錯誤的,並對此結果進行修正。然而根據 Lei Wu 和 Yan Guo 他們的論文,Qin Li ,Jianfeng Lu 和 Weiran Sun 證明了儘管原先的結果在 整個二維圓盤上不適用,此結果仍可套用在遠離邊界層的圓盤內部。本論文主要 為整理上述學者近期在處理此問題上所用到的一些重要手法。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:36:02Z (GMT). No. of bitstreams: 1
U0001-0208202110254300.pdf: 968763 bytes, checksum: 10cbe6f062b5dcd0aa9e4ac34e734beb (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 iv 第一章Introduction 1 第二章Asymptotic analysis 3 2.1 Interior expansion 3 2.2 Boundary layer expansion ( Milne expansion) 4 2.3 Failure of boundary layer expansion 6 2.4 Geometric correction on Milne expansion 9 第三章Theorems about CHS and problem 12 3.1 Finite slab problem 15 3.2 Infinite slab problem and estimate 25 3.3 estimate 34 3.4 Exponential decay and Maximum principle 44 第四章 Validity of Classical Half-Space Equations on 2D disk 53 參考文獻(Reference) 72
dc.language.isoen
dc.subject擴散極限zh_TW
dc.subject穩態中子遷移方程式zh_TW
dc.subject漸進分析zh_TW
dc.subject邊界層問題zh_TW
dc.subject漸進展開zh_TW
dc.subjectasymptotic analysisen
dc.subjectsteady neutron transport equationen
dc.subjectdiffusive limiten
dc.subjectasymptotic expansionen
dc.subjectboundary layer problemen
dc.title一份關於穩態中子遷移方程式在二維圓盤上的調查zh_TW
dc.titleA survey of Steady Neutron Transport Equation on 2-dimensional Disken
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee夏俊雄(Hsin-Tsai Liu),郭鴻文(Chih-Yang Tseng)
dc.subject.keyword穩態中子遷移方程式,漸進分析,邊界層問題,漸進展開,擴散極限,zh_TW
dc.subject.keywordsteady neutron transport equation,asymptotic analysis,boundary layer problem,asymptotic expansion,diffusive limit,en
dc.relation.page72
dc.identifier.doi10.6342/NTU202101984
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
U0001-0208202110254300.pdf
Access limited in NTU ip range
946.06 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved