Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81194
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳章甫(Chang-Fu Wu)
dc.contributor.authorTzong-Gang Wuen
dc.contributor.author吳宗鋼zh_TW
dc.date.accessioned2022-11-24T03:35:30Z-
dc.date.available2022-02-15
dc.date.available2022-11-24T03:35:30Z-
dc.date.copyright2022-02-15
dc.date.issued2022
dc.date.submitted2022-02-08
dc.identifier.citationAbhijith KV, Kumar P, Gallagher J, McNabola A, Baldauf R, Pilla F, et al. 2017. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – a review. Atmospheric Environment 162:71-86. https://doi.org/10.1016/j.atmosenv.2017.05.014 Adams MD, Massey F, Chastko K, Cupini C. 2020. Spatial modelling of particulate matter air pollution sensor measurements collected by community scientists while cycling, land use regression with spatial cross-validation, and applications of machine learning for data correction. Atmospheric Environment 230. http://dx.doi.org/10.1016/j.atmosenv.2020.117479 Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Tudor-Locke C, et al. 2011. 2011 compendium of physical activities: A second update of codes and MET values. Medicine and Science in Sports and Exercise 43:1575-1581. https://doi.org/10.1249/MSS.0b013e31821ece12 Airkorea. 2018. Airkorea. Available: http://www.airkorea.or.kr/eng [accessed 25 September 2019]. Alahabadi A, Fazeli I, Rakhshani MH, Najafi ML, Alidadi H, Miri M. 2021. Spatial distribution and health risk of exposure to BTEX in urban area: A comparison study of different land-use types and traffic volumes. Environ Geochem Health 43:2871-2885. https://doi.org/10.1007/s10653-020-00799-6 Arphorn S, Ishimaru T, Hara K, Mahasandana S. 2018. Considering the effects of ambient particulate matter on the lung function of motorcycle taxi drivers in Bangkok, Thailand. Journal of the Air Waste Management Association 68:139-145. https://doi.org/10.1080/10962247.2017.1359217 Baldauf R. 2016. Recommendations for constructing roadside vegetation barriers to improve near-road air quality. USA: Office of Research and Development, National Risk Management Laboratory, Air Pollution Prevention and Control Division: Washington, DC, USA. https://www.epa.gov/air-research/recommendations-constructing-roadside-vegetation-barriers-improve-near-road-air-quality Beelen R, Hoek G. 2010. Escape exposure assessment manual.ESCAPE - European Study of Cohorts for Air Pollution Effects. Beijing Zhiyue Information Technology Co. Ltd. 2021. GPS status - record your track. Available: https://apps.apple.com/us/app/gps-status-record-your-track/id831152887 [accessed 20 September 2020]. Betancourt RM, Galvis B, Balachandran S, Ramos-Bonilla JP, Sarmiento OL, Gallo-Murcia SM, et al. 2017. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmospheric Environment 157:135-145. https://doi.org/10.1016/j.atmosenv.2017.03.006 Bigazzi AY, Figliozzi MA. 2014. Review of urban bicyclists' intake and uptake of traffic-related air pollution. Transport Reviews 34:221-245. https://doi.org/10.1080/01441647.2014.897772 Bigazzi AY, Broach J, Dill J. 2016a. Bicycle route preference and pollution inhalation dose: Comparing exposure and distance trade-offs. Journal of Transport Health 3:107-113. http://dx.doi.org/10.1016/j.jth.2015.12.002 Bigazzi AY, Figliozzi MA, Luo W, Pankow JF. 2016b. Breath biomarkers to measure uptake of volatile organic compounds by bicyclists. Environmental Science Technology 50:5357-5363. https://doi.org/10.1021/acs.est.6b01159 Bolden AL, Kwiatkowski CF, Colborn T. 2015. New look at BTEX: Are ambient levels a problem? Environmental Science Technology 49:5261-5276. https://doi.org/10.1021/es505316f Brand VS, Kumar P, Damascena AS, Pritchard JP, Geurs KT, Andrade MdF. 2019. Impact of route choice and period of the day on cyclists' exposure to black carbon in London, Rotterdam and São Paulo. Journal of Transport Geography 76:153-165. https://doi.org/10.1016/j.jtrangeo.2019.03.007 Breiman L. 2001. Random forests. Machine Learning 45:5-32. http://dx.doi.org/10.1023/A:1010933404324 Cepeda M, Schoufour J, Freak-Poli R, Koolhaas CM, Dhana K, Bramer WM, et al. 2017. Levels of ambient air pollution according to mode of transport: A systematic review. The Lancet Public Health 2:e23-e34. https://doi.org/10.1016/s2468-2667(16)30021-4 Chan C-C, Lin S-H, Her G-R. 1994. Office worker's exposure to volatile organic compounds while commuting and working in Taipei city. Atmospheric Environment 28:2351-2359. https://doi.org/10.1016/1352-2310(94)90489-8 Chang C-P, Lin T-C, Lin Y-W, Hua Y-C, Chu W-M, Lin T-Y, et al. 2016. Comparison between thermal desorption tubes and stainless steel canisters used for measuring volatile organic compounds in petrochemical factories. The Annals of Occupational Hygiene 60:348-360. https://doi.org/10.1093/annhyg/mev078 Chang S-C, Chou CCK, Chan C-C, Lee C-T. 2010. Temporal characteristics from continuous measurements of pm2.5 and speciation at the Taipei aerosol supersite from 2002 to 2008. Atmospheric Environment 44:1088-1096. https://doi.org/10.1016/j.atmosenv.2009.11.046 Chen C-C, Wu C-F, Yu H-L, Chan C-C, Cheng T-J. 2012. Spatiotemporal modeling with temporal-invariant variogram subgroups to estimate fine particulate matter PM2.5 concentrations. Atmospheric Environment 54:1-8. http://dx.doi.org/10.1016/j.atmosenv.2012.02.015 Chen J, de Hoogh K, Gulliver J, Hoffmann B, Hertel O, Ketzel M, et al. 2019. A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. Environment International 130. https://doi.org/10.1016/j.envint.2019.104934 Chuang K-J, Lin L-Y, Ho K-F, Su C-T. 2020. Traffic-related PM2.5 exposure and its cardiovascular effects among healthy commuters in Taipei, Taiwan. Atmospheric Environment: X 7. https://doi.org/10.1016/j.aeaoa.2020.100084 City of Osaka. 2018. Profile of Osaka city. Available: https://www.city.osaka.lg.jp/contents/wdu020/enjoy/en/overview/content_CityProfile.html [accessed 9 April 2020]. Cole-Hunter T, Weichenthal S, Kubesch N, Foraster M, Carrasco-Turigas G, Bouso L, et al. 2016. Impact of traffic-related air pollution on acute changes in cardiac autonomic modulation during rest and physical activity: A cross-over study. J Expo Sci Environ Epidemiol 26:133-140. http://dx.doi.org/10.1038/jes.2015.66 Cole CA, Carlsten C, Koehle M, Brauer M. 2018. Particulate matter exposure and health impacts of urban cyclists: A randomized crossover study. Environmental Health 17:78. https://doi.org/10.1186/s12940-018-0424-8 Compendium of Physical Activities. 2011. Compendium of physical activities. Available: https://docs.google.com/viewer?a=v pid=sites srcid=ZGVmYXVsdGRvbWFpbnxjb21wZW5kaXVtb2ZwaHlzaWNhbGFjdGl2aXRpZXN8Z3g6MzYzNDI3ZThlMDQ4MmFmYw [accessed 1 May 2019]. Correia C, Martins V, Cunha-Lopes I, Faria T, Diapouli E, Eleftheriadis K, et al. 2020. Particle exposure and inhaled dose while commuting in Lisbon. Environmental Pollution 257:113547. http://dx.doi.org/10.1016/j.envpol.2019.113547 de Nazelle A, Fruin S, Westerdahl D, Martinez D, Ripoll A, Kubesch N, et al. 2012. A travel mode comparison of commuters' exposures to air pollutants in Barcelona. Atmospheric Environment 59:151-159. http://dx.doi.org/10.1016/j.atmosenv.2012.05.013 de Nazelle A, Bode O, Orjuela JP. 2017. Comparison of air pollution exposures in active vs. Passive travel modes in European cities: A quantitative review. Environment International 99:151-160. https://doi.org/10.1016/j.envint.2016.12.023 Dehghani M, Fazlzadeh M, Sorooshian A, Tabatabaee HR, Miri M, Baghani AN, et al. 2018. Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotox Environ Safe 155:133-143. https://doi.org/10.1016/j.ecoenv.2018.02.065 Department of Civil Affairs. 2021. Statistics of population in Taipei. Available: https://ca.gov.taipei/News_Content.aspx?n=8693DC9620A1AABF sms=D19E9582624D83CB s=EE7D5719108F4026. Directorate-General of Budget Accounting and Statistics Taiwan. 2020. National statistics. Available: http://statdb.dgbas.gov.tw/pxweb/Dialog/statfile9.asp [accessed 9 April 2020]. Edginton S, O'Sullivan DE, King WD, Lougheed MD. 2021. The effect of acute outdoor air pollution on peak expiratory flow in individuals with asthma: A systematic review and meta-analysis. Environ Res 192:110296. https://doi.org/10.1016/j.envres.2020.110296 Eeftens M, Beekhuizen J, Beelen R, Wang M, Vermeulen R, Brunekreef B, et al. 2013. Quantifying urban street configuration for improvements in air pollution models. Atmospheric Environment 72:1-9. http://dx.doi.org/10.1016/j.atmosenv.2013.02.007 Elford S, Adams MD. 2019. Exposure to ultrafine particulate air pollution in the school commute: Examining low-dose route optimization with terrain-enforced dosage modelling. Environ Res 178:108674. http://dx.doi.org/10.1016/j.envres.2019.108674 Fandi NFM, Jalaludin J, Latif MT, Hamid HHA, Awang MF. 2020. BTEX exposure assessment and inhalation health risks to traffic policemen in the Klang Valley region, Malaysia. Aerosol Air Qual Res 20:1922-1937. https://doi.org/10.4209/aaqr.2019.11.0574 Fanshawe TR, Diggle PJ, Rushton S, Sanderson R, Lurz PWW, Glinianaia SV, et al. 2008. Modelling spatio‐temporal variation in exposure to particulate matter: A two‐stage approach. Environmetrics 19:549-566. https://doi.org/10.1002/env.889 Feenstra B, Papapostolou V, Hasheminassab S, Zhang H, Boghossian BD, Cocker D, et al. 2019. Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmospheric Environment 216. http://dx.doi.org/10.1016/j.atmosenv.2019.116946 Funasaka K, Masumoto K, Asakawa D, Kaneco S. 2020. Size distribution of atmospheric particles: 40-year trends and 20-year comparisons of chemical constituents between residential and roadside areas in Osaka city, Japan. Asian Journal of Atmospheric Environment 14:345-366. https://doi.org/10.5572/ajae.2020.14.4.345 Geiss O, Giannopoulos G, Tirendi S, Barrero-Moreno J, Larsen BR, Kotzias D. 2011. The AIRMEX study - VOC measurements in public buildings and schools/kindergartens in eleven European cities: Statistical analysis of the data. Atmospheric Environment 45:3676-3684. https://doi.org/10.1016/j.atmosenv.2011.04.037 GEOFABRIK, OpenStreetMap Contributors. 2021. Openstreetmap data extracts. Available: http://download.geofabrik.de/asia.html. Ghassoun Y, Ruths M, Lowner MO, Weber S. 2015. Intra-urban variation of ultrafine particles as evaluated by process related land use and pollutant driven regression modelling. Science of The Total Environment 536:150-160. http://dx.doi.org/10.1016/j.scitotenv.2015.07.051 Ghassoun Y, Löwner M-O. 2017. Land use regression models for total particle number concentrations using 2D, 3D and semantic parameters. Atmospheric Environment 166:362-373. http://dx.doi.org/10.1016/j.atmosenv.2017.07.042 Goel R, Guttikunda SK. 2015. Evolution of on-road vehicle exhaust emissions in Delhi. Atmospheric Environment 105:78-90. https://doi.org/10.1016/j.atmosenv.2015.01.045 Good N, Mölter A, Ackerson C, Bachand A, Carpenter T, Clark ML, et al. 2016. The Fort Collins commuter study: Impact of route type and transport mode on personal exposure to multiple air pollutants. J Expo Sci Environ Epidemiol 26:397-404. https://doi.org/10.1038/jes.2015.68 Ham W, Vijayan A, Schulte N, Herner JD. 2017. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmospheric Environment 167:335-345. https://doi.org/10.1016/j.atmosenv.2017.08.024 Hankey S, Marshall JD. 2015a. Land use regression models of on-road particulate air pollution (particle number, black carbon, PM2.5, particle size) using mobile monitoring. Environmental Science Technology 49:9194-9202. http://dx.doi.org/10.1021/acs.est.5b01209 Hankey S, Marshall JD. 2015b. On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM2.5, and particle size. Atmospheric Environment 122:65-73. http://dx.doi.org/10.1016/j.atmosenv.2015.09.025 Hankey S, Sforza P, Pierson M. 2019. Using mobile monitoring to develop hourly empirical models of particulate air pollution in a rural Appalachian community. Environmental Science Technology 53:4305-4315. http://dx.doi.org/10.1021/acs.est.8b05249 Hastie T, Tibshirani R, Friedman J. 2009. The elements of statistical learning: Data mining, inference, and prediction. Second ed. New York: Springer. Hatzopoulou M, Weichenthal S, Barreau G, Goldberg M, Farrell W, Crouse D, et al. 2013a. A web-based route planning tool to reduce cyclists' exposures to traffic pollution: A case study in Montreal, Canada. Environ Res 123:58-61. http://dx.doi.org/10.1016/j.envres.2013.03.004 Hatzopoulou M, Weichenthal S, Dugum H, Pickett G, Miranda-Moreno L, Kulka R, et al. 2013b. The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada. J Expo Sci Environ Epidemiol 23:46-51. https://doi.org/10.1038/jes.2012.85 Hatzopoulou M, Valois MF, Levy I, Mihele C, Lu G, Bagg S, et al. 2017. Robustness of land-use regression models developed from mobile air pollutant measurements. Environmental Science Technology 51:3938-3947. https://doi.org/10.1021/acs.est.7b00366 He Y. 2013. Influence of climate variation on indoor air quality: A 15-year profile analysis of ambient and indoor pollutants. Taiwan: National Cheng Kung University. https://hdl.handle.net/11296/95sumd Hertel O, Hvidberg M, Ketzel M, Storm L, Stausgaard L. 2008. A proper choice of route significantly reduces air pollution exposure--a study on bicycle and bus trips in urban streets. Science of The Total Environment 389:58-70. https://doi.org/10.1016/j.scitotenv.2007.08.058 Ho C-C, Chan C-C, Cho C-W, Lin H-I, Lee J-H, Wu C-F. 2015. Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area. Atmospheric Environment 104:256-263. http://dx.doi.org/10.1016/j.atmosenv.2015.01.024 Hsieh L-T, Wang Y-F, Yang H-H, Mi H-H. 2011. Measurements and correlations of MTBE and BETX in traffic tunnels. Aerosol Air Qual Res 11:763-775. https://doi.org/10.4209/aaqr.2011.03.0035 Hu XF, Belle JH, Meng X, Wildani A, Waller LA, Strickland MJ, et al. 2017. Estimating PM2.5 concentrations in the conterminous United States using the random forest approach. Environmental Science Technology 51:6936-6944. http://dx.doi.org/10.1021/acs.est.7b01210 Jaiprakash, Habib G. 2017. Chemical and optical properties of PM2.5 from on-road operation of light duty vehicles in Delhi city. Science of the Total Environment 586:900-916. https://doi.org/10.1016/j.scitotenv.2017.02.070 Jian RS, Sung LY, Lu CJ. 2014. Measuring real-time concentration trends of individual VOC in an elementary school using a sub-ppb detection μGC and a single GC-MS analysis. Chemosphere 99:261-266. https://doi.org/10.1016/j.chemosphere.2013.10.094 Johansson C, Lövenheim B, Schantz P, Wahlgren L, Almström P, Markstedt A, et al. 2017. Impacts on air pollution and health by changing commuting from car to bicycle. Science of The Total Environment 584-585:55-63. https://doi.org/10.1016/j.scitotenv.2017.01.145 Karanasiou A, Viana M, Querol X, Moreno T, Leeuw Fd. 2014. Assessment of personal exposure to particulate air pollution during commuting in European cities—recommendations and policy implications. Science of The Total Environment 490:785-797. https://doi.org/10.1016/j.scitotenv.2014.05.036 Karner AA, Eisinger DS, Niemeier DA. 2010. Near-roadway air quality: Synthesizing the findings from real-world data. Environmental Science Technology 44:5334-5344. https://doi.org/10.1021/es100008x Kelly P, Kahlmeier S, Götschi T, Orsini N, Richards J, Roberts N, et al. 2014. Systematic review and meta-analysis of reduction in all-cause mortality from walking and cycling and shape of dose response relationship. International Journal of Behavioral Nutrition and Physical Activity 11:132. https://doi.org/10.1186/s12966-014-0132-x Kerchich Y, Kerbachi R. 2012. Measurement of BTEX (benzene, toluene, ethylbenzene, and xylene) levels at urban and semirural areas of Algiers city using passive air samplers. Journal of the Air Waste Management Association 62:1370-1379. https://doi.org/10.1080/10962247.2012.712606 Kim MJ, Park RJ, Kim J-J. 2012. Urban air quality modeling with full O3–NOx–VOC chemistry: Implications for O3 and PM air quality in a street canyon. Atmospheric Environment 47:330-340. https://doi.org/10.1016/j.atmosenv.2011.10.059 Kim S, Park S, Lee J. 2019. Evaluation of performance of inexpensive laser based PM2.5 sensor monitors for typical indoor and outdoor hotspots of South Korea. Applied Sciences 9. https://doi.org/10.3390/app9091947 Krecl P, Cipoli YA, Targino AC, Toloto MD, Segersson D, Parra A, et al. 2019. Modelling urban cyclists' exposure to black carbon particles using high spatiotemporal data: A statistical approach. Science of the Total Environment 679:115-125. http://dx.doi.org/10.1016/j.scitotenv.2019.05.043 Kumar P, Patton AP, Durant JL, Frey HC. 2018. A review of factors impacting exposure to PM2.5, ultrafine particles and black carbon in Asian transport microenvironments. Atmospheric Environment 187:301-316. https://doi.org/10.1016/j.atmosenv.2018.05.046 Kuo C-P, Liao H-T, Chou CC-K, Wu C-F. 2014. Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data. Science of The Total Environment 472:880-887. https://doi.org/10.1016/j.scitotenv.2013.11.114 Lan TTN, Liem NQ, Binh NTT. 2013. Personal exposure to benzene of selected population groups and impact of commuting modes in Ho Chi Minh, Vietnam. Environmental Pollution 175:56-63. https://doi.org/10.1016/j.envpol.2012.12.017 Language B. 2016. Correcting respirable photometric particulate measurements using a gravimetric sampling method. Clean Air Journal 26:10-14. http://doi.org/10.17159/2410-972X/2016/v26n1a7 Lautenschlager F, Becker M, Kobs K, Steininger M, Davidson P, Krause A, et al. 2020. OpenLUR: Off-the-shelf air pollution modeling with open features and machine learning. Atmospheric Environment 233. http://dx.doi.org/10.1016/j.atmosenv.2020.117535 Li H-C, Chiueh P-T, Liu S-P, Huang Y-Y. 2017. Assessment of different route choice on commuters' exposure to air pollution in Taipei, Taiwan. Environ Sci Pollut Res 24:3163-3171. https://doi.org/10.1007/s11356-016-8000-7 Liao HT, Chou CC, Chow JC, Watson JG, Hopke PK, Wu CF. 2015. Source and risk apportionment of selected VOCs and PM2.5 species using partially constrained receptor models with multiple time resolution data. Environmental Pollution 205:121-130. https://doi.org/10.1016/j.envpol.2015.05.035 Liao HT, Lee CL, Tsai WC, Yu JZ, Tsai SW, Chou CCK, et al. 2021. Source apportionment of urban PM2.5 using positive matrix factorization with vertically distributed measurements of trace elements and nonpolar organic compounds. Atmospheric Pollution Research 12:200-207. https://doi.org/10.1016/j.apr.2021.03.007 Lim CC, Kim H, Vilcassim MJR, Thurston GD, Gordon T, Chen L-C, et al. 2019. Mapping urban air quality using mobile sampling with low-cost sensors and machine learning in Seoul, South Korea. Environment International 131:105022. https://doi.org/10.1016/j.envint.2019.105022 Lin C-C, Lin C, Hsieh L-T, Chen C-Y, Wang J-P. 2011. Vertical and diurnal characterization of volatile organic compounds in ambient air in urban areas. Journal of the Air Waste Management Association 61:714-720. https://doi.org/10.3155/1047-3289.61.7.714 Lin C-H, Huang P-J, Hsu Y-F. 2018. Development and application of an on-site continuous VOCs sensing network. China Steel Technical Report 31:45-51. Liu M, Peng X, Meng Z, Zhou T, Long L, She Q. 2019. Spatial characteristics and determinants of in-traffic black carbon in Shanghai, China: Combination of mobile monitoring and land use regression model. Science of the Total Environment 658:51-61. http://dx.doi.org/10.1016/j.scitotenv.2018.12.135 Liu P-WG, Yao Y-C, Tsai J-H, Hsu Y-C, Chang L-P, Chang K-H. 2008. Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Science of The Total Environment 398:154-163. https://doi.org/10.1016/j.scitotenv.2008.02.053 Liu WT, Ma CM, Liu IJ, Han BC, Chuang HC, Chuang KJ. 2015. Effects of commuting mode on air pollution exposure and cardiovascular health among young adults in Taipei, Taiwan. International journal of hygiene and environmental health 218:319-323. https://doi.org/10.1016/j.ijheh.2015.01.003 Ly B-T, Kajii Y, Nguyen T-Y-L, Shoji K, Van D-A, Do T-N-N, et al. 2020. Characteristics of roadside volatile organic compounds in an urban area dominated by gasoline vehicles, a case study in Hanoi. Chemosphere 254:13. https://doi.org/10.1016/j.chemosphere.2020.126749 Mölter A, Lindley S. 2015. Influence of walking route choice on primary school children's exposure to air pollution--a proof of concept study using simulation. Science of the Total Environment 530-531:257-262. http://dx.doi.org/10.1016/j.scitotenv.2015.05.118 Ma X, Longley I, Gao J, Salmond J. 2020a. Evaluating the effect of ambient concentrations, route choices, and environmental (in)justice on students' dose of ambient NO2 while walking to school at population scales. Environmental Science Technology 54:12908-12919. http://dx.doi.org/10.1021/acs.est.0c05241 Ma X, Longley I, Gao J, Salmond J. 2020b. Assessing schoolchildren's exposure to air pollution during the daily commute - a systematic review. Science of the Total Environment 737:140389. https://doi.org/10.1016/j.scitotenv.2020.140389 McKercher GR, Vanos JK. 2018. Low-cost mobile air pollution monitoring in urban environments: A pilot study in Lubbock, Texas. Environ Technol 39:1505-1514. http://dx.doi.org/10.1080/09593330.2017.1332106 McNabola A, Broderick BM, Gill LW. 2008. Relative exposure to fine particulate matter and VOCs between transport microenvironments in Dublin: Personal exposure and uptake. Atmospheric Environment 42:6496-6512. https://doi.org/10.1016/j.atmosenv.2008.04.015 Minet L, Gehr R, Hatzopoulou M. 2017. Capturing the sensitivity of land-use regression models to short-term mobile monitoring campaigns using air pollution micro-sensors. Environmental Pollution 230:280-290. http://dx.doi.org/10.1016/j.envpol.2017.06.071 Muniz-Gäal LP, Pezzuto CC, de Carvalho MFH, Mota LTM. 2020. Urban geometry and the microclimate of street canyons in tropical climate. Building and Environment 169. https://doi.org/10.1016/j.buildenv.2019.106547 Niu X, Chuang HC, Wang X, Ho SSH, Li L, Qu L, et al. 2020. Cytotoxicity of pm2.5 vehicular emissions in the Shing Mun Tunnel, Hong Kong. Environmental Pollution 263:114386. https://doi.org/10.1016/j.envpol.2020.114386 Office of Environmental Health Hazard Assessment (OEHHA). Toxicity criteria on chemicals evaluated by OEHHA » benzene. Available: http://oehha.ca.gov/chemicals/benzene [accessed 2 January 2022]. Oke O, Bhalla K, Love DC, Siddiqui S. 2015. Tracking global bicycle ownership patterns. Journal of Transport Health 2:490-501. https://doi.org/10.1016/j.jth.2015.08.006 Okokon EO, Yli-Tuomi T, Turunen AW, Taimisto P, Pennanen A, Vouitsis I, et al. 2017. Particulates and noise exposure during bicycle, bus and car commuting: A study in three European cities. Environ Res 154:181-189. http://dx.doi.org/10.1016/j.envres.2016.12.012 OpenStreetMap contributors. 2021. Planet dump retrieved from https://planet.Osm.Org. Available: https://www.openstreetmap.org. Osaka Prefectural Government. 2019. Data download>download>1 hour value data (translated from Japanese). Available: http://taiki.kankyo.pref.osaka.jp/taikiWebApp/bin/form3000/Form_3010.jsp [accessed 21 May 2019. Ozgen S, Ripamonti G, Malandrini A, S. Ragettli M, Lonati G. 2016. Particle number and mass exposure concentrations by commuter transport modes in Milan, Italy. AIMS Environmental Science 3:168-184. http://dx.doi.org/10.3934/environsci.2016.2.168 Panis LI, Geus Bd, Vandenbulcke G, Willems H, Degraeuwe B, Bleux N, et al. 2010. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers. Atmospheric Environment 44:2263-2270. https://doi.org/10.1016/j.atmosenv.2010.04.028 Park EH, Heo J, Kim H, Yi SM. 2020. Long term trends of chemical constituents and source contributions of PM2.5 in Seoul. Chemosphere 251:126371. https://10.1016/j.chemosphere.2020.126371 Pohjankukka J, Pahikkala T, Nevalainen P, Heikkonen J. 2017. Estimating the prediction performance of spatial models via spatial k-fold cross validation. International Journal of Geographical Information Science 31:2001-2019. https://doi.org/10.1080/13658816.2017.1346255 Popoola OAM, Carruthers D, Lad C, Bright VB, Mead MI, Stettler MEJ, et al. 2018. Use of networks of low cost air quality sensors to quantify air quality in urban settings. Atmospheric Environment 194:58-70. http://dx.doi.org/10.1016/j.atmosenv.2018.09.030 Quiros DC, Lee ES, Wang R, Zhu Y. 2013. Ultrafine particle exposures while walking, cycling, and driving along an urban residential roadway. Atmospheric Environment 73:185-194. https://doi.org/10.1016/j.atmosenv.2013.03.027 Rahman MM, Karunasinghe J, Clifford S, Knibbs LD, Morawska L. 2020. New insights into the spatial distribution of particle number concentrations by applying non-parametric land use regression modelling. Science of the Total Environment 702. http://dx.doi.org/10.1016/j.scitotenv.2019.134708 Rakowska A, Wong KC, Townsend T, Chan KL, Westerdahl D, Ng S, et al. 2014. Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon. Atmospheric Environment 98:260-270. https://doi.org/10.1016/j.atmosenv.2014.08.073 Ramm F, Names I, Files S, Catalogue F, Features P, Features N, et al. 2021. Openstreetmap data in layered gis format. Version 06 7. Ramos CA, Wolterbeek HT, Almeida SM. 2016. Air pollutant exposure and inhaled dose during urban commuting: A comparison between cycling and motorized modes. Air Quality, Atmosphere Health 9:867-879. https://doi.org/10.1007/s11869-015-0389-5 Ramos CA, Silva JR, Faria T, Wolterbeek TH, Almeida SM. 2017. Exposure assessment of a cyclist to particles and chemical elements. Environ Sci Pollut Res 24:11879-11889. http://dx.doi.org/10.1007/s11356-016-6365-2 Rank J, Folke J, Jespersen PH. 2001. Differences in cyclists and car drivers exposure to air pollution from traffic in the city of Copenhagen. Science of the Total Environment 279:131-136. https://doi.org/10.1016/s0048-9697(01)00758-6 Richards LW, Alcorn SH, McDade C, Couture T, Lowenthal D, Chow JC, et al. 1999. Optical properties of the San Joaquin Valley aerosol collected during the 1995 integrated monitoring study. Atmospheric Environment 33:4787-4795. https://doi.org/10.1016/S1352-2310(99)00267-8 Seoul Metropolitan Government. 2021. Statistics of Seoul's resident registered population (by category). Available: http://data.seoul.go.kr/dataList/419/S/2/datasetView.do [accessed 21 May 2021]. Shi Y, Lau KK, Ng E. 2016. Developing street-level PM2.5 and PM10 land use regression models in high-density hong kong with urban morphological factors. Environmental Science Technology 50:8178-8187. http://dx.doi.org/10.1021/acs.est.6b01807 Strasser G, Hiebaum S, Neuberger M. 2018. Commuter exposure to fine and ultrafine particulate matter in Vienna. Wien Klin Wochenschr 130:62-69. http://dx.doi.org/10.1007/s00508-017-1274-z Su JG, Brauer M, Buzzelli M. 2008. Estimating urban morphometry at the neighborhood scale for improvement in modeling long-term average air pollution concentrations. Atmospheric Environment 42:7884-7893. http://dx.doi.org/10.1016/j.atmosenv.2008.07.023 Sun B, Song J, Wang Y, Jiang J, An Z, Li J, et al. 2021. Associations of short-term PM2.5 exposures with nasal oxidative stress, inflammation and lung function impairment and modification by GSTT1-null genotype: A panel study of the retired adults. Environmental Pollution 285:117215. https://doi.org/10.1016/j.envpol.2021.117215 Tainio M, de Nazelle AJ, Götschi T, Kahlmeier S, Rojas-Rueda D, Nieuwenhuijsen MJ, et al. 2016. Can air pollution negate the health benefits of cycling and walking? Prev Med 87:233-236. https://doi.org/10.1016/j.ypmed.2016.02.002 Tainio M, Jovanovic Andersen Z, Nieuwenhuijsen MJ, Hu L, de Nazelle A, An R, et al. 2021. Air pollution, physical activity and health: A mapping review of the evidence. Environment International 147:105954. http://dx.doi.org/10.1016/j.envint.2020.105954 Taiwan Directorate General of Highways. 2021. Number of registered motorcycles. Available: https://stat.thb.gov.tw/hb01/webMain.aspx?sys=210 kind=21 type=1 funid=1110007 rdm=dtjloeNU [accessed 15 November 2021]. Taiwan Environmental Protection Administration. 2017. Taiwan emission data system (TEDS). Taipei, Taiwan. https://teds.epa.gov.tw/TEDS.aspx Taiwan Environmental Protection Administration. 2019. Taiwan air quality monitoring network. Available: https://airtw.epa.gov.tw/ENG/default.aspx [accessed 25 September 2019]. Tang R, Blangiardo M, Gulliver J. 2013. Using building heights and street configuration to enhance intraurban PM10, NOx, and NO2 land use regression models. Environmental Science Technology 47:11643-11650. http://dx.doi.org/10.1021/es402156g Tran PTM, Zhao M, Yamamoto K, Minet L, Nguyen T, Balasubramanian R. 2020. Cyclists’ personal exposure to traffic-related air pollution and its influence on bikeability. Transportation Research Part D: Transport and Environment 88. http://dx.doi.org/10.1016/j.trd.2020.102563 Tsai D-H, Wu Y-H, Chan C-C. 2008. Comparisons of commuter's exposure to particulate matters while using different transportation modes. Science of the Total Environment 405:71-77. https://doi.org/10.1016/j.scitotenv.2008.06.016 TSI Inc. 2013. Rationale for programming a photometer calibration factor (PCF) of 0.38 for ambient monitoring. Application note EXPMN-007. https://tsi.com/getmedia/95751f37-537d-4cbf-95e1-edc46a763764/EXPMN-007_A4_Rationale_Programming_PCF_Ambient_Monitoring?ext=.pdf UNESCAP. 2017. Review of developments in transport in Asia and the pacific 2017: Transport for sustainable development and regional connectivity. ISBN: 978-92-1-120766-8.Transport for sustainable development and regional connectivity. https://www.unescap.org/publications/review-developments-transport-asia-and-pacific-2017 United States Environmental Protection Agency. 1999. Compendium method TO-17: Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes. http://www.epa.gov/ttnamti1/files/ambient/airtox/to-17r.pdf USEPA (United States Environmental Protection Agency). IRIS advanced search (benzene). Available: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=276 [accessed 27 January 2022]. Velasco E, Tan SH. 2016. Particles exposure while sitting at bus stops of hot and humid Singapore. Atmospheric Environment 142:251-263. https://doi.org/10.1016/j.atmosenv.2016.07.054 Villanueva F, Notario A, Tapia A, Albaladejo J, Cabanas B, Martinez E. 2016. Ambient levels of volatile organic compounds and criteria pollutants in the most industrialized area of central Iberian Peninsula: Intercomparison with an urban site. Environ Technol 37:983-996. https://doi.org/10.1080/09593330.2015.1096309 Villeneuve PJ, Jerrett M, Su J, Burnett RT, Chen H, Brook J, et al. 2013. A cohort study of intra-urban variations in volatile organic compounds and mortality, Toronto, Canada. Environmental Pollution 183:30-39. https://doi.org/10.1016/j.envpol.2012.12.022 Wang S. 2021. Green tracks - hiking partner. Available: https://play.google.com/store/apps/details?id=com.mountain.tracks hl=en gl=US [accessed 20 September 2020]. Weichenthal S, Kulka R, Dubeau A, Martin C, Wang D, Dales R. 2011. Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environmental Health Perspectives 119:1373-1378. https://doi.org/10.1289/ehp.1003321 Weichenthal S, Kulka R, Bélisle P, Joseph L, Dubeau A, Martin C, et al. 2012. Personal exposure to specific volatile organic compounds and acute changes in lung function and heart rate variability among urban ………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81194-
dc.description.abstract"苯(benzene)、甲苯(toluene)、二甲苯(ethylbenzene)與鄰間對二甲苯(xylenes)這類合稱為BTEX的揮發性有機污染物和細懸浮微粒(PM2.5)為常見的交通空氣污染物(traffic-related air pollutant, TRAP),為了降低車輛排放,許多人們開始選擇成為綠色通勤族—透過騎乘腳踏車或電動機車來通勤。儘管如此,這些通勤族也因為接近路上的車輛排放源,而較其他通勤族(如轎車駕駛、捷運通勤族)有較高的空氣污染物(TRAP)濃度暴露量。為進行綠色通勤族的暴露評估,政府的空品測站或是低階微型感測器的監測方式不失為一種方法。但因為空品測站的密度與位置或是低階感測器的量測精準度與架設位置的不確定性,使得兩者的量測值代表性受到限制。因此,在本研究中,使用直接量測的方式評估綠色通勤族的暴露。此外,亦以現場的量測結果為基礎進行暴露濃度模式的建立,模擬與評估最低暴露濃度路徑與最短通勤路徑的暴露濃度差異。 本研究分成三階段的實驗。在第一階段,於自行車道架設固定式監測儀器設備以監測污染物暴露濃度,並藉由監測值結合模式分析以鑑別影響暴露濃度的環境因子與各類車輛種類的貢獻程度。在監測儀器方面,PM2.5以連續監測儀器,而BTEX則以近連續監測儀器進行暴露濃度評估。在第二階段,則是在規定的騎乘路線上,藉由綠色通勤族所攜帶監測設備,以移動監測的方式評估個人暴露,且評估與鑑別影響暴露濃度的環境因子與各類車輛種類的貢獻程度。此階段亦使用連續監測儀器進行PM2.5的暴露濃度評估,BTEX因儀器技術的限制,只能使用時間累積式的方法來評估。資料分析方面,第一與第二階段皆以廣義線性回歸模式(generalized linear model),包含混合模式(mixed-effect model)評估影響暴露濃度的環境因子與各類車輛種類的貢獻程度。而在第二階段,亦使用健康衝擊模式(Health Impact Modelling, HIM)的方式評估自行車與電動機車通勤族的全因死亡率(All-cause mortality, ACM)風險差異。在第三階段,於亞洲三城市(台北、大阪與首爾)藉由自行車騎士配戴PM2.5低階採樣器,以移動監測的方式評估個人暴露濃度。以個人暴露濃度為基礎,結合路徑上之土地利用特性以及機械學習演算法中的隨機森林演算法(Random Forest),建立城市PM2.5濃度分布推估模式。並以空間交叉驗證(Spatial cross-validation)方法驗證模式表現,避免模式評估過程因為空間自相關性(Sptail Autocorrelation, SAC)的狀況而有過度優化模式表現的假象。最後,以QGIS(Quantum geographic information system)之的最短路徑工具(shortest path)模擬最低暴露濃度路徑與最短通勤路徑,並評估兩種路徑的暴露濃度差異。 實驗結果顯示,主要影響綠色通勤族的交通污染物濃度暴露的因子與來源多數與交通有關,如路徑的種類、通勤的時間點、通勤工具、與交通有關的土地利用特徵、車輛數(如機車)。另外,BTEX與PM2.5的暴露濃度相比,有較高的空間變異特性。因此,BTEX可以成為評估都市土地利用規劃差異的空氣品質指標物。而第二階段的模式分析結果也顯示,透過替代通勤路徑可以有效降低空氣污染物的暴露濃度。在第二階段,HIM的結果顯示,自行車通勤族可因通勤的時間點、通勤的時間在替代通勤路徑,降低全因死亡率(ACM)的風險。在第三階段,在完成建立暴露濃度地圖後,透過模擬路徑的比較,所有的低暴露濃度路徑的累積暴露濃度都比最短路徑的暴露濃度低。儘管有些路徑比較的結果顯示暴露濃度差異百分比不大,但每天通勤的暴露差異量,透過每日的積累,長遠來看是有其效益之存在。 總結來說,避開交通量大或是有許多交通相關的土地利用特徵的路徑或時間,是可以有效降低通勤所累積的暴露濃度。而騎乘腳踏車所帶來的效益,除了降低暴露濃度外,透過騎車這項運動所產生的健康效益,有機會可以克服暴露於空氣污染物所帶來的風險。對於政策推行者,可以考慮建立以空氣污染物暴露濃度為基礎的路徑規劃的平台,供綠色通勤族使用。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:35:30Z (GMT). No. of bitstreams: 1
U0001-2401202218475600.pdf: 8321523 bytes, checksum: b044f0727e0bddcc83c0d8c9a6ab8012 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents"Content Preface II 摘要 (Chinese Abstract) III Abstract VI Content IX List of Figures XII List of Tables XIII 1. Introduction 14 1.1 Background 14 1.1.1 Air pollutants and commuting 14 1.1.2 Assessment for commuters’ exposure to the TRAPs 15 1.1.3 Alternative routes 16 1.2 Purpose and objectives 22 2. Material and Method 24 2.1 Phase 1: Stationary monitoring for PM2.5 and BTEXs in bike lanes 24 2.1.1 Monitoring sites 24 2.1.2 Data collection 26 2.1.3 Data analysis 32 2.2 Phase 2: Mobile monitoring for PM2.5 and BTEXs along the roads 34 2.2.1 Study area 34 2.2.2 Monitoring design 41 2.2.3 Monitoring platforms 41 2.2.4 Data collection 41 2.2.5 Data analysis for environmental effects 43 2.2.6 Health impact modeling 44 2.3 Phase 3: Mapping cyclists’ PM2.5 exposure for routing in three Asian cities 49 2.3.1 Study area 49 2.3.2 Data collection 51 2.3.3 Land use characteristics 56 2.3.4 Modeling approach and evaluation 60 2.3.5 Simulation for identifying the lowest-exposure routes 61 3. Results and Discussion 64 3.1 Phase 1: Stationary monitoring for PM2.5 and BTEXs in bike lanes 64 3.1.1 PM2.5 and BTEXs at the bike lanes 64 3.1.2 Effect of traffic counts and types 68 3.1.3 Land use and traffic counts 74 3.2 Phase 2: Mobile monitoring for PM2.5 and BTEXs on the roads 78 3.2.1 Descriptive statistics for commuter exposure 78 3.2.2 Correlations between ambient measurements and commuter exposures 80 3.2.3 Commuting periods 81 3.2.4 Commuting routes 83 3.2.5 Commuting modes 88 3.2.6 Traffic counts and types 90 3.2.7 Health impacts for commuters 92 3.3 Phase 3: Mapping cyclists’ PM2.5 exposure for routing in three Asian cities 96 3.3.1 On-road PM2.5 measurements 96 3.3.2 Ambient model 98 3.3.3 Spatial model 100 3.3.4 Two-stage model 104 3.3.5 Comparison of the shortest-distance and lowest-exposure routes 106 4. Conclusion 112 4.1 Summary and limitation 112 4.1.1 Phase 1: Stationary monitoring for PM2.5 and BTEXs in bike lanes 112 4.1.2 Phase 2: Mobile monitoring for PM2.5 and BTEXs along the roads 113 4.1.3 Phase 3: Mapping cyclists’ PM2.5 exposure for routing in three Asian cities 114 4.2 Overall conclusion and recommendation 116 5. Acknowledgment 117 6. References 118 Appendices 133 List of Figures Figure 1 Flow chart of dissertation 23 Figure 2 The sampling sites at the bike lanes 25 Figure 3 Configuration of PM2.5 and benzene, toluene, ethylbenzene, and xylenes (BTEX) monitoring instruments. 30 Figure 4 Monitoring routes (a) Route A, (b) Route B, (C) Route C, (d) Route P, and (e) The monitoring routes and the location of air quality monitoring stations (AQMSs). 40 Figure 5 Location of study cities. 50 Figure 6 Network routes in the cities. 55 Figure 7 Modeling flowchart 63 Figure 8 Box plot of pollutant measurements taken along bike lanes. 66 Figure 9 Scatter plot of onsite measurements and average measurements of air quality monitoring stations (AQMSs) or photochemical assessment monitoring station (PAMS). 67 Figure 10 General effect of vehicle type on pollutant concentrations 71 Figure 11 Proportions of benzene, toluene, ethylbenzene, and xylenes (BTEXs; mean concentrations) in the total BTEX 76 Figure 12 Exposure to pollutants. 79 Figure 13 Ratio of the measurements in the rush hour over the measurements in the non-rush hour period. 82 Figure 14 Bar chart of the average traffic counts along the routes (counts/min). 86 Figure 15 Evaluation of bicycle riding duration for different routes and periods. 94 Figure 16 On-road PM2.5 concentration distribution in different cities. 97 Figure 17 Example of the training and testing dataset applied for spatial CV. 102 Figure 18 Variable importance scores and total variable importance scores categorized by land use features in all buffer sizes in the cities. 103 Figure 19 Two-stage model performance for average route exposure in the cities. 105 Figure 20 Pairs of routes in the cities. 110 List of Tables Table 1 Studies reporting exposure to BTEXs and PM2.5 using mobile platforms. 20 Table 2 Routing studies based on modelling techniques 21 Table 3 Land use features considered in Phase 1. 31 Table 4 Parameters for computing HIM estimates 47 Table 5 Classification of the land use features in Phase 3 58 Table 6 Statistics of the land use features in the 500m buffer size in each city. 59 Table 7 Mean vehicle counts (SD) at different temporal resolutions 72 Table 8 Effect of vehicle type on pollutant concentrations in vehicle models 73 Table 9 Effects of land-use and traffic-related variables on pollutant concentrations along bike lanes 77 Table 10 Percent changes in multivariable linear regression models for the relationship between on-road measurements and commuting effects. 87 Table 11 Estimates of the health impact modeling in different scenarios. 95 Table 12 CV performance of model in different stages with or without a distance restriction of 100 m. 99 Table 13 Comparison of PM2.5 exposure on the shortest route and cleanest route. 111"
dc.language.isoen
dc.subject土地利用迴歸模式zh_TW
dc.subject苯-甲-二甲苯混合物zh_TW
dc.subject路徑網路zh_TW
dc.subject電動機車zh_TW
dc.subject隨機森林zh_TW
dc.subject自行車zh_TW
dc.subject細懸浮微粒zh_TW
dc.subjectPM2.5en
dc.subjectrandom foresten
dc.subjectland use regression (LUR)en
dc.subjectnetwork routesen
dc.subjectelectric scooteren
dc.subjectcyclisten
dc.subjectBTEXsen
dc.title綠色通勤族之交通空氣污染暴露評估zh_TW
dc.titleAssessing green commuters' exposure to the traffic-related air pollutionen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.author-orcid0000-0002-7586-5602
dc.contributor.advisor-orcid吳章甫(0000-0003-2244-1934)
dc.contributor.oralexamcommittee蔡詩偉,詹長權,張俊彥,張大元,張立德
dc.subject.keyword細懸浮微粒,苯-甲-二甲苯混合物,自行車,電動機車,路徑網路,土地利用迴歸模式,隨機森林,zh_TW
dc.subject.keywordPM2.5,BTEXs,cyclist,electric scooter,network routes,land use regression (LUR),random forest,en
dc.relation.page136
dc.identifier.doi10.6342/NTU202200187
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-02-09
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境與職業健康科學研究所zh_TW
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2401202218475600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
8.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved