Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 運動設施與健康管理碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81187
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林信甫(Hsin-Fu Lin)
dc.contributor.authorI-Chen Suen
dc.contributor.author蘇羿蓁zh_TW
dc.date.accessioned2022-11-24T03:35:05Z-
dc.date.available2021-08-10
dc.date.available2022-11-24T03:35:05Z-
dc.date.copyright2021-08-10
dc.date.issued2021
dc.date.submitted2021-08-04
dc.identifier.citation1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Statistics C, and Stroke Statistics S. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation 135: e146-e603, 2017. 2. Sage AP, Tintut Y, and Demer LL. Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 7: 528-536, 2010. 3. Sakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, and Virmani R. Pathophysiology of Atherosclerosis Plaque Progression. Heart, Lung and Circulation 22: 399-411, 2013. 4. Vogel RA. Coronary risk factors, endothelial function, and atherosclerosis: A review. Clinical Cardiology 20: 426-432, 1997. 5. Gimbrone MA, and García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circulation Research 118: 620-636, 2016. 6. Yeap BB, Alfonso H, Chubb SA, Byrnes E, Beilby JP, Ebeling PR, Allan CA, Schultz C, Hankey GJ, Golledge J, Flicker L, and Norman PE. Proportion of Undercarboxylated Osteocalcin and Serum P1NP Predict Incidence of Myocardial Infarction in Older Men. J Clin Endocrinol Metab 100: 3934-3942, 2015. 7. Riquelme-Gallego B, Garcia-Molina L, Cano-Ibanez N, Sanchez-Delgado G, Andujar-Vera F, Garcia-Fontana C, Gonzalez-Salvatierra S, Garcia-Recio E, Martinez-Ruiz V, Bueno-Cavanillas A, Munoz-Torres M, and Garcia-Fontana B. Circulating Undercarboxylated Osteocalcin as Estimator of Cardiovascular and Type 2 Diabetes Risk in Metabolic Syndrome Patients. Sci Rep 10: 1840, 2020. 8. Hauschka PV, Lian JB, Cole DE, and Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiological Reviews 69: 990-1047, 1989. 9. Neve A, Corrado A, and Cantatore FP. Osteoblast physiology in normal and pathological conditions. Cell and Tissue Research 343: 289-302, 2011. 10. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, and Karsenty G. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142: 296-308, 2010. 11. Li J, Zhang H, Yang C, Li Y, and Dai Z. An overview of osteocalcin progress. Journal of Bone and Mineral Metabolism 34: 367-379, 2016. 12. Booth SL, Dallal G, Shea MK, Gundberg C, Peterson JW, and Dawson-Hughes B. Effect of Vitamin K Supplementation on Bone Loss in Elderly Men and Women. The Journal of Clinical Endocrinology Metabolism 93: 1217-1223, 2008. 13. Booth SL, Centi A, Smith SR, and Gundberg C. The role of osteocalcin in human glucose metabolism: marker or mediator? Nature Reviews Endocrinology 9: 43-55, 2013. 14. Jie KS, Bots ML, Vermeer C, Witteman JC, and Grobbee DE. Vitamin K intake and osteocalcin levels in women with and without aortic atherosclerosis: a population-based study. Atherosclerosis 116: 117-123, 1995. 15. Mizokami A, Kawakubo-Yasukochi T, and Hirata M. Osteocalcin and its endocrine functions. Biochem Pharmacol 132: 1-8, 2017. 16. Evrard S, Delanaye P, Kamel S, Cristol J-P, Cavalier E, Arnaud J, Zaoui P, Carlier MC, Laville M, Fouque D, Cavalier E, Delanaye P, Cristol JP, Bargnoux AS, Kamel S, Massy Z, Prié D, Urena-Torres P, Souberbielle JC, Boutten A, Guérin A, Hannedouche T, Jean G, Lafage-Proust MH, London G, Mercadal L, and Pieroni L. Vascular calcification: from pathophysiology to biomarkers. Clinica Chimica Acta 438: 401-414, 2015. 17. Tyson KL, Reynolds JL, McNair R, Zhang Q, Weissberg PL, and Shanahan CM. Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol 23: 489-494, 2003. 18. Idelevich A, Rais Y, and Monsonego-Ornan E. Bone Gla Protein Increases HIF-1α–Dependent Glucose Metabolism and Induces Cartilage and Vascular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology 31: e55-e71, 2011. 19. Shanahan CM, Proudfoot D, Tyson KL, Cary NR, Edmonds M, and Weissberg PL. Expression of mineralisation-regulating proteins in association with human vascular calcification. Z Kardiol 89 Suppl 2: 63-68, 2000. 20. Kapustin AN, and Shanahan CM. Osteocalcin: a novel vascular metabolic and osteoinductive factor? Arterioscler Thromb Vasc Biol 31: 2169-2171, 2011. 21. Tacey A, Qaradakhi T, Brennan-Speranza T, Hayes A, Zulli A, and Levinger I. Potential Role for Osteocalcin in the Development of Atherosclerosis and Blood Vessel Disease. Nutrients 10: 2018. 22. Rashdan NA, Sim AM, Cui L, Phadwal K, Roberts FL, Carter R, Ozdemir DD, Hohenstein P, Hung J, Kaczynski J, Newby DE, Baker AH, Karsenty G, Morton NM, and MacRae VE. Osteocalcin Regulates Arterial Calcification Via Altered Wnt Signaling and Glucose Metabolism. J Bone Miner Res 35: 357-367, 2020. 23. Hwang Y-C, Kang M, Cho I-J, Jeong I-K, Ahn KJ, Chung HY, and Lee M-K. Association between the Circulating Total Osteocalcin Level and the Development of Cardiovascular Disease in Middle-aged Men: A Mean 8.7-year Longitudinal Follow-up Study. Journal of Atherosclerosis and Thrombosis 22: 136-143, 2015. 24. Holvik K, Van Schoor NM, Eekhoff EMW, Den Heijer M, Deeg DJH, Lips P, and De Jongh R. Plasma osteocalcin levels as a predictor of cardiovascular disease in older men and women: a population-based cohort study. European Journal of Endocrinology 171: 161-170, 2014. 25. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S, and Sugimoto T. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 94: 45-49, 2009. 26. Parker BD, Bauer DC, Ensrud KE, and Ix JH. Association of Osteocalcin and Abdominal Aortic Calcification in Older Women: The Study of Osteoporotic Fractures. Calcified Tissue International 86: 185-191, 2010. 27. Millar SA, Patel H, Anderson SI, England TJ, and O'Sullivan SE. Osteocalcin, Vascular Calcification, and Atherosclerosis: A Systematic Review and Meta-analysis. Front Endocrinol (Lausanne) 8: 183, 2017. 28. Ducy P. The role of osteocalcin in the endocrine cross-talk between bone remodelling and energy metabolism. Diabetologia 54: 1291-1297, 2011. 29. Oury F, Khrimian L, Denny Christine A, Gardin A, Chamouni A, Goeden N, Huang Y-y, Lee H, Srinivas P, Gao X-B, Suyama S, Langer T, Mann JJ, Horvath Tamas L, Bonnin A, and Karsenty G. Maternal and Offspring Pools of Osteocalcin Influence Brain Development and Functions. Cell 155: 228-241, 2013. 30. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith Charles E, Hermo L, Suarez S, Roth Bryan L, Ducy P, and Karsenty G. Endocrine Regulation of Male Fertility by the Skeleton. Cell 144: 796-809, 2011. 31. Ferron M, Hinoi E, Karsenty G, and Ducy P. Osteocalcin differentially regulates β cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proceedings of the National Academy of Sciences 105: 5266-5270, 2008. 32. Ferron M, McKee MD, Levine RL, Ducy P, and Karsenty G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone 50: 568-575, 2012. 33. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, and Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell 130: 456-469, 2007. 34. Mera P, Laue K, Wei J, Berger JM, and Karsenty G. Osteocalcin is necessary and sufficient to maintain muscle mass in older mice. Molecular Metabolism 5: 1042-1047, 2016. 35. Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galán-Díez M, Lacampagne A, Mitchell SJ, Mattison JA, Chen Y, Bacchetta J, Szulc P, Kitsis RN, de Cabo R, Friedman RA, Torsitano C, McGraw TE, Puchowicz M, Kurland I, and Karsenty G. Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metab 23: 1078-1092, 2016. 36. Greenhill C. Exercise: Osteocalcin in the adaptation to exercise. Nat Rev Endocrinol 12: 434, 2016. 37. Chowdhury S, Schulz L, Palmisano B, Singh P, Berger JM, Yadav VK, Mera P, Ellingsgaard H, Hidalgo J, Bruning J, and Karsenty G. Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts. J Clin Invest 130: 2888-2902, 2020. 38. Levinger I, Jerums G, Stepto NK, Parker L, Serpiello FR, McConell GK, Anderson M, Hare DL, Byrnes E, Ebeling PR, and Seeman E. The effect of acute exercise on undercarboxylated osteocalcin and insulin sensitivity in obese men. J Bone Miner Res 29: 2571-2576, 2014. 39. Levinger I, Zebaze R, Jerums G, Hare DL, Selig S, and Seeman E. The effect of acute exercise on undercarboxylated osteocalcin in obese men. Osteoporos Int 22: 1621-1626, 2011. 40. Kim YS, Nam JS, Yeo DW, Kim KR, Suh SH, and Ahn CW. The effects of aerobic exercise training on serum osteocalcin, adipocytokines and insulin resistance on obese young males. Clin Endocrinol (Oxf) 82: 686-694, 2015. 41. Wedell-Neergaard AS, Lang Lehrskov L, Christensen RH, Legaard GE, Dorph E, Larsen MK, Launbo N, Fagerlind SR, Seide SK, Nymand S, Ball M, Vinum N, Dahl CN, Henneberg M, Ried-Larsen M, Nybing JD, Christensen R, Rosenmeier JB, Karstoft K, Pedersen BK, Ellingsgaard H, and Krogh-Madsen R. Exercise-Induced Changes in Visceral Adipose Tissue Mass Are Regulated by IL-6 Signaling: A Randomized Controlled Trial. Cell Metab 29: 844-855.e843, 2019. 42. Bennell K, Khan K, and McKay H. The role of physiotherapy in the prevention and treatment of osteoporosis. Man Ther 5: 198-213, 2000. 43. Liu-Ambrose T, Khan KM, Eng JJ, Janssen PA, Lord SR, and McKay HA. Resistance and agility training reduce fall risk in women aged 75 to 85 with low bone mass: a 6-month randomized, controlled trial. J Am Geriatr Soc 52: 657-665, 2004. 44. Myers J. Exercise and Cardiovascular Health. Circulation 107: 2e-5, 2003. 45. Pollock ML, Franklin BA, Balady GJ, Chaitman BL, Fleg JL, Fletcher B, Limacher M, Piña IL, Stein RA, Williams M, and Bazzarre T. AHA Science Advisory. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription: An advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; Position paper endorsed by the American College of Sports Medicine. Circulation 101: 828-833, 2000. 46. McDonagh MJ, and Davies CT. Adaptive response of mammalian skeletal muscle to exercise with high loads. Eur J Appl Physiol Occup Physiol 52: 139-155, 1984. 47. Miyachi M, Kawano H, Sugawara J, Takahashi K, Hayashi K, Yamazaki K, Tabata I, and Tanaka H. Unfavorable effects of resistance training on central arterial compliance: a randomized intervention study. Circulation 110: 2858-2863, 2004. 48. Cortez-Cooper MY, DeVan AE, Anton MM, Farrar RP, Beckwith KA, Todd JS, and Tanaka H. Effects of high intensity resistance training on arterial stiffness and wave reflection in women. Am J Hypertens 18: 930-934, 2005. 49. Miyachi M. Effects of resistance training on arterial stiffness: a meta-analysis. Br J Sports Med 47: 393-396, 2013. 50. Lee H-Y, and Oh B-H. Aging and Arterial Stiffness. Circulation Journal 74: 2257-2262, 2010. 51. Cohn JN, Quyyumi AA, Hollenberg NK, and Jamerson KA. Surrogate markers for cardiovascular disease: functional markers. Circulation 109: IV31-46, 2004. 52. Van Bortel LM, De Backer T, and De Buyzere M. How to treat arterial stiffness beyond blood pressure lowering? Journal of Hypertension 29: 2011. 53. Kim H-L, and Kim S-H. Pulse Wave Velocity in Atherosclerosis. Frontiers in Cardiovascular Medicine 6: 2019. 54. Hayashi K, Yamamoto T, Takahara A, and Shirai K. Clinical assessment of arterial stiffness with cardio-ankle vascular index: theory and applications. Journal of Hypertension 33: 2015. 55. Laurent SP, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, and Benetos A. Aortic Stiffness Is an Independent Predictor of All-Cause and Cardiovascular Mortality in Hypertensive Patients. Hypertension 37: 1236-1241, 2001. 56. Asmar R, Benetos A, Topouchian J, Laurent P, Pannier B, Brisac AM, Target R, and Levy BI. Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies. Hypertension 26: 485-490, 1995. 57. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H, and on behalf of the European Network for Non-invasive Investigation of Large A. Expert consensus document on arterial stiffness: methodological issues and clinical applications. European Heart Journal 27: 2588-2605, 2006. 58. Bonarjee VVS. Arterial Stiffness: A Prognostic Marker in Coronary Heart Disease. Available Methods and Clinical Application. Frontiers in Cardiovascular Medicine 5: 2018. 59. Nambi V, Chambless L, Folsom AR, He M, Hu Y, Mosley T, Volcik K, Boerwinkle E, and Ballantyne CM. Carotid Intima-Media Thickness and Presence or Absence of Plaque Improves Prediction of Coronary Heart Disease Risk: The ARIC (Atherosclerosis Risk In Communities) Study. Journal of the American College of Cardiology 55: 1600-1607, 2010. 60. Taniwaki H, Kawagishi T, Emoto M, Shoji T, Kanda H, Maekawa K, Nishizawa Y, and Morii H. Correlation between the intima-media thickness of the carotid artery and aortic pulse-wave velocity in patients with type 2 diabetes. Vessel wall properties in type 2 diabetes. Diabetes Care 22: 1851-1857, 1999. 61. Tomonori T, Keiko S, Shinkichi H, Yoji N, and Akira T. Carotid atherosclerosis and arterial peripheral pulse wave velocity in cerebral thrombosis. Journal of Clinical Neuroscience 13: 45-49, 2006. 62. Kubozono T, Miyata M, Kawasoe S, Ojima S, Yoshifuku S, Miyahara H, Maenohara S, and Ohishi M. High Pulse Wave Velocity Has a Strong Impact on Early Carotid Atherosclerosis in a Japanese General Male Population. Circulation Journal 81: 310-315, 2017. 63. Lu Y, Zhu M, Bai B, Chi C, Yu S, Teliewubai J, Xu H, Wang K, Xiong J, Zhou Y, Ji H, Fan X, Yu X, Li J, Blacher J, Zhang Y, and Xu Y. Comparison of Carotid-Femoral and Brachial-Ankle Pulse-Wave Velocity in Association With Target Organ Damage in the Community-Dwelling Elderly Chinese: The Northern Shanghai Study. J Am Heart Assoc 6: 2017. 64. Lim HE, Park CG, Shin SH, Ahn JC, Seo HS, and Oh DJ. Aortic pulse wave velocity as an independent marker of coronary artery disease. Blood Pressure 13: 369-375, 2004. 65. Lee H-S, Kim H-L, Kim H, Hwang D, Choi H-M, Oh S-W, Seo J-B, Chung W-Y, Kim S-H, Kim M-A, and Zo J-H. Incremental Prognostic Value of Brachial-Ankle Pulse Wave Velocity to Single-Photon Emission Computed Tomography in Patients with Suspected Coronary Artery Disease. Journal of Atherosclerosis and Thrombosis 22: 1040-1050, 2015. 66. Deiseroth A, Streese L, Köchli S, Wüst RS, Infanger D, Schmidt-Trucksäss A, and Hanssen H. Exercise and Arterial Stiffness in the Elderly: A Combined Cross-Sectional and Randomized Controlled Trial (EXAMIN AGE). Frontiers in Physiology 10: 2019. 67. Ashor AW, Lara J, Siervo M, Celis-Morales C, and Mathers JC. Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PloS one 9: e110034-e110034, 2014. 68. Sacre JW, Jennings GLR, and Kingwell BA. Exercise and Dietary Influences on Arterial Stiffness in Cardiometabolic Disease. Hypertension 63: 888-893, 2014. 69. Tanaka H. Effects of Regular Exercise on Arterial Stiffness. Springer International Publishing, 2015, p. 185-201. 70. Hong AR, and Kim SW. Effects of Resistance Exercise on Bone Health. Endocrinology and Metabolism 33: 435, 2018. 71. Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, and Sugimoto T. Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporosis International 22: 187-194, 2011. 72. Ahn N, and Kim K. Effects of 12-week exercise training on osteocalcin, high-sensitivity C-reactive protein concentrations, and insulin resistance in elderly females with osteoporosis. Journal of physical therapy science 28: 2227-2231, 2016. 73. Kim S-M, Kim K-M, Kim B-T, Joo N-S, Kim K-N, and Lee D-J. Correlation of Undercarboxylated Osteocalcin (ucOC) Concentration and Bone Density with Age in Healthy Korean Women. Journal of Korean Medical Science 25: 1171, 2010. 74. Suzuki Y, Maruyama-Nagao A, Sakuraba K, and Kawai S. Level of serum undercarboxylated osteocalcin correlates with bone quality assessed by calcaneal quantitative ultrasound sonometry in young Japanese females. Experimental and Therapeutic Medicine 13: 1937-1943, 2017. 75. Yamauchi M, Yamaguchi T, Nawata K, Takaoka S, and Sugimoto T. Relationships between undercarboxylated osteocalcin and vitamin K intakes, bone turnover, and bone mineral density in healthy women. Clin Nutr 29: 761-765, 2010. 76. Miura M. [Biochemical markers of bone turnover. New aspect. An automated assay for measuring bone turnover markers]. Clin Calcium 19: 1160-1169, 2009. 77. Booth SL, Broe KE, Peterson JW, Cheng DM, Dawson-Hughes B, Gundberg CM, Cupples LA, Wilson PWF, and Kiel DP. Associations between vitamin K biochemical measures and bone mineral density in men and women. Journal of Clinical Endocrinology and Metabolism 89: 4904-4909, 2004. 78. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, Filipovsky J, Huybrechts S, Mattace-Raso FUS, Protogerou AD, Schillaci G, Segers P, Vermeersch S, Weber T, on behalf of the Artery Society tESoHWGoVS, Function, and No tENf. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. Journal of Hypertension 30: 445-448, 2012. 79. Said Ouamer D, Guerchani Mohamed Karim MK, Djermane D, Benkhedda S, and Mustapha Pacha Hospital CdAA. Pulse wave velocity and blood pressure in athletes performing endurance and intense resistance training. European Heart Journal 41: 2020. 80. Pratley R, Nicklas B, Rubin M, Miller J, Smith A, Smith M, Hurley B, and Goldberg A. Strength training increases resting metabolic rate and norepinephrine levels in healthy 50- to 65-yr-old men. J Appl Physiol (1985) 76: 133-137, 1994. 81. Failla M, Grappiolo A, Emanuelli G, Vitale G, Fraschini N, Bigoni M, Grieco N, Denti M, Giannattasio C, and Mancia G. Sympathetic tone restrains arterial distensibility of healthy and atherosclerotic subjects. J Hypertens 17: 1117-1123, 1999. 82. Peppa M, Uribarri J, and Vlassara H. Advanced glycoxidation. A new risk factor for cardiovascular disease? Cardiovasc Toxicol 2: 275-287, 2002. 83. Okamoto T, Masuhara M, and Ikuta K. Effects of eccentric and concentric resistance training on arterial stiffness. Journal of Human Hypertension 20: 348-354, 2006. 84. Collier SR, Kanaley JA, Carhart R, Jr., Frechette V, Tobin MM, Hall AK, Luckenbaugh AN, and Fernhall B. Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J Hum Hypertens 22: 678-686, 2008. 85. Reference Values for Arterial Stiffness C. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: 'establishing normal and reference values'. Eur Heart J 31: 2338-2350, 2010. 86. Kawano H, Nakagawa H, Onodera S, Higuchi M, and Miyachi M. Attenuated increases in blood pressure by dynamic resistance exercise in middle-aged men. Hypertens Res 31: 1045-1053, 2008. 87. Hannemann A, Friedrich N, Spielhagen C, Rettig R, Ittermann T, Nauck M, and Wallaschofski H. Reference intervals for serum osteocalcin concentrations in adult men and women from the study of health in Pomerania. BMC Endocr Disord 13: 11-11, 2013. 88. Mohammad Rahimi GR, Niyazi A, and Alaee S. The effect of exercise training on osteocalcin, adipocytokines, and insulin resistance: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 2020. 89. Clemmensen C, Smajilovic S, Wellendorph P, and Bräuner-Osborne H. The GPCR, class C, group 6, subtype A (GPRC6A) receptor: from cloning to physiological function. Br J Pharmacol 171: 1129-1141, 2014. 90. Abd El-Kader SM. Aerobic versus resistance exercise training in modulation of insulin resistance, adipocytokines and inflammatory cytokine levels in obese type 2 diabetic patients. Journal of Advanced Research 2: 179-183, 2011. 91. Kim KH, and Lee HB. Effects of circuit training interventions on bone metabolism markers and bone density of old women with osteopenia. J Exerc Rehabil 15: 302-307, 2019. 92. Kindblom JM, Ohlsson C, Ljunggren O, Karlsson MK, Tivesten A, Smith U, and Mellström D. Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res 24: 785-791, 2009. 93. Urano T, Shiraki M, Kuroda T, Tanaka S, Urano F, Uenishi K, and Inoue S. Low serum osteocalcin concentration is associated with incident type 2 diabetes mellitus in Japanese women. J Bone Miner Metab 36: 470-477, 2018. 94. Shu H, Pei Y, Chen K, and Lu J. Significant inverse association between serum osteocalcin and incident type 2 diabetes in a middle-aged cohort. Diabetes Metab Res Rev 32: 867-874, 2016. 95. Mohammad Rahimi GR, Smart NA, Liang MTC, Bijeh N, Albanaqi AL, Fathi M, Niyazi A, and Mohammad Rahimi N. The Impact of Different Modes of Exercise Training on Bone Mineral Density in Older Postmenopausal Women: A Systematic Review and Meta-analysis Research. Calcif Tissue Int 106: 577-590, 2020. 96. FernáNdez-Real JM, Izquierdo M, Ortega F, Gorostiaga E, GóMez-Ambrosi J, Moreno-Navarrete JM, FrüHbeck G, MartíNez C, Idoate F, Salvador J, Forga L, Ricart W, and IbañEz J. The Relationship of Serum Osteocalcin Concentration to Insulin Secretion, Sensitivity, and Disposal with Hypocaloric Diet and Resistance Training. The Journal of Clinical Endocrinology Metabolism 94: 237-245, 2009. 97. Armamento-Villareal R, Aguirre L, Waters DL, Napoli N, Qualls C, and Villareal DT. Effect of Aerobic or Resistance Exercise, or Both, on Bone Mineral Density and Bone Metabolism in Obese Older Adults While Dieting: A Randomized Controlled Trial. J Bone Miner Res 35: 430-439, 2020. 98. Cartee GD, and Holloszy JO. Exercise increases susceptibility of muscle glucose transport to activation by various stimuli. Am J Physiol 258: E390-393, 1990. 99. Szulc P, Chapuy MC, Meunier PJ, and Delmas PD. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest 91: 1769-1774, 1993. 100. Atalay S, Elci A, Kayadibi H, Onder CB, and Aka N. Diagnostic utility of osteocalcin, undercarboxylated osteocalcin, and alkaline phosphatase for osteoporosis in premenopausal and postmenopausal women. Ann Lab Med 32: 23-30, 2012. 101. Chubb SA, Byrnes E, Manning L, Beilby JP, Ebeling PR, Vasikaran SD, Golledge J, Flicker L, and Yeap BB. Reference intervals for bone turnover markers and their association with incident hip fractures in older men: the Health in Men study. J Clin Endocrinol Metab 100: 90-99, 2015. 102. Smith C, Voisin S, Al Saedi A, Phu S, Brennan-Speranza T, Parker L, Eynon N, Hiam D, Yan X, Scott D, Blekkenhorst LC, Lewis JR, Seeman E, Byrnes E, Flicker L, Duque G, Yeap BB, and Levinger I. Osteocalcin and its forms across the lifespan in adult men. Bone 130: 115085, 2020. 103. Mohammad Rahimi GR, Bijeh N, and Rashidlamir A. Effects of exercise training on serum preptin, undercarboxylated osteocalcin and high molecular weight-adiponectin in adults with metabolic syndrome. Experimental Physiology 105: 2019. 104. Alipour Y, Abbassi Daloii A, Barari A, and Abdi A. Effects of resistance training on serum levels of undercarboxylated osteocalcin, adiponectin and insulin sensitivity in obese women. Tehran University Medical Journal 73: 668-673, 2015. 105. Booth SL, and Al Rajabi A. Determinants of vitamin K status in humans. Vitam Horm 78: 1-22, 2008. 106. Furusyo N, Ihara T, Hayashi T, Ikezaki H, Toyoda K, Ogawa E, Okada K, Kainuma M, Murata M, and Hayashi J. The serum undercarboxylated osteocalcin level and the diet of a Japanese population: results from the Kyushu and Okinawa Population Study (KOPS). Endocrine 43: 635-642, 2013. 107. Dusso AS, Brown AJ, and Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol 289: F8-28, 2005. 108. Je SH, Joo NS, Choi BH, Kim KM, Kim BT, Park SB, Cho DY, Kim KN, and Lee DJ. Vitamin K supplement along with vitamin D and calcium reduced serum concentration of undercarboxylated osteocalcin while increasing bone mineral density in Korean postmenopausal women over sixty-years-old. J Korean Med Sci 26: 1093-1098, 2011. 109. Colleluori G, Napoli N, Phadnis U, Armamento-Villareal R, and Villareal DT. Effect of Weight Loss, Exercise, or Both on Undercarboxylated Osteocalcin and Insulin Secretion in Frail, Obese Older Adults. Oxid Med Cell Longev 2017: 4807046, 2017. 110. Shah K, Armamento-Villareal R, Parimi N, Chode S, Sinacore DR, Hilton TN, Napoli N, Qualls C, and Villareal DT. Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. J Bone Miner Res 26: 2851-2859, 2011. 111. Yun S-H, Kim MJ, Choi B-h, Park K-C, Park K-S, and Kim Y-S. Low Level of Osteocalcin Is Related With Arterial Stiffness in Korean Adults: An Inverse J-Shaped Relationship. The Journal of Clinical Endocrinology Metabolism 101: 96-102, 2016. 112. Tacey A, Smith C, Woessner MN, Chubb P, Neil C, Duque G, Hayes A, Zulli A, and Levinger I. Undercarboxylated osteocalcin is associated with vascular function in female older adults but does not influence vascular function in male rabbit carotid artery ex vivo. PLoS One 15: e0242774, 2020. 113. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S, and Sugimoto T. Serum Osteocalcin Level Is Associated with Glucose Metabolism and Atherosclerosis Parameters in Type 2 Diabetes Mellitus. The Journal of Clinical Endocrinology Metabolism 94: 45-49, 2009. 114. Sheng L, Cao W, Cha B, Chen Z, Wang F, and Liu J. Serum osteocalcin level and its association with carotid atherosclerosis in patients with type 2 diabetes. Cardiovascular Diabetology 12: 22, 2013. 115. Zhang H, Wang LJ, Si DL, Wang C, Yang JC, Jiang P, Du C, and Wang JJ. Correlation between osteocalcin-positive endothelial progenitor cells and spotty calcification in patients with coronary artery disease. Clin Exp Pharmacol Physiol 42: 734-739, 2015. 116. Kanazawa I, Yamaguchi T, and Sugimoto T. Relationship between bone biochemical markers versus glucose/lipid metabolism and atherosclerosis; a longitudinal study in type 2 diabetes mellitus. Diabetes Res Clin Pract 92: 393-399, 2011. 117. Choi BH, Joo NS, Kim MJ, Kim KM, Park KC, and Kim YS. Coronary artery calcification is associated with high serum concentration of undercarboxylated osteocalcin in asymptomatic Korean men. Clin Endocrinol (Oxf) 83: 320-326, 2015. 118. Millar SA, Anderson SI, and O'Sullivan S E. Human vascular cell responses to the circulating bone hormone osteocalcin. J Cell Physiol 234: 21039-21048, 2019. 119. Deleskog A, Piksasova O, Silveira A, Gertow K, Baldassarre D, Veglia F, Sennblad B, Strawbridge RJ, Larsson M, Leander K, Gigante B, Kauhanen J, Rauramaa R, Smit AJ, Mannarino E, Giral P, Gustafsson S, Ostenson CG, Humphries SE, Tremoli E, de Faire U, Ohrvik J, and Hamsten A. Serum 25-hydroxyvitamin D concentration in subclinical carotid atherosclerosis. Arterioscler Thromb Vasc Biol 33: 2633-2638, 2013. 120. Millar SA, Zala I, Anderson SI, and O'Sullivan SE. Osteocalcin does not influence acute or chronic inflammation in human vascular cells. Journal of cellular physiology 235: 3414-3424, 2020. 121. Namba S, Yamaoka-Tojo M, Kakizaki R, Nemoto T, Fujiyoshi K, Hashikata T, Kitasato L, Hashimoto T, Kameda R, Meguro K, Shimohama T, Tojo T, and Ako J. Effects on bone metabolism markers and arterial stiffness by switching to rivaroxaban from warfarin in patients with atrial fibrillation. Heart and Vessels 32: 977-982, 2017. 122. Tacey A, Hayes A, Zulli A, and Levinger I. Osteocalcin and vascular function: is there a cross-talk? Molecular Metabolism 49: 101205, 2021. 123. Frolow M, Drozdz A, Kowalewska A, Nizankowski R, and Chlopicki S. Comprehensive assessment of vascular health in patients; towards endothelium-guided therapy. Pharmacological Reports 67: 786-792, 2015. 124. D'Onofrio L, Maddaloni E, and Buzzetti R. Osteocalcin and sclerostin: Background characters or main actors in cardiovascular disease? Diabetes Metab Res Rev 36: e3217, 2020. 125. Lohman T, Going S, Hall M, Ritenbaugh C, Bare L, Hill A, Houtkooper L, Aickin M, Boyden T, and Pamenter R. Effects of resistance training on regional and total bone mineral density in premenopausal women: A randomized prospective study. Journal of Bone and Mineral Research 10: 1015-1024, 1995. 126. Kelley GA, Kelley KS, and Tran ZV. Resistance training and bone mineral density in women: a meta-analysis of controlled trials. Am J Phys Med Rehabil 80: 65-77, 2001. 127. Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, and Evans WJ. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. A randomized controlled trial. Jama 272: 1909-1914, 1994. 128. Jeanne F. Nichols KPN, Katrina K. Peterson, and David J. Sartoris. Bone mineral density responses to high-intensity strength training in active older women. Journal of Aging and Physical Activity 3: 26-38, 1995. 129. McCartney N, Hicks AL, Martin J, and Webber CE. Long-term resistance training in the elderly: effects on dynamic strength, exercise capacity, muscle, and bone. J Gerontol A Biol Sci Med Sci 50: B97-104, 1995. 130. Villareal DT, Fontana L, Weiss EP, Racette SB, Steger-May K, Schechtman KB, Klein S, and Holloszy JO. Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: a randomized controlled trial. Arch Intern Med 166: 2502-2510, 2006. 131. Klein-Nulend J, Bacabac RG, and Bakker AD. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater 24: 278-291, 2012. 132. Yuan Y, Chen X, Zhang L, Wu J, Guo J, Zou D, Chen B, Sun Z, Shen C, and Zou J. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. Prog Biophys Mol Biol 122: 122-130, 2016. 133. Frost HM. Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage. Calcif Tissue Int 42: 145-156, 1988. 134. Marques EA, Mota J, and Carvalho J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age (Dordr) 34: 1493-1515, 2012. 135. Turner CH, and Robling AG. Mechanisms by which exercise improves bone strength. J Bone Miner Metab 23 Suppl: 16-22, 2005. 136. Zehnacker CH, and Bemis-Dougherty A. Effect of weighted exercises on bone mineral density in post menopausal women. A systematic review. J Geriatr Phys Ther 30: 79-88, 2007. 137. Sato K, Iemitsu M, Matsutani K, Kurihara T, Hamaoka T, and Fujita S. Resistance training restores muscle sex steroid hormone steroidogenesis in older men. Faseb j 28: 1891-1897, 2014. 138. Kerr D, Morton A, Dick I, and Prince R. Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res 11: 218-225, 1996. 139. LAYNE JE, and NELSON ME. The effects of progressive resistance training on bone density: a review. Medicine Science in Sports Exercise 31: 25-30, 1999. 140. Watson SL, Weeks BK, We………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81187-
dc.description.abstract"背景:近年研究發現骨骼分泌之骨鈣素 (osteocalcin) 具有似荷爾蒙的功能,其中未羧 化骨鈣素 (undercarboxylated osteocalcin, ucOC) 可能與運動能力和動脈硬化有關。中高齡者 規律從事阻力訓練能預防骨質疏鬆和肌少症,不過有文獻指出阻力訓練對心血管系統會造成 負面的影響。目的:探討中老年人規律高強度阻力訓練介入後,對不同結構骨鈣素和血管硬 化指標與骨密度的影響,以及骨鈣素和血管硬化指標、骨密度是否具有相關性。方法:受試 者為 28 位無規律運動習慣的健康中老年人(年齡 64.0±5.8 歲,身高 164.5±8.4 公分,體重 64.5±11.2 公斤),分為規律運動組 (N=14) 和控制組 (N=14),進行 8 週,每週 3 次,80% 1RM (one repetition maximum, 1RM) 之全身高強度機械式阻力訓練,測量訓練前、後及停止 訓練 4 週後的骨鈣素濃度、血管硬化指標及骨密度。結果:高強度阻力訓練介入對血管硬化 指標肱踝脈波傳導速度(brachial-ankle pulse wave velocity, baPWV)、頸股脈波傳導速度 (carotid-femoral PWV, cfPWV)、頸動脈脈波傳導速度(local pulse wave velocity, local PWV) 和 血清總骨鈣素(total osteocalcin, tOC)、ucOC 濃度及骨密度皆無顯著影響;tOC、ucOC 和血 管硬化指標也不具有相關性。不過在骨密度變化量方面,運動組整體和控制組有顯著差異 (p=0.01),運動組在訓練後和四周停止訓練的變化量皆是些微增加 (訓練後 0.005±0.012 g/cm2,停止訓練 0.006±0.011 g/cm2),而控制組則皆是些微下降 (訓練後−0.004±0.009 g/cm2,停止訓練−0.005±0.008 g/cm2);而 tOC 和骨密度在訓練後和停止訓練 2 個時間點, 呈現顯著負相關 (訓練後 r = −0.48,p=0.01;停止訓練 r = −0.43,p=0.02)。結論:健康中老 年人規律進行高強度阻力訓練 8 週後,動脈硬化指標 PWV、骨鈣素和骨密度皆未有顯著改 變,不過可能有維持骨密度的效果。中老年人從事短期高強度阻力訓練,並未影響骨鈣素及 動脈硬化指標,但對骨質密度可能有正面影響;骨鈣素和動脈硬化指標及骨密度變化之間的 相關性,未來還需更多研究證實。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:35:05Z (GMT). No. of bitstreams: 1
U0001-0308202112150500.pdf: 2015146 bytes, checksum: af2b6902461b717da50e1a438b577287 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書.............................................................................................i 中文摘要.........................................................................................................ii 英文摘要.........................................................................................................iii 目錄...............................................................................................................iv 圖次...............................................................................................................vi 表次............................................................................................................vii 第壹章 緒論................................................................................................... 1 第一節 研究背景....................................................................................... 4 第二節 研究目的.......................................................................................10 第三節 研究假設.......................................................................................10 第四節 名詞操作型定義..............................................................................11 第五節 研究範圍與限制..............................................................................11 第六節 研究重要性....................................................................................12 第貳章 研究方法.............................................................................................13 第一節 研究對象.......................................................................................13 第二節 研究設計.......................................................................................14 第三節 實驗測量方法.................................................................................17 第四節 統計方法.......................................................................................19 第參章 研究結果.............................................................................................20 第一節 受試者基本資料..............................................................................20 第二節 血壓及血管硬化指標化.....................................................................21 第三節 骨鈣素濃度變化..............................................................................23 第四節 骨密度變化....................................................................................27 第五節 不訓練 4 週後指標差異.....................................................................29 第肆章 討論...................................................................................................30 第一節 阻力訓練介入對血管硬化的影響.........................................................30 第二節 阻力訓練介入對骨鈣素濃度的影響......................................................32 第三節 血管硬化與骨鈣素的相關性...............................................................34 第四節 阻力訓練介入對骨密度變化的影響......................................................37 第五節 骨鈣素和骨密度的關聯性..................................................................38 第六節 結論與建議....................................................................................40 參考文獻.........................................................................................................41 附錄 附錄一 tOC 和 ucOC 停止訓練的變化量.........................................................53 附錄二 骨密度變化量.................................................................................54 附錄三 肌肉量相關分析..............................................................................55
dc.language.isozh-TW
dc.subject脈波傳導速度zh_TW
dc.subject未羧化骨鈣素zh_TW
dc.subject動脈硬化zh_TW
dc.subject高強度阻力訓練zh_TW
dc.subject骨密度zh_TW
dc.subjectatherosclerosisen
dc.subjecthigh-intensity resistance trainingen
dc.subjectbone mineral densityen
dc.subjectundercarboxylated osteocalcinen
dc.subjectpulse wave velocityen
dc.title中老年人高強度阻力運動訓練與血清骨鈣素變化、動脈硬化指標及骨密度變化之探討zh_TW
dc.title"The Impact of High-intensity Resistance Training on Serum Osteocalcin, Arterial Stiffness and Bone Mineral Density in Middle-aged to Older Adults"en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王順正(Hsin-Tsai Liu),林原佑(Chih-Yang Tseng)
dc.subject.keyword未羧化骨鈣素,動脈硬化,高強度阻力訓練,骨密度,脈波傳導速度,zh_TW
dc.subject.keywordundercarboxylated osteocalcin,atherosclerosis,high-intensity resistance training,bone mineral density,pulse wave velocity,en
dc.relation.page55
dc.identifier.doi10.6342/NTU202102034
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-05
dc.contributor.author-dept共同教育中心zh_TW
dc.contributor.author-dept運動設施與健康管理碩士學位學程zh_TW
顯示於系所單位:運動設施與健康管理碩士學位學程

文件中的檔案:
檔案 大小格式 
U0001-0308202112150500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved