Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81142
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁博煌(Po-Huang Liang)
dc.contributor.authorHsin-Ying Hoen
dc.contributor.author何欣穎zh_TW
dc.date.accessioned2022-11-24T03:32:43Z-
dc.date.available2021-08-20
dc.date.available2022-11-24T03:32:43Z-
dc.date.copyright2021-08-20
dc.date.issued2021
dc.date.submitted2021-08-10
dc.identifier.citation1. Kerr, J. F.; Wyllie, A. H.; Currie, A. R., Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972, 26 (4), 239-57. 2. Bär, P. R., Apoptosis — the cell's silent exit. Life Sciences 1996, 59 (5), 369-378. 3. Elmore, S., Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology 2007, 35 (4), 495-516. 4. Ulukaya, E.; Acilan, C.; Yilmaz, Y., Apoptosis: why and how does it occur in biology? Cell Biochem Funct 2011, 29 (6), 468-80. 5. Budihardjo, I.; Oliver, H.; Lutter, M.; Luo, X.; Wang, X., Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999, 15, 269-90. 6. Hengartner, M. O., The biochemistry of apoptosis. Nature 2000, 407 (6805), 770-776. 7. Reed, J. C., Mechanisms of Apoptosis. The American Journal of Pathology 2000, 157 (5), 1415-1430. 8. Thornberry, N. A.; Lazebnik, Y., Caspases: enemies within. Science 1998, 281 (5381), 1312-6. 9. Boatright, K. M.; Salvesen, G. S., Mechanisms of caspase activation. Curr Opin Cell Biol 2003, 15 (6), 725-31. 10. Yang, S.; Thor, A. D.; Edgerton, S.; Yang, X., Caspase-3 mediated feedback activation of apical caspases in doxorubicin and TNF-alpha induced apoptosis. Apoptosis 2006, 11 (11), 1987-97. 11. McComb, S.; Chan, P. K.; Guinot, A.; Hartmannsdottir, H.; Jenni, S.; Dobay, M. P.; Bourquin, J.-P.; Bornhauser, B. C., Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7. Science Advances 2019, 5 (7), eaau9433. 12. Kischkel, F. C.; Hellbardt, S.; Behrmann, I.; Germer, M.; Pawlita, M.; Krammer, P. H.; Peter, M. E., Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J. 1995, 14 (22), 5579-88. 13. Peter, M. E., The TRAIL DISCussion: It is FADD and caspase-8! Cell Death Differ 2000, 7 (9), 759-60. 14. Kalkavan, H.; Green, D. R., MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 2018, 25 (1), 46-55. 15. Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S. M.; Ahmad, M.; Alnemri, E. S.; Wang, X., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997, 91 (4), 479-89. 16. Li, H.; Zhu, H.; Xu, C. J.; Yuan, J., Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998, 94 (4), 491-501. 17. Esposti, M. D., The roles of Bid. Apoptosis 2002, 7 (5), 433-40. 18. Kantari, C.; Walczak, H., Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta 2011, 1813 (4), 558-63. 19. Adams, J. M.; Cory, S., Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 2001, 26 (1), 61-6. 20. Cory, S.; Adams, J. M., The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002, 2 (9), 647-56. 21. Salvesen, G. S.; Duckett, C. S., IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 2002, 3 (6), 401-10. 22. O'Brien, M. A.; Kirby, R., Apoptosis: A review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. Journal of Veterinary Emergency and Critical Care 2008, 18 (6), 572-585. 23. Chai, J.; Du, C.; Wu, J.-W.; Kyin, S.; Wang, X.; Shi, Y., Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 2000, 406 (6798), 855-862. 24. Verhagen, A. M.; Ekert, P. G.; Pakusch, M.; Silke, J.; Connolly, L. M.; Reid, G. E.; Moritz, R. L.; Simpson, R. J.; Vaux, D. L., Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins. Cell 2000, 102 (1), 43-53. 25. Du, C.; Fang, M.; Li, Y.; Li, L.; Wang, X., Smac, a Mitochondrial Protein that Promotes Cytochrome c–Dependent Caspase Activation by Eliminating IAP Inhibition. Cell 2000, 102 (1), 33-42. 26. Srinivasula, S. M.; Datta, P.; Fan, X.-J.; Fernandes-Alnemri, T.; Huang, Z.; Alnemri, E. S., Molecular Determinants of the Caspase-promoting Activity of Smac/DIABLO and Its Role in the Death Receptor Pathway*. Journal of Biological Chemistry 2000, 275 (46), 36152-36157. 27. van Loo, G.; van Gurp, M.; Depuydt, B.; Srinivasula, S. M.; Rodriguez, I.; Alnemri, E. S.; Gevaert, K.; Vandekerckhove, J.; Declercq, W.; Vandenabeele, P., The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differentiation 2002, 9 (1), 20-26. 28. Srinivasula, S. M.; Gupta, S.; Datta, P.; Zhang, Z.; Hegde, R.; Cheong, N.; Fernandes-Alnemri, T.; Alnemri, E. S., Inhibitor of apoptosis proteins are substrates for the mitochondrial serine protease Omi/HtrA2. J Biol Chem 2003, 278 (34), 31469-72. 29. Yang, Q.-H.; Church-Hajduk, R.; Ren, J.; Newton, M. L.; Du, C., Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Development 2003, 17 (12), 1487-1496. 30. Verhagen, A. M.; Silke, J.; Ekert, P. G.; Pakusch, M.; Kaufmann, H.; Connolly, L. M.; Day, C. L.; Tikoo, A.; Burke, R.; Wrobel, C.; Moritz, R. L.; Simpson, R. J.; Vaux, D. L., HtrA2 Promotes Cell Death through Its Serine Protease Activity and Its Ability to Antagonize Inhibitor of Apoptosis Proteins*. Journal of Biological Chemistry 2002, 277 (1), 445-454. 31. Suzuki, Y.; Imai, Y.; Nakayama, H.; Takahashi, K.; Takio, K.; Takahashi, R., A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 2001, 8 (3), 613-21. 32. Igney, F. H.; Krammer, P. H., Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2002, 2 (4), 277-88. 33. Wong, R. S. Y., Apoptosis in cancer: from pathogenesis to treatment. Journal of Experimental Clinical Cancer Research 2011, 30 (1), 87. 34. Carneiro, B. A.; El-Deiry, W. S., Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 2020, 17 (7), 395-417. 35. Uren, A. G.; Coulson, E. J.; Vaux, D. L., Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends in Biochemical Sciences 1998, 23 (5), 159-162. 36. Shi, Y., A conserved tetrapeptide motif: potentiating apoptosis through IAP-binding. Cell Death Differentiation 2002, 9 (2), 93-95. 37. Eckelman, B. P.; Drag, M.; Snipas, S. J.; Salvesen, G. S., The mechanism of peptide-binding specificity of IAP BIR domains. Cell Death Differentiation 2008, 15 (5), 920-928. 38. Roy, N.; Deveraux, Q. L.; Takahashi, R.; Salvesen, G. S.; Reed, J. C., The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. Embo J. 1997, 16 (23), 6914-25. 39. Eckelman, B. P.; Salvesen, G. S., The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J Biol Chem 2006, 281 (6), 3254-60. 40. Choi, Y. E.; Butterworth, M.; Malladi, S.; Duckett, C. S.; Cohen, G. M.; Bratton, S. B., The E3 Ubiquitin Ligase cIAP1 Binds and Ubiquitinates Caspase-3 and -7 via Unique Mechanisms at Distinct Steps in Their Processing*. Journal of Biological Chemistry 2009, 284 (19), 12772-12782. 41. Mahoney, D. J.; Cheung, H. H.; Mrad, R. L.; Plenchette, S.; Simard, C.; Enwere, E.; Arora, V.; Mak, T. W.; Lacasse, E. C.; Waring, J.; Korneluk, R. G., Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation. Proceedings of the National Academy of Sciences 2008, 105 (33), 11778. 42. Banks, D. P.; Plescia, J.; Altieri, D. C.; Chen, J.; Rosenberg, S. H.; Zhang, H.; Ng, S.-C., Survivin does not inhibit caspase-3 activity. Blood 2000, 96 (12), 4002-4003. 43. Conway, E. M.; Pollefeyt, S.; Cornelissen, J.; DeBaere, I.; Steiner-Mosonyi, M.; Ong, K.; Baens, M.; Collen, D.; Schuh, A. C., Three differentially expressed survivin cDNA variants encode proteins with distinct antiapoptotic functions. Blood 2000, 95 (4), 1435-42. 44. Shin, S.; Sung, B.-J.; Cho, Y.-S.; Kim, H.-J.; Ha, N.-C.; Hwang, J.-I.; Chung, C.-W.; Jung, Y.-K.; Oh, B.-H., An Anti-apoptotic Protein Human Survivin Is a Direct Inhibitor of Caspase-3 and -7. Biochemistry 2001, 40 (4), 1117-1123. 45. Li, C.; Wu, Z.; Liu, M.; Pazgier, M.; Lu, W., Chemically synthesized human survivin does not inhibit caspase-3. Protein science : a publication of the Protein Society 2008, 17 (9), 1624-1629. 46. Mufti, A. R.; Burstein, E.; Duckett, C. S., XIAP: cell death regulation meets copper homeostasis. Arch Biochem Biophys 2007, 463 (2), 168-174. 47. Galbán, S.; Duckett, C. S., XIAP as a ubiquitin ligase in cellular signaling. Cell Death Differentiation 2010, 17 (1), 54-60. 48. Obexer, P.; Ausserlechner, M. J., X-linked inhibitor of apoptosis protein - a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol 2014, 4, 197. 49. Mace, P. D.; Shirley, S.; Day, C. L., Assembling the building blocks: structure and function of inhibitor of apoptosis proteins. Cell Death Differentiation 2010, 17 (1), 46-53. 50. Lu, M.; Lin, S.-C.; Huang, Y.; Kang, Y. J.; Rich, R.; Lo, Y.-C.; Myszka, D.; Han, J.; Wu, H., XIAP Induces NF-κB Activation via the BIR1/TAB1 Interaction and BIR1 Dimerization. Molecular Cell 2007, 26 (5), 689-702. 51. Nakatani, Y.; Kleffmann, T.; Linke, K.; Condon, Stephen M.; Hinds, Mark G.; Day, Catherine L., Regulation of ubiquitin transfer by XIAP, a dimeric RING E3 ligase. Biochemical Journal 2013, 450 (3), 629-638. 52. Polykretis, P.; Luchinat, E.; Bonucci, A.; Giachetti, A.; Graewert, M. A.; Svergun, D. I.; Banci, L., Conformational characterization of full-length X-chromosome-linked inhibitor of apoptosis protein (XIAP) through an integrated approach. IUCrJ 2019, 6 (5), 948-957. 53. Tse, M. K.; Hui, S. K.; Yang, Y.; Yin, S.-T.; Hu, H.-Y.; Zou, B.; Wong, B. C. Y.; Sze, K. H., Structural Analysis of the UBA Domain of X-linked Inhibitor of Apoptosis Protein Reveals Different Surfaces for Ubiquitin-Binding and Self-Association. PLOS ONE 2011, 6 (12), e28511. 54. Deveraux, Q. L.; Takahashi, R.; Salvesen, G. S.; Reed, J. C., X-linked IAP is a direct inhibitor of cell-death proteases. Nature 1997, 388 (6639), 300-4. 55. Chai, J.; Shiozaki, E.; Srinivasula, S. M.; Wu, Q.; Dataa, P.; Alnemri, E. S.; Shi, Y., Structural Basis of Caspase-7 Inhibition by XIAP. Cell 2001, 104 (5), 769-780. 56. Huang, Y.; Park, Y. C.; Rich, R. L.; Segal, D.; Myszka, D. G.; Wu, H., Structural Basis of Caspase Inhibition by XIAP: Differential Roles of the Linker versus the BIR Domain. Cell 2001, 104 (5), 781-790. 57. Riedl, S. J.; Renatus, M.; Schwarzenbacher, R.; Zhou, Q.; Sun, C.; Fesik, S. W.; Liddington, R. C.; Salvesen, G. S., Structural Basis for the Inhibition of Caspase-3 by XIAP. Cell 2001, 104 (5), 791-800. 58. Srinivasula, S. M.; Hegde, R.; Saleh, A.; Datta, P.; Shiozaki, E.; Chai, J.; Lee, R.-A.; Robbins, P. D.; Fernandes-Alnemri, T.; Shi, Y.; Alnemri, E. S., A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001, 410 (6824), 112-116. 59. Shiozaki, E. N.; Chai, J.; Rigotti, D. J.; Riedl, S. J.; Li, P.; Srinivasula, S. M.; Alnemri, E. S.; Fairman, R.; Shi, Y., Mechanism of XIAP-Mediated Inhibition of Caspase-9. Molecular Cell 2003, 11 (2), 519-527. 60. Suzuki, Y.; Nakabayashi, Y.; Takahashi, R., Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proceedings of the National Academy of Sciences of the United States of America 2001, 98 (15), 8662-8667. 61. Morizane, Y.; Honda, R.; Fukami, K.; Yasuda, H., X-linked inhibitor of apoptosis functions as ubiquitin ligase toward mature caspase-9 and cytosolic Smac/DIABLO. J Biochem 2005, 137 (2), 125-32. 62. Schile, A. J.; García-Fernández, M.; Steller, H., Regulation of apoptosis by XIAP ubiquitin-ligase activity. Genes Development 2008, 22 (16), 2256-2266. 63. Taniguchi, K.; Karin, M., NF-κB, inflammation, immunity and cancer: coming of age. Nature Reviews Immunology 2018, 18 (5), 309-324. 64. Tamm, I.; Kornblau, S. M.; Segall, H.; Krajewski, S.; Welsh, K.; Kitada, S.; Scudiero, D. A.; Tudor, G.; Qui, Y. H.; Monks, A.; Andreeff, M.; Reed, J. C., Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res 2000, 6 (5), 1796-803. 65. Yang, L.; Cao, Z.; Yan, H.; Wood, W. C., Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Cancer Res 2003, 63 (20), 6815-24. 66. Tu, H.; Costa, M., XIAP's Profile in Human Cancer. Biomolecules 2020, 10 (11), 1493. 67. Abbas, R.; Larisch, S., Targeting XIAP for Promoting Cancer Cell Death—The Story of ARTS and SMAC. Cells 2020, 9 (3). 68. Rathore, R.; McCallum, J. E.; Varghese, E.; Florea, A.-M.; Büsselberg, D., Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs). Apoptosis 2017, 22 (7), 898-919. 69. Schimmer, A. D.; Dalili, S.; Batey, R. A.; Riedl, S. J., Targeting XIAP for the treatment of malignancy. Cell Death Differentiation 2006, 13 (2), 179-188. 70. Bai, L.; Smith, D. C.; Wang, S., Small-molecule SMAC mimetics as new cancer therapeutics. Pharmacol Ther 2014, 144 (1), 82-95. 71. Fulda, S., Smac mimetics as IAP antagonists. Seminars in Cell Developmental Biology 2015, 39, 132-138. 72. Morrish, E.; Brumatti, G.; Silke, J., Future Therapeutic Directions for Smac-Mimetics. Cells 2020, 9 (2). 73. Shi, Y., Mechanisms of Caspase Activation and Inhibition during Apoptosis. Molecular Cell 2002, 9 (3), 459-470. 74. Fuentes-Prior, P.; Salvesen, G. S., The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 2004, 384 (Pt 2), 201-32. 75. Fischer, U.; Jänicke, R. U.; Schulze-Osthoff, K., Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differentiation 2003, 10 (1), 76-100. 76. Julien, O.; Wells, J. A., Caspases and their substrates. Cell Death Differ 2017, 24 (8), 1380-1389. 77. D'Amelio, M.; Cavallucci, V.; Cecconi, F., Neuronal caspase-3 signaling: not only cell death. Cell Death Differentiation 2010, 17 (7), 1104-1114. 78. Shalini, S.; Dorstyn, L.; Dawar, S.; Kumar, S., Old, new and emerging functions of caspases. Cell Death Differ 2015, 22 (4), 526-39. 79. Han, Z.; Hendrickson, E. A.; Bremner, T. A.; Wyche, J. H., A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem 1997, 272 (20), 13432-6. 80. Deveraux, Q. L.; Leo, E.; Stennicke, H. R.; Welsh, K.; Salvesen, G. S.; Reed, J. C., Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. The EMBO Journal 1999, 18 (19), 5242-5251. 81. Takahashi, R.; Deveraux, Q.; Tamm, I.; Welsh, K.; Assa-Munt, N.; Salvesen, G. S.; Reed, J. C., A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem 1998, 273 (14), 7787-90. 82. Deveraux, Q. L.; Roy, N.; Stennicke, H. R.; Van Arsdale, T.; Zhou, Q.; Srinivasula, S. M.; Alnemri, E. S.; Salvesen, G. S.; Reed, J. C., IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. Embo j 1998, 17 (8), 2215-23. 83. Johnson, D. E.; Gastman, B. R.; Wieckowski, E.; Wang, G.-Q.; Amoscato, A.; Delach, S. M.; Rabinowich, H., Inhibitor of Apoptosis Protein hILP Undergoes Caspase-mediated Cleavage during T Lymphocyte Apoptosis. Cancer Research 2000, 60 (7), 1818-1823. 84. Levkau, B.; Garton, K. J.; Ferri, N.; Kloke, K.; Nofer, J.-R.; Baba, H. A.; Raines, E. W.; Breithardt, G., xIAP Induces Cell-Cycle Arrest and Activates Nuclear Factor- #x3ba;B. Circulation Research 2001, 88 (3), 282-290. 85. Thayaparasingham, B.; Kunz, A.; Peters, N.; Kulms, D., Sensitization of melanoma cells to TRAIL by UVB-induced and NF-κB-mediated downregulation of xIAP. Oncogene 2009, 28 (3), 345-362. 86. Hörnle, M.; Peters, N.; Thayaparasingham, B.; Vörsmann, H.; Kashkar, H.; Kulms, D., Caspase-3 cleaves XIAP in a positive feedback loop to sensitize melanoma cells to TRAIL-induced apoptosis. Oncogene 2011, 30 (5), 575-587. 87. Bratton, S. B.; Lewis, J.; Butterworth, M.; Duckett, C. S.; Cohen, G. M., XIAP inhibition of caspase-3 preserves its association with the Apaf-1 apoptosome and prevents CD95- and Bax-induced apoptosis. Cell Death Differentiation 2002, 9 (9), 881-892. 88. Li, S.; Zhao, Y.; He, X.; Kim, T. H.; Kuharsky, D. K.; Rabinowich, H.; Chen, J.; Du, C.; Yin, X. M., Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem 2002, 277 (30), 26912-20. 89. Kashkar, H.; Haefs, C.; Shin, H.; Hamilton-Dutoit, S. J.; Salvesen, G. S.; Kronke, M.; Jurgensmeier, J. M., XIAP-mediated caspase inhibition in Hodgkin's lymphoma-derived B cells. J Exp Med 2003, 198 (2), 341-7. 90. Sutton, V. R.; Wowk, M. E.; Cancilla, M.; Trapani, J. A., Caspase activation by granzyme B is indirect, and caspase autoprocessing requires the release of proapoptotic mitochondrial factors. Immunity 2003, 18 (3), 319-29. 91. Miossec, C.; Dutilleul, V.; Fassy, F.; Diu-Hercend, A., Evidence for CPP32 activation in the absence of apoptosis during T lymphocyte stimulation. J Biol Chem 1997, 272 (21), 13459-62. 92. Wilhelm, S.; Wagner, H.; Häcker, G., Activation of caspase-3-like enzymes in non-apoptotic T cells. Eur J Immunol 1998, 28 (3), 891-900. 93. Paulsen, M.; Ussat, S.; Jakob, M.; Scherer, G.; Lepenies, I.; Schütze, S.; Kabelitz, D.; Adam-Klages, S., Interaction with XIAP prevents full caspase-3/-7 activation in proliferating human T lymphocytes. Eur J Immunol 2008, 38 (7), 1979-87. 94. Srinivasula, S. M.; Ahmad, M.; Fernandes-Alnemri, T.; Alnemri, E. S., Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1998, 1 (7), 949-57. 95. Srinivasula, S. M.; Hegde, R.; Saleh, A.; Datta, P.; Shiozaki, E.; Chai, J.; Lee, R. A.; Robbins, P. D.; Fernandes-Alnemri, T.; Shi, Y.; Alnemri, E. S., A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001, 410 (6824), 112-6. 96. Denault, J. B.; Eckelman, B. P.; Shin, H.; Pop, C.; Salvesen, G. S., Caspase 3 attenuates XIAP (X-linked inhibitor of apoptosis protein)-mediated inhibition of caspase 9. Biochem J 2007, 405 (1), 11-9. 97. Ni, C.-Z.; Li, C.; Wu, J. C.; Spada, A. P.; Ely, K. R., Conformational restrictions in the active site of unliganded human caspase-3. Journal of Molecular Recognition 2003, 16 (3), 121-124. 98. Ponder, K. G.; Boise, L. H., The prodomain of caspase-3 regulates its own removal and caspase activation. Cell Death Discovery 2019, 5 (1), 56. 99. Polykretis, P.; Luchinat, E.; Bonucci, A.; Giachetti, A.; Graewert, M. A.; Svergun, D. I.; Banci, L., Conformational characterization of full-length X-chromosome-linked inhibitor of apoptosis protein (XIAP) through an integrated approach. IUCrJ 2019, 6 (Pt 5), 948-957. 100. Fisher, C. L.; Pei, G. K., Modification of a PCRBased Site-Directed Mutagenesis Method. BioTechniques 1997, 23 (4), 570-574. 101. Hayes, D.; Laue, T.; Philo, J., Program Sednterp: sedimentation interpretation program. Alliance Protein Laboratories, Thousand Oaks, CA 1995. 102. Schuck, P., Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 2000, 78 (3), 1606-19. 103. Brautigam, C. A., Calculations and Publication-Quality Illustrations for Analytical Ultracentrifugation Data. Methods Enzymol 2015, 562, 109-33. 104. Punjani, A.; Rubinstein, J. L.; Fleet, D. J.; Brubaker, M. A., cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 2017, 14 (3), 290-296. 105. Belval, L.; Marquette, A.; Mestre, P.; Piron, M. C.; Demangeat, G.; Merdinoglu, D.; Chich, J. F., A fast and simple method to eliminate Cpn60 from functional recombinant proteins produced by E. coli Arctic Express. Protein Expr Purif 2015, 109, 29-34. 106. Rauert, W.; Eddine, A. N.; Kaufmann, S. H.; Weiss, M. S.; Janowski, R., Reductive methylation to improve crystallization of the putative oxidoreductase Rv0765c from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007, 63 (Pt 6), 507-11. 107. Lee, C. C.; Maestre-Reyna, M.; Hsu, K. C.; Wang, H. C.; Liu, C. I.; Jeng, W. Y.; Lin, L. L.; Wood, R.; Chou, C. C.; Yang, J. M.; Wang, A. H., Crowning proteins: modulating the protein surface properties using crown ethers. Angew Chem Int Ed Engl 2014, 53 (48), 13054-8. 108. Ichim, G.; Tait, S. W., A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer 2016, 16 (8), 539-48. 109. Obexer, P.; Ausserlechner, M. J., X-Linked Inhibitor of Apoptosis Protein – A Critical Death Resistance Regulator and Therapeutic Target for Personalized Cancer Therapy. Frontiers in Oncology 2014, 4 (197).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81142-
dc.description.abstractX染色體連鎖凋亡抑制蛋白(XIAP)為一多功能蛋白質,屬於IAP蛋白家族,其最大的特點是具有抗細胞凋亡的功能,藉由與caspase-3 結合能夠直接抑制其活性。矛盾的是,caspase-3 能夠於特定位點(Asp242)將XIAP切割成兩個片段,從而減弱 XIAP 對細胞凋亡的抑制。而先前的研究證據顯示,XIAP 能夠與未完全活化的caspase-3 p20/p12結合,使其停留在該型態而無法透過自催化作用活化成p17/p12。本篇研究提出 XIAP 主要藉由與 caspase-3 p20/p12 相互作用來抑制 caspase-3 活性,阻止其完全活化,而非直接抑制有活性的 caspase-3。對於成熟的 caspase-3,XIAP 是被其水解的受質,該水解會導致其功能之喪失。在本篇研究中發現,與成熟的 p17/p12 相比,XIAP 對 caspase-3 p20/12 表現出更高的親和力,這表明 XIAP 與這兩種形式的 caspase-3 之間的結合模式可能是不同的。為了證明這個想法,我純化了 XIAP/caspase-3 複合物(XIAP/caspase-3 p20/p12 和 XIAP/caspase-3 /p17/p12),並嘗試利用冷凍電子顯微鏡解析其結構。利用戊二醛(glutaraldehyde)將蛋白複合體進行交叉鍵接(cross-link)反應,穩定XIAP/caspase-3 p20/p12複合體後,我們得到一低解析度(~12Å)的三維重建。後續研究將繼續專注於解析出高解析度的 XIAP/caspase-3 複合物的結構,以闡明 XIAP 與 caspase-3 之間的相互作用。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:32:43Z (GMT). No. of bitstreams: 1
U0001-0808202120200600.pdf: 4719426 bytes, checksum: 4cf08af8bbcb17bd147587bcbc264e23 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 I Acknowledgements II 中文摘要 III Abstract IV Table of Contents VI List of Abbreviations IX List of Figures XI List of Tables XIII Chapter 1 Introduction 1 1.1 Background to the research 1 1.1.1 Apoptosis 1 1.1.2 Inhibitor of apoptosis protein (IAP) family 3 1.1.3 X-linked inhibitor of apoptosis protein (XIAP) 4 1.1.4 Caspase-3 6 1.2 Motivation of Research 7 1.3 Literature review 10 1.3.1 XIAP was reported to be a direct inhibitor of caspase-3, -7, and -9 10 1.3.2 XIAP cleavage by caspase-3 was observed in several studies 11 1.3.3 Caspase-3 was shown to be arrested in its intermediate state by XIAP 14 1.3.4 The IBM of caspase-9 was demonstrated to be removed by caspase-3, relieving the inhibition exerted by XIAP 15 1.3.5 Previous structural analysis on XIAP/caspase-3 interaction 16 1.4 Hypothesis 18 1.5 Specific aims of this study 20 Chapter 2 Materials and Methods 22 2.1 Plasmids 22 2.2 Expression and purification of recombinant proteins 23 2.3 Analytical ultracentrifugation (AUC) 25 2.4 Isothermal titration calorimetry (ITC) 26 2.5 Initial screening of protein crystallization conditions 27 2.6 Preparation of Cross-linked protein complex samples 27 2.7 Cryo-EM grids preparation and data collection 27 2.8 Caspase-3 p20/p12 activation assay 28 Chapter 3 Results 29 3.1 Expression and purification of recombinant proteins 29 3.1.1 Trx-XIAP and XIAP 29 3.1.2 Caspase-3 32 3.1.3 XIAP/Caspase-3 complex 33 3.2 Characterizing the stoichiometry of XIAP/caspase-3 complex 33 3.3 XIAP has a higher affinity for partially processed caspase-3 than mature caspase-3 34 3.4 Protein crystallization 35 3.5 Cryo-EM single particle reconstruction (SPR) of XIAP/caspase-3 p20/p12 complex 36 3.6 Aggregation of Caspase-3 p20/p12 occurs in salt-free environment 37 3.7 The autocatalytic competence of caspase-3 p20/p12 is modulated by salt in vitro 38 Chapter 4 Discussion 40 Figures 44 Tables 70 References 72 "
dc.language.isoen
dc.subject冷凍電子顯微鏡zh_TW
dc.subject細胞凋亡zh_TW
dc.subjectX染色體連鎖凋亡抑制蛋白zh_TW
dc.subject凋亡蛋白酶zh_TW
dc.subject蛋白質複合體zh_TW
dc.subjectCaspase-3 autocatalysisen
dc.subjectcryo-EMen
dc.subjectXIAP/Caspase-3 complexen
dc.subjectapoptosisen
dc.subjectXIAPen
dc.title利用結構生物學探討XIAP與Caspase-3之間的相互抑制作用zh_TW
dc.titleStructural Analysis on the Reciprocal Inhibition Between XIAP and Caspase-3en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee袁小琀(Hsin-Tsai Liu),林世昌(Chih-Yang Tseng)
dc.subject.keyword細胞凋亡,X染色體連鎖凋亡抑制蛋白,凋亡蛋白酶,蛋白質複合體,冷凍電子顯微鏡,zh_TW
dc.subject.keywordXIAP,Caspase-3 autocatalysis,apoptosis,XIAP/Caspase-3 complex,cryo-EM,en
dc.relation.page81
dc.identifier.doi10.6342/NTU202102192
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
U0001-0808202120200600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved