Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81125
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志傑(Chih-Chieh Chen)
dc.contributor.authorJia-Yi Maoen
dc.contributor.author毛嘉儀zh_TW
dc.date.accessioned2022-11-24T03:31:52Z-
dc.date.available2024-08-05
dc.date.available2022-11-24T03:31:52Z-
dc.date.copyright2021-09-16
dc.date.issued2021
dc.date.submitted2021-08-16
dc.identifier.citationAbdul-Wahab, S. A., M. F. Failaka, L. Ahmadi, A. Elkamel, K. Yetilmezsoy. 2014. Nonlinear programming optimization of series and parallel cyclone arrangement of npk fertilizer plants. Powder technology 264:203-215. doi. Ahn, Y. C., H. K. Jeong, H. S. Shin, Y. J. Hwang, G. T. Kim, S. I. Cheong, J. K. Lee, C. J. K. J. o. C. E. Kim. 2006. Design and performance evaluation of vacuum cleaners using cyclone technology 23:925-930. doi. Azarov, V. N., N. M. Sergina, I. Stefanenko. 2018. Air flow straighteners’ application to reduce the power consumption of exhaust ventilation schemes, in Applied Mechanics and Materials, 137-140: Trans Tech Publ. Barth, W. 1956. Design and layout of the cyclone separator on the basis of new investigations. Brenn. Warme Kraft 8:9. doi. Brauer, H. and Y. B. Varma. 1981. Design and operation of cyclones, in Air pollution control equipment, 67-106: Springer. Brown, R. C. 1993. Air filtrationan integrated approach to the theory and applications of fibrous filters. doi. Cai, R.-R., S.-Z. Li, L.-Z. Zhang, Y. Lei. 2020. Fabrication and performance of a stable micro/nano composite electret filter for effective pm2. 5 capture. Science of The Total Environment 725:138297. doi. Casal, J. and M. B. JM. 1983. A better way to calculate cyclone pressure drop. doi. Cheng, S. J. 2013. Numerical and experimental study of cyclone separators for aerosol drug delivery: University of Cambridge. Chu, K.-D., A. Lacaze, K. Murphy, E. Mottern, K. Corley, J. Frelk. 2015. 3d printed rapid disaster response, in 2015 IEEE International Symposium on Technologies for Homeland Security (HST), 1-6: IEEE. Cooper, D. W. 1981. Minimizing cyclone energy consumption. Journal of the Air Pollution Control Association 31:1193-1194. doi. Cooper, D. W. 1983. Cyclone design: Sensitivity, elasticity and error analyses. Atmospheric Environment (1967) 17:485-489. doi. Dewika, M., M. Rashid, M. Ammar. 2018. Performance of a retrofitted multicyclone for pm2. 5 emission control, in E3S Web of Conferences, 02011: EDP Sciences. Dewika, M., M. Rashid, M. Khairuninisa, J. Ruwaida, Y. Sara. 2019. Reduction of pm10 emission from a retrofitted multicyclone, in IOP Conference Series: Materials Science and Engineering, 012131: IOP Publishing. Dyson, J., J. W. Crouch, J. S. Robertson, P. D. Gammack, S. E. Ireland. 2020. Cyclonic separator: Google Patents. Dyson, J., A. S. Knox, P. D. Gammack, M. D. Ganderton. 2003. Vacuum cleaner: Google Patents. Failaka, M. F. 2015. Superstructure optimization of multiple cyclone arrangements using mixed integer nonlinear programming: University of Waterloo. George, K., S. Manjunath, C. C. Rao, A. J. E. t. Bopche. 2003. Cyclone as a precleaner to esp‐a need for indian coal based thermal power plants 24:1425-1430. doi. Gertler, A., H. Kuhns, M. Abu-Allaban, C. Damm, J. Gillies, V. Etyemezian, R. Clayton, D. Proffitt. 2006. A case study of the impact of winter road sand/salt and street sweeping on road dust re-entrainment. Atmospheric Environment 40:5976-5985. doi. Giuricich, N. L. 1993. Multi-stage cyclone separator system with intermediate manifold: Google Patents. Glaves, G., M. Rademacher, L. M. Lavagna. 2019. Distributor device for cyclone separator apparatus: Google Patents. Ha, G., E. Kim, Y. Kim, J. Lee, Y. Ahn, D. Kim. 2011. A study on the optimal design of a cyclone system for vacuum cleaner with the consideration of house dust. Journal of mechanical science and technology 25:689. doi. Hansen, S. and A. Mirkouei. 2019. Prototyping of a laboratory-scale cyclone separator for biofuel production from biomass feedstocks using a fused deposition modeling printer, in TMS 2019 148th Annual Meeting Exhibition Supplemental Proceedings, 289-297: Springer. Haque, M. 2002. Determination of steady-state voltage stability limit using pq curve. IEEE Power Engineering Review 22:71-72. doi. Hoffmann, P. D. A. C., A. C. Hoffmann, L. E. Stein. 2002. Gas cyclones and swirl tubes: Springer. Hsu, C.-W., S.-H. Huang, C.-W. Lin, T.-C. Hsiao, W.-Y. Lin, C.-C. Chen. 2013. An experimental study on performance improvement of the stairmand cyclone design. Aerosol and Air Quality Research 14:1003-1016. doi. Irsen, S. H., B. Leukers, C. Höckling, C. Tille, H. Seitz. 2006. Bioceramic granulates for use in 3d printing: Process engineering aspects. Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung, Eigenschaften und Anwendungen technischer Werkstoffe 37:533-537. doi. Kanojiya, M. T., N. Mandavgade, V. Kalbande, C. Padole. 2021. Design and fabrication of cyclone dust collector for industrial application. Materials Today: Proceedings. doi. Karagoz, I., F. Kaya, A. Avci. 2010. Usability of cyclone separators as air filters in vehicles. International journal of vehicle design 52:133-143. doi. Kenny, L. and R. Gussman. 1997. Characterization and modelling of a family of cyclone aerosol preseparators. Journal of aerosol science 28:677-688. doi. Kenny, L., A. Thorpe, P. Stacey. 2017. A collection of experimental data for aerosol monitoring cyclones. Aerosol Science and Technology 51:1190-1200. doi. Kim, J. S. and M. H. Lee. 2020. Effect of filter collection efficiency on the clean air delivery rate in an air cleaner. Indoor air. doi. Kim, M.-H., J.-g. Han, J.-K. Oh. 2009a. Multi-cyclone dust separating apparatus: Google Patents. Kim, M., H. Kim, S.-B. Kwon, S.-Y. Kim, J.-K. Kim, C.-H. Shin, S.-J. Bae, S.-H. Hwang, T. Kim. 2009b. Numerical analysis of axial-flow cyclone separator for subway station hvac system pre-filter. International Journal of Air-Conditioning and Refrigeration 17:94-99. doi. Knibbs, L. D., C. He, C. Duchaine, L. Morawska. 2012. Vacuum cleaner emissions as a source of indoor exposure to airborne particles and bacteria. Environmental science technology 46:534-542. doi. Lee, B.-J., B. Kim, K. Lee. 2014. Air pollution exposure and cardiovascular disease. Toxicological research 30:71-75. doi. Leith, D. 1972. The collection efficiency of cyclone type particle collectors. A new theoretical approach. doi. Lim, K., H. Kim, K. Lee. 2004a. Characteristics of the collection efficiency for a cyclone with different vortex finder shapes. Journal of Aerosol science 35:743-754. doi. Lim, K., H. Kim, K. Lee. 2004b. Comparative performances of conventional cyclones and a double cyclone with and without an electric field. Journal of aerosol science 35:103-116. doi. Liu, F., J. Chen, A. Zhang, X. Wang, T. Dong. 2014. Performance and flow behavior of four identical parallel cyclones. Separation and Purification Technology 134:147-157. doi. Luciano, R. D., B. L. Silva, L. M. Rosa, H. F. Meier. 2018. Multi-objective optimization of cyclone separators in series based on computational fluid dynamics. Powder Technology 325:452-466. doi. Madhusudhan, K., M. Narasimhan, R. Ravikrishna. 2006. New cyclone separator-based prefilter design for internal combustion engine applications. Part 1: Experiments and simulation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 220:1353-1362. doi. Masnadi, M. S., J. R. Grace, S. Elyasi, X. Bi. 2010. Distribution of multi-phase gas–solid flow across identical parallel cyclones: Modeling and experimental study. Separation and purification technology 72:48-55. doi. Matulevicius, J., L. Kliucininkas, D. Martuzevicius, E. Krugly, M. Tichonovas, J. Baltrusaitis. 2014. Design and characterization of electrospun polyamide nanofiber media for air filtration applications. Journal of Nanomaterials 2014. doi. Misiulia, D., G. Lidén, S. Antonyuk. 2021. Evolution of turbulent swirling flow in a small-scale cyclone with increasing flow rate: A les study. Flow, Turbulence and Combustion:1-34. doi. Mofarrah, M., P. Chen, Z. Liu, K. Yan. 2019. Performance comparison between micro and electro micro cyclone. Journal of Electrostatics 101:103368. doi. Noh, K.-C. and M.-D. Oh. 2015. Variation of clean air delivery rate and effective air cleaning ratio of room air cleaning devices. Building and Environment 84:44-49. doi. Norelyza, H., M. Rashid, S. Hajar, A. Nurnadia. 2014. Mr-deduster: A dust emission separator in air pollution control. Jurnal Teknologi 68. doi. Norman, M. and C. Johansson. 2006. Studies of some measures to reduce road dust emissions from paved roads in scandinavia. Atmospheric Environment 40:6154-6164. doi. Park, S. 2017. Performance prediction model for designing a multiple electro-cyclone system. Journal of Residuals Science Technology 14. doi. Peng, W., A. C. Hoffmann, H. Dries, M. Regelink, K. K. Foo. 2007. Reverse‐flow centrifugal separators in parallel: Performance and flow pattern. AIChE journal 53:589-597. doi. Pope III, C. A. and D. W. Dockery. 1999. Epidemiology of particle effects, in Air pollution and health, 673-705: Elsevier. Rith, M., B. Buenconsejo, J. B. M. Biona. 2020. Design and fabrication of a downdraft gasifier coupled with a small-scale diesel engine. Engineering and Applied Science Research 47:117-128. doi. Roy, R. and D. I. Group. 1993. Case studies of creativity in innovative product development. Design studies 14:423-443. doi. Sagot, B., A. Forthomme, L. A. A. Yahia, G. De La Bourdonnaye. 2017. Experimental study of cyclone performance for blow-by gas cleaning applications. Journal of Aerosol Science 110:53-69. doi. Shepherd, C. and C. Lapple. 1940. Flow pattern and pressure drop in cyclone dust collectors cyclone without intel vane. Industrial Engineering Chemistry 32:1246-1248. doi. Syed, M. S., M. Rafeie, R. Henderson, D. Vandamme, M. Asadnia, M. E. Warkiani. 2017. A 3d-printed mini-hydrocyclone for high throughput particle separation: Application to primary harvesting of microalgae. Lab on a Chip 17:2459-2469. doi. Tonmoy, N. I., S. Mitra, I. S. Bristy, A. Khanam, M. N. Uddin. 2020. Design and implementation of smart cyclone separator vacuum cleaner bot driven by renewable energy, in Proceedings of the International Conference on Computing Advancements, 1-7. van Benthum, R. and D. I. J. Heinzle. 2007. Investigation towards the efficiency of a multi-cyclone dust separator in biomass combustion. E.: Eindhoven:1-57. doi. Wang, J., S. C. Kim, D. Y. Pui. 2008. Investigation of the figure of merit for filters with a single nanofiber layer on a substrate. Journal of aerosol science 39:323-334. doi. Wang, X., D. Shuai, Q. Lyu. 2017. Experimental study on structural optimization of a supercritical circulating fluidized bed boiler with an annular furnace and six cyclones. Journal of Thermal Science 26:472-482. doi. Wazir, A. A. M. and A. H. Nurfaizey. 2020. Design and development of domestic cyclone dust collector system. Proceedings of Mechanical Engineering Research Day 2020:291-292. doi. Whitelock, D. P. and M. D. Buser. 2005. Preliminary results of a series cyclone test, in 2005 ASAE Annual Meeting, 1: American Society of Agricultural and Biological Engineers. Xie, B., S. Li, H. Jin, S. Hu, F. Wang, F. Zhou. 2018. Analysis of the performance of a novel dust collector combining cyclone separator and cartridge filter. Powder technology 339:695-701. doi. Xiong, W., Z. Lin, W. Zhang, T. Chen, C. Zhao. 2018. Experimental and simulation studies on dust loading performance of a novel electrostatic precipitator with dielectric barrier electrodes. Building and Environment 144:119-128. doi. Xiong, Z., Z. Ji, X. Wu. 2013. Investigation on the separation performance of a multicyclone separator for natural gas purification. Aerosol and Air Quality Research 14:1055-1065. doi. Yang, Y., S. Wang, C. Wen. 2017. Gas-liquid two-phase flows in double inlet cyclones for natural gas separation. Cogent Engineering 4:1373421. doi. Zhu, Y. and K. Lee. 1999. Experimental study on small cyclones operating at high flowrates. Journal of Aerosol Science 30:1303-1315. doi. 徐嘉偉. 2014. 具高微粒負載特性之正壓式虛擬旋風分徑器效能提升研究, in 職業醫學與工業衛生研究所, 1-78: 國立臺灣大學. 盧俊中. 2006. 提昇洗掃街車對空氣中 pm10 防治效率之研究. 臺北科技大學環境規劃與管理研究所學位論文:1-140. doi.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81125-
dc.description.abstract旋風集塵器可應用於粒狀物控制設備前端,用以去除較大微粒,以延長下游防制設備的使用壽命。過去的研究指出在相同的入口風速下,並聯小型旋風集塵器比起單一個大型旋風集塵器有更高的微粒收集效率,但少有文獻將壓降與微粒收集效率一起探討。本研究將以定流率及定功率系統,以FOM、CADR與CADRE為指標探討複式旋風集塵器的性能特性。 酒石酸鉀鈉為挑戰氣膠,粒徑分布範圍為1至10 μm,數目中數粒徑為5 μm。使用氣動粒徑分析儀(APS)測量旋風集塵器之上下游粒徑分布及數目濃度,以獲得穿透率曲線,並且以品質因數(FOM)、潔淨空氣輸出率(CADR)及有效潔淨空氣輸出率(CADRE)做為評估工具。實驗中測試的所有旋風集塵器和歧管均採用3D列印製成,其中歧管設計分為雙並聯(M2A、M2C、M2D、M2P)以及四並聯(M4A、M4C、M4D、M4P),根據旋風集塵器出口與歧管出口面積比例,氣流在管內會產生加速(MC2A、MC4A)、等速(MC2C、MC4C)以及減速(MC2D、MC4D、MC2P、MC4P)八種不同形式的複式旋風集塵器。 本研究透過改變歧管角度、分歧管長度,獲得一具最小壓降的歧管設計參數,但是在穿透率以及品質因數的表現上並沒有明顯改善。定流率(40 L/min)且相同截取粒徑下,單一旋風集塵器比複式旋風集塵器有較高的品質因數,主要是因為無歧管造成的壓降,而且單位體積氣流與旋風集塵器主體內壁的接觸面積比例較低,故整體壓降較低,相較於後者具有較高品質因數。此外,除了M4A之外,歧管存在與否皆對複式旋風集塵器的微粒穿透率沒顯著影響,但皆造成壓降增加,導致品質因數下降6%至80%。1.15瓦特的定功率系統下,大致上結果與定流率系統下相同,由於單一個旋風集塵器有較低的壓降,而有較高操作流率及收集效率,得到較高的CADRE。最後,高功率系統雖然可提升整體的CADR,但CADRE反而變差,特別是針對大微粒的收集。 單一旋風集塵器比起複式旋風集塵器有更低的經濟成本,愈大的旋風集塵器有愈低的能量耗損,通過改變歧管的設計參數並不能有效提升FOM,由於大部分的微粒皆在前端的集塵器中被收集下來,後端的歧管的所佔的收集貢獻不大,卻增加了多餘的能量損失。因此,追求節能則建議採用單一旋風集塵器做為預處理設備,若考慮空間因素選擇複式旋風集塵器,則盡量選擇愈大的旋風集塵器,且愈少並聯數目。最後,當該粒徑範圍的收集效率已超過約80%,則增高功率反而會降低CADRE,此情況下可使用較小功率的系統即可。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:31:52Z (GMT). No. of bitstreams: 1
U0001-1108202101343300.pdf: 8922105 bytes, checksum: 7705bb1809fe3734cb586837d12583dd (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 i 誌謝 v 摘要 vi Abstract viii 目錄 x 表目錄 xii 圖目錄 xiii 一、 前言 1 1.1 研究背景 1 1.2 研究目的 2 二、 文獻探討 3 2.1 旋風集塵器 3 2.1.1 應用層面及重要性 4 2.1.2 模型 5 2.1.3 3D列印技術 6 2.2 複式旋風集塵器的性能特性及發展 6 2.2.1 串聯複式旋風集塵器性能特性及發展 7 2.2.2 並聯複式旋風集塵器性能特性及發展 7 2.3 歧管設計及安排形式 11 2.4 品質因數(Figure of Merit, FOM) 12 2.5 潔淨空氣輸出比率(Clean Air Delivery Rate, CADR) 12 三、 材料與方法 13 3.1 實驗系統建立與測試 13 3.2 定流率複式旋風集塵器性能評估指標 14 3.3 定功率風機效能曲線(P-Q Curve)量測方法 14 3.4 定功率複式旋風集塵器性能評估指標 15 3.5 材料 15 四、 結果與討論 16 4.1 高品質旋風集塵器模型推估 16 4.2 複式旋風集塵器對空間之影響與關係 16 4.3 不同大小、幾何相似旋風集塵器之性能比較 16 4.4 歧管設計對於過濾品質之影響 17 4.5 複式旋風集塵器中歧管的壓降占比 17 4.6 不同並聯數量複式旋風集塵器之性能特性 18 4.7 歧管沉積效率貢獻量 18 4.8 歧管所造成之過濾品質變化 19 4.9 定功率複式旋風集塵器性能特性 20 五、 結論與建議 22 六、 參考文獻 23"
dc.language.isozh-TW
dc.subject品質因數zh_TW
dc.subject歧管設計zh_TW
dc.subject複式旋風集塵器zh_TW
dc.subject穿透率zh_TW
dc.subject有效潔淨空氣輸出率zh_TW
dc.subjectEffective CADRen
dc.subjectAerosol penetrationen
dc.subjectMulti-cycloneen
dc.subjectFigure of Meriten
dc.subjectManifold designen
dc.title複式旋風集塵器性能特性zh_TW
dc.titlePerformance characterization of the multi-cycloneen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林文印(Hsin-Tsai Liu),蕭大智(Chih-Yang Tseng),黃盛修,林志威
dc.subject.keyword複式旋風集塵器,穿透率,有效潔淨空氣輸出率,品質因數,歧管設計,zh_TW
dc.subject.keywordMulti-cyclone,Aerosol penetration,Figure of Merit,Effective CADR,Manifold design,en
dc.relation.page51
dc.identifier.doi10.6342/NTU202102259
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-16
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境與職業健康科學研究所zh_TW
dc.date.embargo-lift2024-08-05-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1108202101343300.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
8.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved