請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81123完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林能裕(Neng-Yu Lin) | |
| dc.contributor.author | Hsuan-Yu Lin | en |
| dc.contributor.author | 林軒羽 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:31:46Z | - |
| dc.date.available | 2021-08-30 | |
| dc.date.available | 2022-11-24T03:31:46Z | - |
| dc.date.copyright | 2021-08-30 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-11 | |
| dc.identifier.citation | 1. Johnell, O. and J.A. Kanis, An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int, 2006. 17(12): p. 1726-33. 2. Who are candidates for prevention and treatment for osteoporosis? Osteoporos Int, 1997. 7(1): p. 1-6. 3. Sozen, T., L. Ozisik, and N.C. Basaran, An overview and management of osteoporosis. Eur J Rheumatol, 2017. 4(1): p. 46-56. 4. Kaz Kaz, H., et al., Fall-related risk factors and osteoporosis in women with rheumatoid arthritis. Rheumatology (Oxford), 2004. 43(10): p. 1267-71. 5. Drake, R.R., Glycosylation and cancer: moving glycomics to the forefront. Adv Cancer Res, 2015. 126: p. 1-10. 6. Sun, X., et al., C1GALT1 in health and disease. Oncol Lett, 2021. 22(2): p. 589. 7. Nakashima, T., [Regulation of bone homeostasis by bone cells]. Clin Calcium, 2013. 23(2): p. 218-28. 8. Clarke, B., Normal bone anatomy and physiology. Clin J Am Soc Nephrol, 2008. 3 Suppl 3: p. S131-9. 9. Al-Bari, A.A. and A. Al Mamun, Current advances in regulation of bone homeostasis. FASEB Bioadv, 2020. 2(11): p. 668-679. 10. Rodan, G.A., Bone homeostasis. Proc Natl Acad Sci U S A, 1998. 95(23): p. 13361-2. 11. Costa, A.L., et al., Osteoporosis in primary care: an opportunity to approach risk factors. Rev Bras Reumatol Engl Ed, 2016. 56(2): p. 111-6. 12. Ferrari, S., Human genetics of osteoporosis. Best Pract Res Clin Endocrinol Metab, 2008. 22(5): p. 723-35. 13. Jaul, E. and J. Barron, Age-Related Diseases and Clinical and Public Health Implications for the 85 Years Old and Over Population. Front Public Health, 2017. 5: p. 335. 14. Zhang, Z., et al., Effect of Vicenin-2 on ovariectomy-induced osteoporosis in rats. Biomed Pharmacother, 2020. 129: p. 110474. 15. Kohli, S.S. and V.S. Kohli, Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J Endocrinol Metab, 2011. 15(3): p. 175-81. 16. Capulli, M., R. Paone, and N. Rucci, Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys, 2014. 561: p. 3-12. 17. Chen, X., et al., Osteoblast-osteoclast interactions. Connect Tissue Res, 2018. 59(2): p. 99-107. 18. Li, X., et al., Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem, 2007. 282(45): p. 33098-106. 19. Boyle, W.J., W.S. Simonet, and D.L. Lacey, Osteoclast differentiation and activation. Nature, 2003. 423(6937): p. 337-42. 20. Theoleyre, S., et al., The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev, 2004. 15(6): p. 457-75. 21. Asagiri, M. and H. Takayanagi, The molecular understanding of osteoclast differentiation. Bone, 2007. 40(2): p. 251-64. 22. Jansen, I.D., et al., Osteoclast fusion and fission. Calcif Tissue Int, 2012. 90(6): p. 515-22. 23. Kodama, J. and T. Kaito, Osteoclast Multinucleation: Review of Current Literature. Int J Mol Sci, 2020. 21(16). 24. Miyamoto, T., The dendritic cell-specific transmembrane protein DC-STAMP is essential for osteoclast fusion and osteoclast bone-resorbing activity. Mod Rheumatol, 2006. 16(6): p. 341-2. 25. Kobayashi, N., et al., Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J, 2001. 20(6): p. 1271-80. 26. Teitelbaum, S.L. and F.P. Ross, Genetic regulation of osteoclast development and function. Nat Rev Genet, 2003. 4(8): p. 638-49. 27. Takayanagi, H., et al., Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell, 2002. 3(6): p. 889-901. 28. Park, J.H., N.K. Lee, and S.Y. Lee, Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Mol Cells, 2017. 40(10): p. 706-713. 29. Teitelbaum, S.L., Bone resorption by osteoclasts. Science, 2000. 289(5484): p. 1504-8. 30. Feng, X. and J.M. McDonald, Disorders of bone remodeling. Annu Rev Pathol, 2011. 6: p. 121-45. 31. Michou, L. and J.P. Brown, Genetics of bone diseases: Paget's disease, fibrous dysplasia, osteopetrosis, and osteogenesis imperfecta. Joint Bone Spine, 2011. 78(3): p. 252-8. 32. Goldhaber, P., et al., Bone resorption in tissue culture and its relevance to periodontal disease. J Am Dent Assoc, 1973. 87(5): p. 1027-33. 33. Colley, K.J., A. Varki, and T. Kinoshita, Cellular Organization of Glycosylation, in Essentials of Glycobiology, rd, et al., Editors. 2015: Cold Spring Harbor (NY). p. 41-49. 34. Varki, A., Biological roles of glycans. Glycobiology, 2017. 27(1): p. 3-49. 35. Reily, C., et al., Glycosylation in health and disease. Nat Rev Nephrol, 2019. 15(6): p. 346-366. 36. Spiro, R.G., Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology, 2002. 12(4): p. 43R-56R. 37. Aebi, M., N-linked protein glycosylation in the ER. Biochim Biophys Acta, 2013. 1833(11): p. 2430-7. 38. Turner, G.A., N-glycosylation of serum proteins in disease and its investigation using lectins. Clin Chim Acta, 1992. 208(3): p. 149-71. 39. Fanger, M.W. and D.G. Smyth, The oligosaccharide units of rabbit immunoglobulin G. Multiple carbohydrate attachment sites. Biochem J, 1972. 127(5): p. 757-65. 40. Fanger, M.W. and D.G. Smyth, The determination of glucosamine and galactosamine. Anal Biochem, 1970. 34(2): p. 494-9. 41. Perez-Vilar, J., A.E. Eckhardt, and R.L. Hill, Porcine submaxillary mucin forms disulfide-bonded dimers between its carboxyl-terminal domains. J Biol Chem, 1996. 271(16): p. 9845-50. 42. Perez-Vilar, J. and R.L. Hill, The carboxyl-terminal 90 residues of porcine submaxillary mucin are sufficient for forming disulfide-bonded dimers. J Biol Chem, 1998. 273(12): p. 6982-8. 43. Perez-Vilar, J., J. Hidalgo, and A. Velasco, Presence of terminal N-acetylgalactosamine residues in subregions of the endoplasmic reticulum is influenced by cell differentiation in culture. J Biol Chem, 1991. 266(35): p. 23967-76. 44. in Essentials of Glycobiology, rd, et al., Editors. 2015: Cold Spring Harbor (NY). 45. Matsuura, A., et al., O-linked N-acetylglucosamine is present on the extracellular domain of notch receptors. J Biol Chem, 2008. 283(51): p. 35486-95. 46. Xu, A., et al., In vitro reconstitution of the modulation of Drosophila Notch-ligand binding by Fringe. J Biol Chem, 2007. 282(48): p. 35153-62. 47. Nakamura, N., et al., Drosophila Dystroglycan is a target of O-mannosyltransferase activity of two protein O-mannosyltransferases, Rotated Abdomen and Twisted. Glycobiology, 2010. 20(3): p. 381-94. 48. Sethi, M.K., et al., Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch epidermal growth factor repeats. J Biol Chem, 2010. 285(3): p. 1582-6. 49. Stanley, P., Golgi glycosylation. Cold Spring Harb Perspect Biol, 2011. 3(4). 50. Xie, L., et al., [IgA1 aberrant glycosylation in the pathogenesis of IgA nephropathy: an overivew]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2010. 27(1): p. 227-30. 51. Kudo, T., et al., C1galt1-deficient mice exhibit thrombocytopenia due to abnormal terminal differentiation of megakaryocytes. Blood, 2013. 122(9): p. 1649-57. 52. Wilkinson, H., et al., The O-Glycome of Human Nigrostriatal Tissue and Its Alteration in Parkinson's Disease. J Proteome Res, 2021. 53. Hill, H.D., Jr., J.A. Reynolds, and R.L. Hill, Purification, composition, molecular weight, and subunit structure of ovine submaxillary mucin. J Biol Chem, 1977. 252(11): p. 3791-8. 54. Singhal, A., M. Fohn, and S. Hakomori, Induction of alpha-N-acetylgalactosamine-O-serine/threonine (Tn) antigen-mediated cellular immune response for active immunotherapy in mice. Cancer Res, 1991. 51(5): p. 1406-11. 55. Van den Steen, P., et al., Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol, 1998. 33(3): p. 151-208. 56. Gomes, J., et al., Expression of UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-6 in gastric mucosa, intestinal metaplasia, and gastric carcinoma. J Histochem Cytochem, 2009. 57(1): p. 79-86. 57. Freire, T., et al., UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 6 (ppGalNAc-T6) mRNA as a potential new marker for detection of bone marrow-disseminated breast cancer cells. Int J Cancer, 2006. 119(6): p. 1383-8. 58. Hounsell, E.F., M.J. Davies, and D.V. Renouf, O-linked protein glycosylation structure and function. Glycoconj J, 1996. 13(1): p. 19-26. 59. Ju, T., et al., Cloning and expression of human core 1 beta1,3-galactosyltransferase. J Biol Chem, 2002. 277(1): p. 178-86. 60. Tran, D.T. and K.G. Ten Hagen, Mucin-type O-glycosylation during development. J Biol Chem, 2013. 288(10): p. 6921-9. 61. Wu, Y.M., et al., C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization. Cancer Res, 2013. 73(17): p. 5580-90. 62. Lee, P.C., et al., C1GALT1 is associated with poor survival and promotes soluble Ephrin A1-mediated cell migration through activation of EPHA2 in gastric cancer. Oncogene, 2020. 39(13): p. 2724-2740. 63. Tsai, C.H., et al., Metastatic Progression of Prostate Cancer Is Mediated by Autonomous Binding of Galectin-4-O-Glycan to Cancer Cells. Cancer Res, 2016. 76(19): p. 5756-5767. 64. Kufe, D.W., MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene, 2013. 32(9): p. 1073-81. 65. Zhang, C., et al., Knockdown of C1GalT1 inhibits radioresistance of human esophageal cancer cells through modifying beta1-integrin glycosylation. J Cancer, 2018. 9(15): p. 2666-2677. 66. Ghazizadeh, M., et al., Mucin carbohydrate antigens (T, Tn, and sialyl-Tn) in human ovarian carcinomas: relationship with histopathology and prognosis. Hum Pathol, 1997. 28(8): p. 960-6. 67. Aryal, R.P., T. Ju, and R.D. Cummings, The endoplasmic reticulum chaperone Cosmc directly promotes in vitro folding of T-synthase. J Biol Chem, 2010. 285(4): p. 2456-62. 68. Pinho, S.S. and C.A. Reis, Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer, 2015. 15(9): p. 540-55. 69. Ju, T., V.I. Otto, and R.D. Cummings, The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed Engl, 2011. 50(8): p. 1770-91. 70. Goldstein, I.J., Lectin structure-activity: the story is never over. J Agric Food Chem, 2002. 50(22): p. 6583-5. 71. Sharon, N. and H. Lis, History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology, 2004. 14(11): p. 53R-62R. 72. Tollefsen, S.E. and R. Kornfeld, The B4 lectin from Vicia villosa seeds interacts with N-acetylgalactosamine residues alpha-linked to serine or threonine residues in cell surface glycoproteins. J Biol Chem, 1983. 258(8): p. 5172-6. 73. Bennett, E.P., et al., Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology, 2012. 22(6): p. 736-56. 74. Marth, J.D. and P.K. Grewal, Mammalian glycosylation in immunity. Nat Rev Immunol, 2008. 8(11): p. 874-87. 75. Lin, M.C., et al., C1GALT1 predicts poor prognosis and is a potential therapeutic target in head and neck cancer. Oncogene, 2018. 37(43): p. 5780-5793. 76. Koyama, T. and K. Kamemura, Global increase in O-linked N-acetylglucosamine modification promotes osteoblast differentiation. Exp Cell Res, 2015. 338(2): p. 194-202. 77. Yang, X., et al., Primary human osteoblasts and bone cancer cells as models to study glycodynamics in bone. Int J Biochem Cell Biol, 2008. 40(3): p. 471-83. 78. Chou, C.H., et al., Up-regulation of C1GALT1 promotes breast cancer cell growth through MUC1-C signaling pathway. Oncotarget, 2015. 6(8): p. 6123-35. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81123 | - |
| dc.description.abstract | 骨質疏鬆症是一種慢性疾病,當骨吸收和骨沉積之間存在不平衡時就會發生。參考文獻指出,估計每年有超過2億人患有骨質疏鬆症。科學家們用兩種細胞類型監測這兩種活動:蝕骨細胞和成骨細胞,它們控制著骨骼的製造、維持和消耗。在典型的骨重塑週期中,成骨細胞調節骨吸收和骨沉積之間的平衡,並最終通過兩種蝕骨細胞激活細胞因子引起破骨細胞分化:巨噬細胞集落刺激因子 (MCSF) 和核因子κ-B配體受體激活劑(RANKL)。O-醣基化是必不可少的翻譯後修飾之一,對於蛋白質折疊、構造、分佈、穩定性及活性均有顯著影響,目前已在多種疾病中觀察到異常 O-醣基化的表達。GalNAcα1-O-Ser/Thr 糖肽 β3-半乳糖基轉移酶(C1GALT1)是負責正常組織中 O-醣基化成熟的酵素,此過程對細胞的物理及病理調節很重要,因此,我們旨在找出C1GALT1在蝕骨細胞生成中的作用。首先,RT-PCR 分析顯示在蝕骨細胞分化過程中C1galt1 及其分子伴侶C1galt1c1 (Cosmc) 的mRNA表現量降低。此外,在組織上透過TRAP染色發現去除C1galt1或使用 O-醣基化抑製劑來降低C1GALT1表現量,增強了蝕骨細胞分化。然而,來自電腦斷層掃描儀的骨體積和骨礦物質密度結果顯示蝕骨細胞生成對C1galt1被剔除之小鼠在卵巢切除模型中顯示相反的影響。我們接下來初步分析了C1galt1剔除蝕骨細胞中蝕骨細胞分化和骨吸收的相關基因,結果發現蝕骨細胞分化基因NFATc1和DC-STAMP增加,骨吸收活性基因TRAP在C1galt1 被踢除之蝕骨細胞中則下降。總而言之,C1GALT1的抑制可能會增加蝕骨細胞的分化,但會阻礙蝕骨細胞的骨吸收活動。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:31:46Z (GMT). No. of bitstreams: 1 U0001-1108202110040800.pdf: 2691721 bytes, checksum: dbe328406a5f4b8650ee129d116bda3e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 ii Abstract iii Abbreviation iv CHAPTER ONE. Introduction 1 1.1 Question of interest 1 1.2. Bone homeostasis 2 1.2.1 Osteoporosis 2 1.2.2 Osteoblast differentiation and mechanism 3 1.2.3 Osteoclast differentiation and mechanism 5 1.2.4 Bone resorption 6 1.3 Glycosylation 7 1.3.1 Types of glycosylation 8 1.3.2 Mucin type O-glycosylation 9 CHAPTER TWO. Specific Aims and Hypothesis 13 CHAPTER THREE. Materials and Methods 14 3.1 Materials 14 3.1.1 RNA interference 14 3.1.2 Antibody 14 3.1.3 Primers 15 3.1.4 Chemical and Reagents 17 3.2 Method 19 3.2.1 Raw 264.7 culture 19 3.2.2 Osteoclast formation 19 3.2.3 Flow cytometry 20 3.2.4 Animal Handling 20 3.2.5 Tissue Decalcification 21 3.2.6 Immunohistochemical staining 21 3.2.7 Bone marrow isolation 22 3.2.8 Mouse primary osteoclast culture and stimulation 22 3.2.9 Virus infection 22 3.2.10 RNA extraction 23 3.2.11 RT-PCR 23 3.2.12 Quantitative real-time PCR 23 3.2.13 Western blot 24 3.2.14 Ovariectomy model 25 3.2.15 Micro computed tomography analysis 25 3.2.16 Statistical analysis 25 CHAPTER FOUR. RESULTS 26 4.1 Expression of O-glycosylation shows in big data analysis 26 4.2 VVA and PNA increase during osteoclast differentiation in pre-osteoclast 26 4.3 RANKL decreases the mRNA expression of C1galt1 and C1galt1c1 27 4.4 Inhibit O-glycosylation could increase osteoclasts differentiation 28 4.7 Bone volume increase in C1galt1 KO mice in myeloid cells in OVX model 31 CHAPTER FIVE. Discussion 32 5.1 Silencing C1GALT1 affect osteoclasts differentiation in vitro 32 5.2 C1GALT1 knockout may increase bone volume in postmenopausal women 33 CHAPTER SIX. Figures 34 References 48 圖目錄 (List of Figures) Figure 1. Mammalian protein O-glycosylation pathways. 12 Figure 2. GSEA software and reactome analysis 36 Figure 3. Flow cytometry on different lectins 38 Figure 4. Real-time analyze diagrams 39 Figure 5. Inhibit O-glycosylation by pharmacological ways 41 Figure 6. VVA increase in C1galt1 KO BMCs 42 Figure 7. The appearances on WT and C1GALT1 KO mice 44 Figure 8. The appearances on WT and C1GALT1 KO mice 46 Figure 9. Osteoclast markers analysis 47 表目錄 (List of Tables) Table 1. shRNA. 14 Table 2. Antibody 14 Table 3. Mouse primer 15 | |
| dc.language.iso | en | |
| dc.subject | 卵巢切除模型 | zh_TW |
| dc.subject | 骨質疏鬆 | zh_TW |
| dc.subject | 蝕骨細胞分化 | zh_TW |
| dc.subject | O型醣基化 | zh_TW |
| dc.subject | OVX model | en |
| dc.subject | Osteoclastogenesis | en |
| dc.subject | O-Glycosylation | en |
| dc.subject | C1GALT1 knockout | en |
| dc.title | 調控C1GALT1表現量在蝕骨細胞分化過程中所造成之影響 | zh_TW |
| dc.title | The Effect of C1GALT1 on Osteoclast Differentiation in vitro and in vivo | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉雅雯(Hsin-Tsai Liu),郭靜穎(Chih-Yang Tseng) | |
| dc.subject.keyword | 骨質疏鬆,蝕骨細胞分化,O型醣基化,卵巢切除模型, | zh_TW |
| dc.subject.keyword | Osteoclastogenesis,O-Glycosylation,C1GALT1 knockout,OVX model, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU202102263 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202110040800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
