Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81106Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蔡永傑(Wing-Kit Choi) | |
| dc.contributor.author | Chan Su | en |
| dc.contributor.author | 蘇展 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:30:53Z | - |
| dc.date.available | 2021-09-02 | |
| dc.date.available | 2022-11-24T03:30:53Z | - |
| dc.date.copyright | 2021-09-02 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-19 | |
| dc.identifier.citation | 參考文獻 [1] Reinitzer, F. (1888). Beiträge zur kenntniss des cholesterins. Monatshefte für Chemie/Chemical Monthly. 9: 421-441. [2] Wu, S.-T. (1986). Birefringence dispersions of liquid crystals. Physical Review A. 33: 1270. [3] Bahr, C., Kitzerow, H. S. (2001). Chirality in liquid crystals. Heidelberg: Springer [4] Chen, H. Y., Liu, H. H., Lai, J. L., Chiu, C. H., Chou, J. Y. (2010). Relation between physical parameters and thermal stability of liquid-crystal blue phase. Applied Physics Letters,97(18), 181919. [5] Chen, H. Y., Liu, H. H., Lai, J. L., Chiu, C. H., Chou, J. Y. (2010). Relation between physical parameters and thermal stability of liquid-crystal blue phase. Applied Physics Letters,97(18), 181919. [6] Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H., Kajiyama, T. (2002). Polymer-stabilized liquid crystal blue phases. Nature materials,1(1), 64. [7] Schadt, M., Helfrich, W. (1971). Voltage‐dependent optical activity of a twisted nematic liquid crystal. Applied Physics Letters,18(4), 127-128. [8] Chigrinov, V. G. (1999). Liquid crystal devices: physics and applications. [9] Hong, S.H., et al. (2000). Electro-optic characteristic of fringe-field switching mode depending on rubbing direction. Japanese Journal of Applied Physics. 39: L527 [10] Lee, S., et al. (1998). Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Applied physics letters. 73: 2881-2883. [11] Oh‐e, M. and Kondo, K. (1995). Electro‐optical characteristics and switching behavior of the in‐plane switching mode. Applied physics letters. 67: 3895-3897. [12] Lee, Y.J., et al. (2009). Surface-controlled patterned vertical alignment mode with reactive mesogen. Optics express. 17: 10298-10303. [13] Kim, S.G., et al. (2007). Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen. Applied physics letters. 90: 261910. [14] Ting, C.L. and Huang, W.F. (2005). Multi-domain vertical alignment liquid crystal display and driving method thereof, U.S. Patents. US 6922183 B2 [15] Kim, K.H., et al. (1998). Domain divided vertical alignment mode with optimized fringe field effect. Proceedings of Asia Display. 98: 383-386. [16] Ge, Z., Gauza, S., Jiao, M., Xianyu, H., Wu, S. T. (2009). Electro-optics of polymer-stabilized blue phase liquid crystal displays. Applied Physics Letters,94(10), 101104. [17] Chen, K.M., et al. (2010). Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal. Journal of Display Technology. 6: 49-51. [18] Yamada, F., Nakamura, H., Sakaguchi, Y., Taira, Y. (2002). Sequential‐color LCD based on OCB with an LED backlight. Journal of the Society for Information Display,10(1), 81-85. [19] Bos, P.J. and Koehler/beran, K.R. (1984). The pi-cell: a fast liquid-crystal optical-switching device. Molecular Crystals and Liquid Crystals. 113: 329-339. [20] Meyer, Robert B., et al. (1975). Ferroelectric liquid crystals. Journal de Physique Lettres 36: 69-71. [21] Samsung Electronics. (2008). The world's first Blue Phase LCD panel which can be operated at an unprecedented refresh rate of 240Hz. From Wikipedia. [22] Chen, K. M., Gauza, S., Xianyu, H., Wu, S. T. (2010). Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal. Journal of display technology, 6(2), 49-51. [23] Chen, K. M., Gauza, S., Xianyu, H., Wu, S. T. (2010). Hysteresis effects in blue-phase liquid crystals. Journal of Display Technologyin 6(8), 318-322. [24] Chen, H., Lan, Y. F., Tsai, C. Y., Wu, S. T. (2017). Low-voltage blue-phase liquid crystal display with diamond-shape electrodes. Liquid Crystals,44(7), 1124-1130. [25] Zhu, X., Ge, Z., Wu, S. T. (2006). Analytical solutions for uniaxial-film-compensated wide-view liquid crystal displays. Journal of Display Technology,2(1), 2-20. [26] Tsai, C. Y. Lin, C. H. (2015, June). 37.1: Distinguished Paper: A Novel Blue Phase Liquid Crystal Display Applying Wall‐Electrode and High Driving Voltage Circuit. In SID Symposiμm Digest of Technical Papers(Vol. 46, No. 1, pp. 542-544). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81106 | - |
| dc.description.abstract | 中文摘要 科技發展非常快速,現今的顯示器主要還是液晶顯示器。而液晶當中,藍相液晶被視為具有潛力的材料之一,此材料反應時間有亞毫秒等級的,並利用液晶顯示器技術提升液晶顯示器的發光效率及解析度。但藍相液晶顯示器有低穿透率和高操作電壓的問題,所以要設計新的電極結構來改善這些問題。 本實驗室先前提出過新的電極結構,像是中空六角形電極結構。在本篇論文中,我們透過調整不同的參數,來更進一步的研究這一種電極結構。本論文主要分成四個部分,第一部份我們藉由模擬,了解中空六角形及其他中空圖形的光亮結構,並且分析,了解pixel和common的距離要平均和角度要大才能得到穿透區域較平均使得穿透率提升。第二部分我們藉由改變各個參數來改善平面中空六角形電極結構的參數,並分析其優缺點,尋找其可以大幅改善穿透率,及降低操作電壓的重要參數。第三部分我們藉由改變各個參數來改善截面中空六角形電極結構的參數,並分析其優缺點,尋找其可以大幅改善穿透率,及降低操作電壓的重要參數,第四部分,我們利用中空六角形電極結構的各個參數的優缺點去設計出最佳化的中空六角型電極結構,並找到合適的操作電壓下,最優良的穿透率,而我們找到最佳化的六角形結構其穿透率達到82.8%,操作電壓位在15.9 V。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:30:53Z (GMT). No. of bitstreams: 1 U0001-1808202101594500.pdf: 7669997 bytes, checksum: f83571f369e205800d291d77dcb3302e (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 目錄 口試委員會審定書...........................................................................................................# 致謝 i 中文摘要 ii ABSTRACT iii 目錄 v 圖目錄 viii 表目錄 xii 第一章 液晶簡介 1 1.1 液晶介紹 1 1.2 液晶分類 2 1.2.1 向列型(Nematic)液晶 3 1.2.2 層列型(Smectic)液晶 4 1.2.3 膽固醇型(Cholesteric)液晶 5 1.3 液晶特性 6 1.3.1 光學異向性 6 1.3.2 介電常數各向異性 7 1.3.3 秩序參數 8 1.3.4 液晶連續彈性體理論 9 1.4 藍相液晶 10 1.4.1 藍相液晶溫寬問題 11 1.4.2 克爾效應 12 第二章 液晶顯示器簡介 14 2.1 液晶顯示器介紹 14 2.2 藍相液晶顯示器之優缺點 16 2.3 液晶顯示器之重要參數 18 2.3.1 對比度 18 2.3.2 響應時間 18 2.3.3 灰階 18 2.3.4 可視角 19 第三章 研究方法 20 3.1 Techwiz模擬軟體介紹 20 3.2 Techwiz參數設定 21 3.2.1 材料庫模組(Material Data base) 21 3.2.2 網格化切割(Mesh Generation) 22 3.2.3 液晶分析(LC Analysis) 22 3.2.4 光學分析 24 3.2.5 突起物高度、底部角度、電極厚度、液晶層厚度 25 3.3 研究動機及結構介紹 26 第四章 實驗模擬結果 28 4.1 中空圖形的穿透率比較及分析 28 4.2 中空六角形的平面電極結構改變及探討其影響 31 4.2.1 改變r1的大小並探討其影響 32 4.2.2 改變g的大小 34 4.2.3 改變r2的大小並探討其影響 39 4.2.4 改變光亮穿透區的面積其影響 41 4.2.5 改變可穿透光區的大小並探討其影響 44 4.3 中空六角形的截面電極結構改變及探討其影響 48 4.3.1 改變θ的大小並探討其影響 48 4.3.2 改變h的大小並探討其影響 51 4.3.3 固定上層protrusion的大小並改變θ探討其影響 56 4.3.4 固定上層protrusion的大小並改變h探討其影響 59 4.4 中空六角形之最佳化 63 4.4.1 hollow hexagon電極結構r1與r2的最佳化 63 4.4.2 hollow hexagon電極結構θ和h的最佳化 67 第五章 結論與未來目標 72 參考文獻 74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 藍相液晶 | zh_TW |
| dc.subject | 中空六角形電極 | zh_TW |
| dc.subject | Techwiz | zh_TW |
| dc.subject | Techwiz | en |
| dc.subject | Blue phase liquid crystal | en |
| dc.subject | hollow hexagon electrode | en |
| dc.title | 六角形立體電極結構應用於藍相液晶顯示器之研究 | zh_TW |
| dc.title | Hexagonal Electrode Designs for Blue Phase Liquid Crystal Display | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晃巖(Hsin-Tsai Liu),黃定洧(Chih-Yang Tseng) | |
| dc.subject.keyword | 中空六角形電極,Techwiz,藍相液晶, | zh_TW |
| dc.subject.keyword | hollow hexagon electrode,Blue phase liquid crystal,Techwiz, | en |
| dc.relation.page | 75 | |
| dc.identifier.doi | 10.6342/NTU202102451 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| Appears in Collections: | 光電工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1808202101594500.pdf Access limited in NTU ip range | 7.49 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
