Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81100
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁建均(Jian-Jiun Ding)
dc.contributor.authorHsuan-Wei Hsuen
dc.contributor.author許軒瑋zh_TW
dc.date.accessioned2022-11-24T03:30:33Z-
dc.date.available2021-09-02
dc.date.available2022-11-24T03:30:33Z-
dc.date.copyright2021-09-02
dc.date.issued2021
dc.date.submitted2021-08-23
dc.identifier.citation[1]D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen. Mesonet: a compact facialvideo forgery detection network.2018IEEEInternationalWorkshoponInformationForensicsandSecurity(WIFS), Dec 2018. [2]F. Chollet. Xception: Deep learning with depthwise separable convolutions. In2017IEEEConferenceonComputerVisionandPatternRecognition(CVPR), pages1800–1807, 2017. [3]deepfakes. Deepfakes.https://github.com/deepfakes/faceswap, 2021. [4]deepfakes. Faceswap.https://github.com/MarekKowalski/FaceSwap, 2021. [5]T. DeVries and G. W. Taylor. Improved regularization of convolutional neural net­works with cutout.arXivpreprintarXiv:1708.04552, 2017. [6]B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang, and C. Canton Ferrer.The deepfake detection challenge dataset.arXive­prints, pages arXiv–2006, 2020. [7]I. Goodfellow, J. Pouget­Abadie, M. Mirza, B. Xu, D. Warde­Farley, S. Ozair,A. Courville, and Y. Bengio. Generative adversarial nets.Advancesinneuralinformationprocessingsystems, 27, 2014 [8]K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition,2015. [9]iperov. Deepfacelab ­ the leading software for creating deepfakes.https://github.com/iperov/DeepFaceLab, 2021. [10]L. Jiang, R. Li, W. Wu, C. Qian, and C. C. Loy. Deeperforensics­1.0: A large­scale dataset for real­world face forgery detection. InProceedingsoftheIEEE/CVFConferenceonComputerVisionandPatternRecognition, pages 2889–2898, 2020. [11]D.­K. Kim, D. Kim, and K. Kim. Facial manipulation detection based on the colordistribution analysis in edge region.arXivpreprintarXiv:2102.01381, 2021. [12]D. P. Kingma and M. Welling. Auto­encoding variational bayes.arXivpreprintarXiv:1312.6114, 2013. [13]L. Li, J. Bao, T. Zhang, H. Yang, D. Chen, F. Wen, and B. Guo. Face x­ray formore general face forgery detection. InProceedingsoftheIEEE/CVFConferenceonComputerVisionandPatternRecognition, pages 5001–5010, 2020. [14]X. Li, Y. Lang, Y. Chen, X. Mao, Y. He, S. Wang, H. Xue, and Q. Lu. Sharp mul­tiple instance learning for deepfake video detection.Proceedingsofthe28thACMInternationalConferenceonMultimedia, Oct 2020. [15]Y. Li, M.­C. Chang, and S. Lyu. In ictu oculi: Exposing ai generated fake face videosby detecting eye blinking, 2018. [16]Y. Li and S. Lyu. Exposing deepfake videos by detecting face warping artifacts,2019. [17]Y. Li, X. Yang, P. Sun, H. Qi, and S. Lyu. Celeb­df: A large­scale challenging datasetfor deepfake forensics. InProceedingsoftheIEEE/CVFConferenceonComputerVisionandPatternRecognition, pages 3207–3216, 2020. [18]H. Liu, X. Li, W. Zhou, Y. Chen, Y. He, H. Xue, W. Zhang, and N. Yu. Spatial­phaseshallow learning: Rethinking face forgery detection in frequency domain, 2021. [19]J. Lukas, J. Fridrich, and M. Goljan. Digital camera identification from sensor patternnoise.IEEETransactionsonInformationForensicsandSecurity, 1(2):205–214,2006. [20]I. Masi, A. Killekar, R. M. Mascarenhas, S. P. Gurudatt, and W. AbdAlmageed. Two­branch recurrent network for isolating deepfakes in videos. InEuropeanConferenceonComputerVision, pages 667–684. Springer, 2020. [21]F. Matern, C. Riess, and M. Stamminger. Exploiting visual artifacts to expose deep­fakes and face manipulations. In2019IEEEWinterApplicationsofComputerVisionWorkshops(WACVW), pages 83–92, 2019. [22]H. H. Nguyen, F. Fang, J. Yamagishi, and I. Echizen. Multi­task learning for detect­ing and segmenting manipulated facial images and videos, 2019. [23]H. H. Nguyen, J. Yamagishi, and I. Echizen. Capsule­forensics: Using capsule net­works to detect forged images and videos, 2018. [24]G. R. Nick Dufour and J. Andrew Gully. Contributing data to deep­fake detection research.https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html, 2019. [25]A. Parkin and O. Grinchuk. Creating artificial modalities to solve rgb liveness.arXivpreprintarXiv:2006.16028, 2020. [26]A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner. Face­forensics: A large­scale video dataset for forgery detection in human faces.arXivpreprintarXiv:1803.09179, 2018. [27]A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner. Face­forensics++: Learning to detect manipulated facial images. InProceedingsoftheIEEE/CVFInternationalConferenceonComputerVision, pages 1–11, 2019. [28]selimsef. dfdc_deepfake_challenge.https://github.com/selimsef/dfdc_deepfake_challenge, 2020. [29]L. N. Smith and N. Topin. Super­convergence: Very fast training of neural networksusing large learning rates, 2018. [30]J. Thies, M. Zollhöfer, and M. Nießner. Deferred neural rendering: Image synthesisusing neural textures.ACMTransactionsonGraphics(TOG), 38(4):1–12, 2019. [31]J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Nießner. Face2face:Real­time face capture and reenactment of rgb videos. InProceedingsoftheIEEEconferenceoncomputervisionandpatternrecognition, pages 2387–2395, 2016. [32]R. Tolosana, S. Romero­Tapiador, J. Fierrez, and R. Vera­Rodriguez. Deepfakesevolution: Analysis of facial regions and fake detection performance, 2020. [33]V. Ume. Deeptomcruise tiktok breakdown.https://www.youtube.com/watch?v=wq-kmFCrF5Q ab_channel=VFXChrisUme, 2021. [34]R. Wang, F. Juefei­Xu, L. Ma, X. Xie, Y. Huang, J. Wang, and Y. Liu. Fakespotter:A simple yet robust baseline for spotting ai­synthesized fake faces, 2020. [35]X. Wang, Y. Yan, P. Tang, X. Bai, and W. Liu. Revisiting multiple instance neuralnetworks.PatternRecognition, 74:15–24, Feb 2018. [36]X. Xuan, B. Peng, W. Wang, and J. Dong. On the generalization of gan imageforensics. InChineseconferenceonbiometricrecognition, pages 134–141. Springer,2019. [37]X. Yang, Y. Li, and S. Lyu. Exposing deep fakes using inconsistent head poses, 2018. [38]K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection and alignment us­ing multitask cascaded convolutional networks.IEEESignalProcessingLetters,23(10):1499–1503, Oct 2016. [39]T. Zhao, X. Xu, M. Xu, H. Ding, Y. Xiong, and W. Xia. Learning to recognize patch­wise consistency for deepfake detection.arXivpreprintarXiv:2012.09311, 2020. [40]Z.Zhong, L.Zheng, G.Kang, S.Li, andY.Yang. Randomerasingdataaugmentation.InProceedingsoftheAAAIConferenceonArtificialIntelligence, volume 34, pages13001–13008, 2020. [41]P. Zhou, X. Han, V. I. Morariu, and L. S. Davis. Two­stream neural networks fortampered face detection, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81100-
dc.description.abstract深度偽造技術(Deepfake),用來指稱透過深度學習來做到人臉圖像合成目的的技術,近來這種技術被廣為濫用製造假新聞、偽造名人情色影片等等,造成社會中許多危害與信任危機,使得對應的檢測技術日益受到人們的重視。在檢測臉部偽造技術中,偽造生成方法隨著深度學習的發展品質不斷提升,使得偽造檢測這項議題難以得到一個通用解,為了不讓偵測Deepfake的技術落後於偽造生成的進步,許多研究人員與企業都相繼投入對抗深度人臉偽造,好比如Facebook、Microsoft等企業於2019年底聯合舉辦了Deepfake Detection Challenge,除此之外相關的資料集也陸續在提出,來提供開發者來建構更好的Deepfake檢測工具。在本篇論文中,我們綜合多種圖片噪音模態(high pass filter DCT、Error­-Level-­Analysis、Photo Response Non-­Uniformity)的分析作為訓練輸入,目的是為了能得到更穩健的訓練模型以獲得更高的檢測精度,並且搭配兩分支的預測網路,來分離不同組成成份的偽造偽影(manipulation artifact、blending artifacts),最後透過多種loss的結合,讓特徵向量在高維空間中的分佈能符合我們的預期;總結而言,我們的檢測方法相較於過去許多的作法,除了在檢測圖像真假上有著更好的表現,還能夠去預測偽造區域(manipulation region、blending boundary)的所在,使得訓練模型的檢測結果更具有解釋性。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:30:33Z (GMT). No. of bitstreams: 1
U0001-1808202114311100.pdf: 7614505 bytes, checksum: e096ac9de35b8cc603d87fa0baa8cbd6 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee ---------------i Acknowledgements -----------------------------------------------------ii 摘要 ---------------------------------------------------------------- iii Abstract -------------------------------------------------------------iv Contents ------------------------------------------------------------vii List of Figures ------------------------------------------------------xi List of Tables -----------------------------------------------------xiii I. Topic Background ---------------------------------------------------1 Chapter 1. Introduction -----------------------------------------------2 Chapter 2. About Deepfake ---------------------------------------------5 II. Related works -----------------------------------------------------7 Chapter 3. Related Datasets -------------------------------------------8 3.1 Faceforensics++ -------------------------------------------------8 3.2 Celeb-DF(v2) ----------------------------------------------------9 Chapter 4. Review on Existing Forgery Detection Research -------------11 4.1 Relying on Artifacts -------------------------------------------11 4.1.1 Exposing DeepFake Videos By Detecting Face Warping Artifacts --11 4.1.2 In ictu oculi: Exposing ai generated fake face videos by detecting eye blinking --12 4.2 Binary Classifiers ---------------------------------------------13 4.2.1 Mesonet: a compact facial video forgery detection network --13 4.2.2 Capsule-­Forensics: Using Capsule Networks to Detect Forged Im­ages and Videos --14 4.2.3 Two-­branch recurrent network for isolating deepfakes in videos --14 4.3 Generalization performance -------------------------------------15 4.3.1 On the generalization of GAN image forensics ---------------15 4.3.2 Face X-­ray for more general face forgery detection ---------15 4.3.3 Learning to Recognize Patch-­Wise Consistency for Deepfake Detec­tion --17 III. Proposed Method and Discussion ----------------------------------18 Chapter 5. Proposed Methods ------------------------------------------19 5.1 Ideas ----------------------------------------------------------19 5.2 Proposed Architecture ------------------------------------------19 5.2.1 Use kinds of image noise analysis as training input --------21 I. High-­Pass Filtering performed by Discrete Cosine Transform --21 II. Error Level Analysis ---------------------------------------23 III. Photo Response Non-­Uniformity -----------------------------23 5.2.2 Summary ----------------------------------------------------24 5.2.3 Two branches of multi-task learning predict manipulation artifacts and blending artifacts --25 5.2.4 Multi-task learning details --------------------------------28 Chapter 6. Experimental Evaluation -----------------------------------32 6.1 Implementations Details ----------------------------------------32 6.2 Experiment Settings --------------------------------------------33 6.2.1 Pre-processing ---------------------------------------------33 6.2.2 Data Augmentation ------------------------------------------33 6.2.3 Hyper-parameters -------------------------------------------34 6.2.4 Evaluation Metrics -----------------------------------------34 6.3 In-Dataset Evaluation ------------------------------------------34 6.4 Cross-Dataset Evaluation ---------------------------------------36 6.5 Ablation Study -------------------------------------------------36 Chapter 7. Discussion ------------------------------------------------38 Chapter 8. Conclusion ------------------------------------------------41 Reference ------------------------------------------------------------43 Appendix A - Cutout-like Augmentation --------------------------------48
dc.language.isozh-TW
dc.subject多任務學習zh_TW
dc.subject深度學習zh_TW
dc.subject深度偽造檢測zh_TW
dc.subject圖片雜訊分析zh_TW
dc.subject偽造偽影分離zh_TW
dc.subjectForgery Arti­facts Separationen
dc.subjectDeep Learningen
dc.subjectDeepfake Detectionen
dc.subjectImage Noise Analysisen
dc.subjectMulti-task learningen
dc.title基於多噪音模態與兩分支預測網路之深度偽造影片檢測zh_TW
dc.titleUsing Multiple Noise Modalities with Two-­Branch Prediction Network for Deepfake Detectionen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余執彰(Hsin-Tsai Liu),張榮吉(Chih-Yang Tseng),歐陽良昱
dc.subject.keyword深度學習,深度偽造檢測,圖片雜訊分析,偽造偽影分離,多任務學習,zh_TW
dc.subject.keywordDeep Learning,Deepfake Detection,Image Noise Analysis,Forgery Arti­facts Separation,Multi-task learning,en
dc.relation.page49
dc.identifier.doi10.6342/NTU202102467
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1808202114311100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved