Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81095
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖淑貞(Shwu-Jen Liaw)
dc.contributor.authorLu Wangen
dc.contributor.author王璐zh_TW
dc.date.accessioned2022-11-24T03:30:18Z-
dc.date.available2021-08-31
dc.date.available2022-11-24T03:30:18Z-
dc.date.copyright2021-08-31
dc.date.issued2021
dc.date.submitted2021-08-20
dc.identifier.citation1. Schaffer, J.N. and M.M. Pearson, Proteus mirabilis and Urinary Tract Infections. Microbiol Spectr, 2015. 3(5). 2. Rózalski, A., Z. Sidorczyk, and K. Kotełko, Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev, 1997. 61(1): p. 65-89. 3. Armbruster, C.E. and H.L. Mobley, Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol, 2012. 10(11): p. 743-54. 4. Warren, J.W., et al., A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis, 1982. 146(6): p. 719-23. 5. Mobley, H.L., et al., Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun, 1996. 64(12): p. 5332-40. 6. Li, X., D.E. Johnson, and H.L. Mobley, Requirement of MrpH for mannose-resistant Proteus-like fimbria-mediated hemagglutination by Proteus mirabilis. Infect Immun, 1999. 67(6): p. 2822-33. 7. Bahrani, F.K., et al., Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect Immun, 1994. 62(8): p. 3363-71. 8. Braun, V. and T. Focareta, Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol, 1991. 18(2): p. 115-58. 9. Mobley, H.L., et al., Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun, 1991. 59(6): p. 2036-42. 10. Mobley, H.L., M.D. Island, and R.P. Hausinger, Molecular biology of microbial ureases. Microbiol Rev, 1995. 59(3): p. 451-80. 11. Jacobsen, S.M. and M.E. Shirtliff, Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence, 2011. 2(5): p. 460-5. 12. Coker, C., et al., Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect, 2000. 2(12): p. 1497-505. 13. Drechsel, H., et al., Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol, 1993. 175(9): p. 2727-33. 14. Senior, B.W., L.M. Loomes, and M.A. Kerr, The production and activity in vivo of Proteus mirabilis IgA protease in infections of the urinary tract. J Med Microbiol, 1991. 35(4): p. 203-7. 15. Walker, K.E., et al., ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol, 1999. 32(4): p. 825-36. 16. Alamuri, P. and H.L. Mobley, A novel autotransporter of uropathogenic Proteus mirabilis is both a cytotoxin and an agglutinin. Mol Microbiol, 2008. 68(4): p. 997-1017. 17. Armbruster, C.E., H.L.T. Mobley, and M.M. Pearson, Pathogenesis of Proteus mirabilis Infection. EcoSal Plus, 2018. 8(1). 18. Rauprich, O., et al., Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol, 1996. 178(22): p. 6525-38. 19. Givskov, M., et al., Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol, 1998. 180(3): p. 742-5. 20. Goldstein, S. and G. Czapski, The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these systems from these systems from the toxicity of O2−. Journal of free radicals in biology medicine, 1986. 2(1): p. 3-11. 21. Rensing, C. and G. Grass, Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev, 2003. 27(2-3): p. 197-213. 22. Tanner, M.S., et al., Increased hepatic copper concentration in Indian childhood cirrhosis. Lancet, 1979. 1(8128): p. 1203-5. 23. Cuypers, A., et al., Cadmium stress: an oxidative challenge. Biometals, 2010. 23(5): p. 927-40. 24. Koppenol, W.H., The Haber-Weiss cycle--70 years later. Redox Rep, 2001. 6(4): p. 229-34. 25. Macomber, L. and J.A. Imlay, The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A, 2009. 106(20): p. 8344-9. 26. Dollwet, H., Historic uses of copper compounds in medicine. Trace Elem. Med., 1985. 2: p. 80-87. 27. Hyre, A.N., et al., Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization. Infect Immun, 2017. 85(3). 28. Prohaska, J.R. and O.A. Lukasewycz, Copper deficiency suppresses the immune response of mice. Science, 1981. 213(4507): p. 559-61. 29. Hopkins, R.G. and M.L. Failla, Transcriptional regulation of interleukin-2 gene expression is impaired by copper deficiency in Jurkat human T lymphocytes. J Nutr, 1999. 129(3): p. 596-601. 30. Hopkins, R.G. and M.L. Failla, Copper deficiency reduces interleukin-2 (IL-2) production and IL-2 mRNA in human T-lymphocytes. J Nutr, 1997. 127(2): p. 257-62. 31. Jones, D.G. and N.F. Suttle, Some effects of copper deficiency on leucocyte function in sheep and cattle. Res Vet Sci, 1981. 31(2): p. 151-6. 32. Jones, D.G. and N.F. Suttle, The effect of copper deficiency on the resistance of mice to infection with Pasteurella haemolytica. J Comp Pathol, 1983. 93(1): p. 143-9. 33. Newberne, P.M., C.E. Hunt, and V.R. Young, The role of diet and the reticuloendothelial system in the response of rats to Salmonella typhilmurium infection. Br J Exp Pathol, 1968. 49(5): p. 448-57. 34. Babu, U. and M.L. Failla, Copper status and function of neutrophils are reversibly depressed in marginally and severely copper-deficient rats. J Nutr, 1990. 120(12): p. 1700-9. 35. Babu, U. and M.L. Failla, Respiratory burst and candidacidal activity of peritoneal macrophages are impaired in copper-deficient rats. J Nutr, 1990. 120(12): p. 1692-9. 36. Wagner, D., et al., Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell's endosomal system. J Immunol, 2005. 174(3): p. 1491-500. 37. Subashchandrabose, S., et al., Host-specific induction of Escherichia coli fitness genes during human urinary tract infection. Proc Natl Acad Sci U S A, 2014. 111(51): p. 18327-32. 38. Bhamidimarri, S.P., et al., Acquisition of ionic copper by a bacterial outer membrane protein. bioRxiv, 2020: p. 2020.06.04.134395. 39. Outten, F.W., et al., The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem, 2001. 276(33): p. 30670-7. 40. Hernández-Montes, G., J.M. Argüello, and B. Valderrama, Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria. BMC microbiology, 2012. 12(1): p. 1-14. 41. Grass, G. and C. Rensing, CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun, 2001. 286(5): p. 902-8. 42. Kim, E.H., et al., Switch or funnel: how RND-type transport systems control periplasmic metal homeostasis. J Bacteriol, 2011. 193(10): p. 2381-7. 43. Rensing, C., et al., CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A, 2000. 97(2): p. 652-6. 44. van der Oost, J., et al., The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol Lett, 1994. 121(1): p. 1-9. 45. Brown, N.L., et al., Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol, 1995. 17(6): p. 1153-66. 46. Peariso, K., et al., The PcoC copper resistance protein coordinates Cu(I) via novel S-methionine interactions. J Am Chem Soc, 2003. 125(2): p. 342-3. 47. Hamer, D.H. and D.R. Winge, Metal ion homeostasis. 1989: Alan R. Liss. 48. Gupta, S.D., et al., Identification of cutC and cutF (nlpE) genes involved in copper tolerance in Escherichia coli. J Bacteriol, 1995. 177(15): p. 4207-15. 49. Williams, C.L., et al., Characterization of Acinetobacter baumannii copper resistance reveals a role in virulence. Frontiers in microbiology, 2020. 11: p. 16. 50. Hofmann, L., M. Hirsch, and S. Ruthstein, Advances in Understanding of the Copper Homeostasis in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 2021. 22(4): p. 2050. 51. Checa, S.K., et al., Copper Handling in the Salmonella Cell Envelope and Its Impact on Virulence. Trends in Microbiology, 2021. 52. Changela, A., et al., Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science, 2003. 301(5638): p. 1383-7. 53. Chen, K., et al., An atypical linear Cu(I)-S2 center constitutes the high-affinity metal-sensing site in the CueR metalloregulatory protein. J Am Chem Soc, 2003. 125(40): p. 12088-9. 54. Williams, C.L., et al., Characterization of Acinetobacter baumannii Copper Resistance Reveals a Role in Virulence. Front Microbiol, 2020. 11: p. 16. 55. Qin, Y., et al., Genome Sequences of Three Highly Copper-Resistant Salmonella enterica subsp. I Serovar Typhimurium Strains Isolated from Pigs in Denmark. Genome Announc, 2014. 2(6). 56. Outten, F.W., et al., Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. J Biol Chem, 2000. 275(40): p. 31024-9. 57. Quintana, J., L. Novoa-Aponte, and J.M. Argüello, Copper homeostasis networks in the bacterium Pseudomonas aeruginosa. J Biol Chem, 2017. 292(38): p. 15691-15704. 58. Marrero, K., et al., Periplasmic proteins encoded by VCA0261-0260 and VC2216 genes together with copA and cueR products are required for copper tolerance but not for virulence in Vibrio cholerae. Microbiology (Reading), 2012. 158(Pt 8): p. 2005-2016. 59. Han, Y., et al., A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition. PLoS Pathog, 2019. 15(12): p. e1008198. 60. Belas, R., D. Erskine, and D. Flaherty, Transposon mutagenesis in Proteus mirabilis. Journal of bacteriology, 1991. 173(19): p. 6289. 61. Karlyshev, A.V., M.J. Pallen, and B.W. Wren, Single-primer PCR procedure for rapid identification of transposon insertion sites. Biotechniques, 2000. 28(6): p. 1078-1082. 62. Armbruster, C.E., et al., Genome-wide transposon mutagenesis of Proteus mirabilis: Essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS pathogens, 2017. 13(6): p. e1006434. 63. Tsai, Y.-L., et al., cAMP receptor protein regulates mouse colonization, motility, fimbria-mediated adhesion, and stress tolerance in uropathogenic Proteus mirabilis. Scientific reports, 2017. 7(1): p. 1-14. 64. Horng, Y.T., et al., Phosphoenolpyruvate phosphotransferase system components positively regulate Klebsiella biofilm formation. J Microbiol Immunol Infect, 2018. 51(2): p. 174-183. 65. Balakrishna, A., In vitro evaluation of adhesion and aggregation abilities of four potential probiotic strains isolated from guppy (Poecilia reticulata). Brazilian Archives of Biology and Technology, 2013. 56(5): p. 793-800. 66. Malik, A., et al., Coaggregation among nonflocculating bacteria isolated from activated sludge. Appl Environ Microbiol, 2003. 69(10): p. 6056-63. 67. Schweizer, H.P. and T.T. Hoang, An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene, 1995. 158(1): p. 15-22. 68. Ibáñez, M.M., S.K. Checa, and F.C. Soncini, A single serine residue determines selectivity to monovalent metal ions in metalloregulators of the MerR family. J Bacteriol, 2015. 197(9): p. 1606-13. 69. Bagchi, A., Structural characterizations of metal ion binding transcriptional regulator CueR from opportunistic pathogen pseudomonas aeruginosa to identify its possible involvements in virulence. Appl Biochem Biotechnol, 2015. 175(2): p. 649-56. 70. Humbert, M.V., et al., Protein signatures that promote operator selectivity among paralog MerR monovalent metal ion regulators. J Biol Chem, 2013. 288(28): p. 20510-9. 71. Pérez Audero, M.E., et al., Target transcription binding sites differentiate two groups of MerR-monovalent metal ion sensors. Mol Microbiol, 2010. 78(4): p. 853-65. 72. Jansen, A.M., et al., Mannose-Resistant Proteus-Like Fimbriae Are Produced by Most Proteus mirabilis Strains Infecting the Urinary Tract, Dictate the In Vivo Localization of Bacteria, and Contribute to Biofilm Formation. Infection and Immunity, 2004. 72(12): p. 7294-7305. 73. Armbruster, C.E. and H.L. Mobley, Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nature Reviews Microbiology, 2012. 10(11): p. 743-754. 74. Weichhart, T., et al., Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur J Clin Invest, 2008. 38 Suppl 2: p. 29-38. 75. Engel, D.R., et al., CCR2 mediates homeostatic and inflammatory release of Gr1(high) monocytes from the bone marrow, but is dispensable for bladder infiltration in bacterial urinary tract infection. J Immunol, 2008. 181(8): p. 5579-86. 76. Mora-Bau, G., et al., Macrophages Subvert Adaptive Immunity to Urinary Tract Infection. PLoS Pathog, 2015. 11(7): p. e1005044. 77. Sheldon, J.R. and E.P. Skaar, Metals as phagocyte antimicrobial effectors. Curr Opin Immunol, 2019. 60: p. 1-9. 78. Hausrath, A.C., et al., The bacterial copper resistance protein CopG contains a cysteine-bridged tetranuclear copper cluster. J Biol Chem, 2020. 295(32): p. 11364-11376. 79. Yamaguchi, K., et al., Characterization of metal-substituted Klebsiella aerogenes urease. J Biol Inorg Chem, 1999. 4(4): p. 468-77. 80. Lage, O.M., J. Bondoso, and J.A. Catita, Determination of zeta potential in Planctomycetes and its application in heavy metals toxicity assessment. Arch Microbiol, 2012. 194(10): p. 847-55. 81. White, C., et al., A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem, 2009. 284(49): p. 33949-56.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81095-
dc.description.abstract奇異變形桿菌(P. mirabilis)為人體一重要的尿道致病菌,其常引發尿導管相關的尿道感染。當尿道感染發生時人體為抵禦病菌的入侵會提升尿液中的銅濃度,其中P. mirabilis所引發的UTI可使尿液中銅濃度上升至約0.5 μM,同時清除外來致病菌的巨噬細胞中銅濃度會提升至約500 μM來加强對致病菌的毒殺作用。過量的銅會對菌體造成傷害,故細菌會啓動抗銅機制來維持菌體内銅濃度之恆定。目前對P. mirabilis的抗銅機制所知甚少,故本篇欲探究P. mirabilis的抗銅機制。 首先利用跳躍子突變法從約15000株突變株中篩選得到5株對銅感受性提高之突變株,經過基因分析後得到cueR突變株及copA突變株;同時以blast方式來尋找P. mirabilis中存在的抗銅基因,並結合實驗室之前transcriptome之結果推測出Cue系統於P. mirabilis的抗銅機制中扮演著重要作用。於是利用reporter assay及qPCR確認了P. mirabilis之CueR可正向調控抗銅相關基因cueO、 copA及copG之表達,而AAS之結果亦印證CueR可幫助菌體維持菌體内之銅濃度恆定。 接著探究CueR在0.5 μM及500 μM這兩個已知的生理銅濃度下對菌體毒力因子之影響,本篇結果表明無銅或0.5 μM銅離子環境并不影響cueR突變株生長狀況及細胞外毒力因子之表達,但於500 μM 銅離子環境下,cueR突變株相較於野生株之生長狀況、尿素酶活性、生物膜形成能力、表面移行能力及泳動能力皆顯著下降,由reporter及qPCR之分析可知cueR突變株因鞭毛形成相關基因flhDC的轉錄及fimbriae中與感染力相關之基因mrpA、pmfA、fim14、pmpA之表現量顯著下降,進而造成其運動性及細胞黏附能力下降。而在預處理銅後其抗氧化能力及巨噬細胞内存活率顯著上升可能與scsA表現量增加有關,但在未預先處理銅時cueR突變株之抗氧化能力及巨噬細胞内存活率則顯著低於野生株,同時小鼠實驗亦證實cueR突變株於小鼠膀胱及腎臟中的定植能力均顯著下降。 綜上可知於銅環境下CueR不僅可正向調節cueO、copA及copG之基因表達來維持菌體内銅濃度水平,亦可影響尿素酶活性、運動力、生物膜形成能力、上皮細胞黏附能力、巨噬細胞内存活能力及其定植能力等多種毒力因子。因此CueR在P. mirabilis之抵抗銅壓力及維持毒力因子中均扮演著重要角色。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:30:18Z (GMT). No. of bitstreams: 1
U0001-1808202122062400.pdf: 2906024 bytes, checksum: 027b49ae30ba0987a3dee84888c1c165 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 i 摘要 ii 英文摘要 iv 目錄 vi 第一章緒論 1 第一節奇異變形桿菌(Proteus mirabilis)的基本介紹 1 第二節P. mirabilis 的毒力因子 1 第三節P. mirabilis 的表面移行能力(swarming) 4 第四節銅之生物特性 4 第五節銅之生理意義 6 第六節菌體内之銅恆定系統 7 第七節CueR 之基本特性 8 第八節研究動機與目的 9 第二章實驗設計、材料與方法 10 第一節實驗設計 10 第二節實驗材料 11 第三節構建突變株、互補株及過度表達株 13 第四節突變基因之鑑定 21 第五節表現型(phenotype)及毒力因子(virulence factors)分析 27 第六節基因表達 43 第三章實驗結果 48 第一節篩選對銅高感受性之突變株 48 第二節P. mirabilis 之銅恆定系統 51 第三節cueR 突變株之表現型分析 56 第四節討論與結論 71 參考資料 76 第四章表 82 附錄 86
dc.language.isozh-TW
dc.subject奇異變形桿菌zh_TW
dc.subject銅zh_TW
dc.subject銅調控子CueRzh_TW
dc.subject毒力因子zh_TW
dc.subject尿道致病菌zh_TW
dc.subjectProteus mirabilisen
dc.subjectvirulence factoren
dc.subjectcopper regulator CueRen
dc.subjectcopperen
dc.subjecturopathogenen
dc.title探討尿道致病性奇異變形桿菌之抗銅機制-銅結合蛋白質CueR抗銅及調控毒力因子之研究zh_TW
dc.titleCharacterization of copper resistance in uropathogenic Proteus mirabilis-the role of copper regulator CueR in copper resistance and virulenceen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴信志(Hsin-Tsai Liu),邱浩傑(Chih-Yang Tseng)
dc.subject.keyword尿道致病菌,奇異變形桿菌,銅,銅調控子CueR,毒力因子,zh_TW
dc.subject.keyworduropathogen,Proteus mirabilis,copper,copper regulator CueR,virulence factor,en
dc.relation.page98
dc.identifier.doi10.6342/NTU202102493
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
U0001-1808202122062400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved