Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81080
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor盧信銘(Hsin-Min Lu)
dc.contributor.authorChia-Chun Kuen
dc.contributor.author古佳峻zh_TW
dc.date.accessioned2022-11-24T03:29:32Z-
dc.date.available2022-08-20
dc.date.available2022-11-24T03:29:32Z-
dc.date.copyright2021-11-11
dc.date.issued2021
dc.date.submitted2021-08-23
dc.identifier.citationAbroug Ben Abdelghani, I., Essoukri Ben Amara, N. (2013). SID Signature Database: A Tunisian Off-line Handwritten Signature Database. In New Trends in Image Analysis and Processing – ICIAP 2013 (pp. 131-139): Springer Berlin Heidelberg. Akbari, Y., Jalili, M. J., Sadri, J., Nouri, K., Siddiqi, I., Djeddi, C. (2018). A novel database for automatic processing of Persian handwritten bank checks. Pattern Recognition, 74, 253-265. doi:10.1016/j.patcog.2017.09.011 Al-Maadeed, S., Ayouby, W., Hassaine, A., Almejali, A., Al-Yazeedi, A., Al-Atiya, R. (2012). Arabic signature verification dataset. Paper presented at the Proceedings of the International Arab Conference on Information Technology. Alvarez, G., Sheffer, B., Bryant, M. (2016). Offline signature verification with convolutional neural networks. Technical report, Stanford University. Bertolini, D., Oliveira, L. S., Justino, E., Sabourin, R. (2010). Reducing forgeries in writer-independent off-line signature verification through ensemble of classifiers. Pattern Recognition, 43(1), 387-396. doi:10.1016/j.patcog.2009.05.009 Blankers, V. L., Heuvel, C. E. V. D., Franke, K. Y., Vuurpijl, L. G. (2009, 2009-01-01). ICDAR 2009 Signature Verification Competition. Paper presented at the 2009 10th International Conference on Document Analysis and Recognition. Deng, H.-R., Wang, Y.-H. (2009, 2009-07-01). On-line signature verification based on correlation image. Paper presented at the 2009 International Conference on Machine Learning and Cybernetics. Dey, S., Dutta, A., Toledo, J. I., Ghosh, S. K., Lladós, J., Pal, U. (2017). Signet: Convolutional siamese network for writer independent offline signature verification. arXiv preprint arXiv:1707.02131. Diaz, M., Ferrer, M. A., Eskander, G. S., Sabourin, R. (2017). Generation of Duplicated Off-Line Signature Images for Verification Systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(5), 951-964. doi:10.1109/tpami.2016.2560810 Diaz, M., Ferrer, M. A., Impedovo, D., Malik, M. I., Pirlo, G., Plamondon, R. (2019). A Perspective Analysis of Handwritten Signature Technology. ACM Computing Surveys, 51(6), 1-39. doi:10.1145/3274658 Ferrer, M. A., Alonso, J. B., Travieso, C. M. (2005). Offline geometric parameters for automatic signature verification using fixed-point arithmetic. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 993-997. doi:10.1109/tpami.2005.125 Ferrer, M. A., Chanda, S., Diaz, M., Banerjee, C. K., Majumdar, A., Carmona-Duarte, C., . . . Pal, U. (2018). Static and Dynamic Synthesis of Bengali and Devanagari Signatures. IEEE Transactions on Cybernetics, 48(10), 2896-2907. doi:10.1109/tcyb.2017.2751740 Ferrer, M. A., Diaz, M., Carmona-Duarte, C., Morales, A. (2017). A Behavioral Handwriting Model for Static and Dynamic Signature Synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1041-1053. doi:10.1109/tpami.2016.2582167 Fierrez-Aguilar, J., Alonso-Hermira, N., Moreno-Marquez, G., Ortega-Garcia, J. (2004). An Off-line Signature Verification System Based on Fusion of Local and Global Information. In Biometric Authentication (pp. 295-306): Springer Berlin Heidelberg. Foroozandeh, A., Akbari, Y., Jalili, M. J., Sadri, J. (2012, 2012-09-01). Persian Signature Verification Based on Fractal Dimension Using Testing Hypothesis. Paper presented at the 2012 International Conference on Frontiers in Handwriting Recognition. Galbally, J., Diaz-Cabrera, M., Ferrer, M. A., Gomez-Barrero, M., Morales, A., Fierrez, J. (2015). On-line signature recognition through the combination of real dynamic data and synthetically generated static data. Pattern Recognition, 48(9), 2921-2934. doi:10.1016/j.patcog.2015.03.019 Ghandali, S., Moghaddam, M. E. (2008, 2008-12-01). A Method for Off-line Persian Signature Identification and Verification Using DWT and Image Fusion. Paper presented at the 2008 IEEE International Symposium on Signal Processing and Information Technology. Guerbai, Y., Chibani, Y., Hadjadji, B. (2015). The effective use of the one-class SVM classifier for handwritten signature verification based on writer-independent parameters. Pattern Recognition, 48(1), 103-113. doi:10.1016/j.patcog.2014.07.016 Hafemann, L. G., Oliveira, L. S., Sabourin, R. (2018). Fixed-sized representation learning from offline handwritten signatures of different sizes. International Journal on Document Analysis and Recognition (IJDAR), 21(3), 219-232. doi:10.1007/s10032-018-0301-6 Ji, J.-W., Chen, C.-B., Chen, X.-S. (2010, 2010-05-01). Off-Line Chinese Signature Verification: Using Weighting Factor on Similarity Computation. Paper presented at the 2010 2nd International Conference on E-business and Information System Security. Kalera, M. K., Srihari, S., Xu, A. (2004). OFFLINE SIGNATURE VERIFICATION AND IDENTIFICATION USING DISTANCE STATISTICS. International Journal of Pattern Recognition and Artificial Intelligence, 18(07), 1339-1360. doi:10.1142/s0218001404003630 Kholmatov, A., Yanikoglu, B. (2009). SUSIG: an on-line signature database, associated protocols and benchmark results. Pattern Analysis and Applications, 12(3), 227-236. Liwicki, M., Heuvel, C. E. V. D., Found, B., Malik, M. I. (2010, 2010-11-01). Forensic Signature Verification Competition 4NSigComp2010 - Detection of Simulated and Disguised Signatures. Paper presented at the 2010 12th International Conference on Frontiers in Handwriting Recognition. Liwicki, M., Malik, M. I., Alewijnse, L., Heuvel, E. V. D., Found, B. (2012, 2012-09-01). ICFHR 2012 Competition on Automatic Forensic Signature Verification (4NsigComp 2012). Paper presented at the 2012 International Conference on Frontiers in Handwriting Recognition. Liwicki, M., Malik, M. I., Heuvel, C. E. V. D., Chen, X., Berger, C., Stoel, R., . . . Found, B. (2011, 2011-09-01). Signature Verification Competition for Online and Offline Skilled Forgeries (SigComp2011). Paper presented at the 2011 International Conference on Document Analysis and Recognition. Malik, M. I., Ahmed, S., Liwicki, M., Dengel, A. (2013, 2013-08-01). FREAK for Real Time Forensic Signature Verification. Paper presented at the 2013 12th International Conference on Document Analysis and Recognition. Malik, M. I., Ahmed, S., Marcelli, A., Pal, U., Blumenstein, M., Alewijns, L., Liwicki, M. (2015, 2015-08-01). ICDAR2015 competition on signature verification and writer identification for on- and off-line skilled forgeries (SigWIcomp2015). Paper presented at the 2015 13th International Conference on Document Analysis and Recognition (ICDAR). Malik, M. I., Liwicki, M., Alewijnse, L., Ohyama, W., Blumenstein, M., Found, B. (2013, 2013-08-01). ICDAR 2013 Competitions on Signature Verification and Writer Identification for On- and Offline Skilled Forgeries (SigWiComp 2013). Paper presented at the 2013 12th International Conference on Document Analysis and Recognition. Malik, M. I., Liwicki, M., Dengel, A., Uchida, S., Frinken, V. (2014, 2014-09-01). Automatic Signature Stability Analysis and Verification Using Local Features. Paper presented at the 2014 14th International Conference on Frontiers in Handwriting Recognition. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. Paper presented at the NIPS. Nanni, L., Ghidoni, S., Brahnam, S. (2017). Handcrafted vs. non-handcrafted features for computer vision classification. Pattern Recognition, 71, 158-172. doi:10.1016/j.patcog.2017.05.025 Okawa, M. (2017, 2017-10-01). KAZE features via fisher vector encoding for offline signature verification. Paper presented at the 2017 IEEE International Joint Conference on Biometrics (IJCB). Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D., Gonzalez, J., Faundez-Zanuy, M., Espinosa, V., . . . Vivaracho, C. (2003). MCYT baseline corpus: a bimodal biometric database. IEE Proceedings-Vision, Image and Signal Processing, 150(6), 395-401. Pal, S., Pal, U., Blumenstein, M. (2013). Hindi and English Off-line Signature Identification and Verification. In Advances in Intelligent Systems and Computing (pp. 905-910): Springer India. Rivard, D., Granger, E., Sabourin, R. (2013). Multi-feature extraction and selection in writer-independent off-line signature verification. International Journal on Document Analysis and Recognition (IJDAR), 16(1), 83-103. Ruiz, V., Linares, I., Sanchez, A., Velez, J. F. (2020). Off-line handwritten signature verification using compositional synthetic generation of signatures and Siamese Neural Networks. Neurocomputing, 374, 30-41. doi:10.1016/j.neucom.2019.09.041 Schroff, F., Kalenichenko, D., Philbin, J. (2015, 2015-06-01). FaceNet: A unified embedding for face recognition and clustering. Paper presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Soleimani, A., Fouladi, K., Araabi, B. N. (2017). UTSig: A Persian offline signature dataset. IET Biometrics, 6(1), 1-8. doi:10.1049/iet-bmt.2015.0058 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1), 1929–1958. Syed Ahmad, S. M., Shakil, A., Ahmad, A. R., Muhamad Balbed, M. A., Anwar, R. M. (2008, 2008-03-01). SIGMA - A Malaysian signatures #x2019; database. Paper presented at the 2008 IEEE/ACS International Conference on Computer Systems and Applications. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A. (2016). Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. Vargas, J. F., Ferrer, M. A., Travieso, C. M., Alonso, J. B. (2011). Off-line signature verification based on grey level information using texture features. Pattern Recognition, 44(2), 375-385. doi:10.1016/j.patcog.2010.07.028 Wei, P., Li, H., Hu, P. (2019). Inverse discriminative networks for handwritten signature verification. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Yeung, D.-Y., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T., Rigoll, G. (2004). SVC2004: First international signature verification competition. Paper presented at the International conference on biometric authentication. Yılmaz, M. B., Yanıkoğlu, B. (2016). Score level fusion of classifiers in off-line signature verification. Information Fusion,32,109119. doi:10.1016/j.inffus.2016.02.003 Zhang, Z., Liu, X., Cui, Y. (2016, 2016-12-01). Multi-phase Offline Signature Verification System Using Deep Convolutional Generative Adversarial Networks. Paper presented at the 2016 9th International Symposium on Computational Intelligence and Design (ISCID). Zois, E. N., Alewijnse, L., Economou, G. (2016). Offline signature verification and quality characterization using poset-oriented grid features. Pattern Recognition, 54, 162-177. doi:10.1016/j.patcog.2016.01.009
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81080-
dc.description.abstract"手寫簽名驗證是一個十分普遍的身分驗證方式,應用於諸多情境中,也因此自動化的手寫簽名驗證一直是一項重要的研究主題,許多的研究人員致力於開發高效且具可靠性的自動簽名驗證系統(automatic signature verification system),一個可靠的自動簽名驗證系統可以節省大量的人力資源。早期的研究常使用專家裁切特徵(Hand-Crafted Features),例如線條、彎曲、材質或是區域性的特徵來提取圖像的特徵,後來隨著運算力的提升,基於卷積神經網路的方法在圖像領域逐漸興起並取得良好的表現,神經網路模型直接從簽名圖像中提取特徵,同時大部分早期的研究集中於西方語言,隨著這個研究主題逐漸發展,關注其他語言如中文、日文、阿拉伯語、波斯語、印地語以及孟加拉語的研究才漸漸增加,儘管如此,中文手寫簽名的資料集仍十分匱乏,這將阻礙中文簽名驗證的發展,因此在本研究中我們收集了一個大型且具有挑戰性的中文手寫資料集,並將之命名為 ”HanSig”(即為Han Signature的縮寫),我們精心設計了收集資料的流程,最後我們總共收集了37,680張簽名圖像,這些簽名來自314位志願者,接著我們使用一些十分常見的卷積神經網路骨幹(CNN backbones)來提取簽名圖像的特徵,並比較各骨幹的表現以提供其他想要使用HanSig的研究者做為參考,在我們的實驗結果中, 使用DenseNet169以及ResNet34模型取得最佳的表現,我們在本研究中所提供的結果能夠提供其他想要使用HanSig的研究者參考,我們相信此資料集必定能為中文手寫簽名驗證的研究提供一份助力。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:29:32Z (GMT). No. of bitstreams: 1
U0001-2008202101332500.pdf: 2338147 bytes, checksum: 3f85e1cf565ee39916bcb5ad3a5edd3b (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents國立臺灣大學碩士學位論文口試委員會審定書 i 謝辭 ii 摘要 iii Abstract iv CONTENTS vi LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Motivation 4 1.3 Research Objective 4 Chapter 2 Literature Review 5 2.1 Preprocessing 5 2.1.1 Enhancement 5 2.1.2 Size normalization 5 2.2 Feature Extraction 6 2.2.1 Global parameters 6 2.2.2 Component oriented 7 2.2.3 Pixel oriented 8 2.3 Verifiers 8 2.3.1 Template Matching 8 2.3.2 Support Vector Machine 9 2.3.3 VGG Architecture 10 2.3.4 GAN based method 12 2.3.5 Siamese Network Architecture 12 2.4 Datasets 13 Chapter 3 Methodology 19 3.1 Research Gap 19 3.2 Research Question 19 3.3 Offline Chinese Handwritten Signature Dataset Collection 19 3.4 Comparison of Different CNN Backbones 24 3.5 Triplet loss 25 3.6 Triplet Selection 25 3.7 Batch Strategy 26 Chapter 4 Experiment 27 4.1 Performance Evaluation 27 4.2 Datasets 27 4.2.1 Our Han Handwritten Signature Dataset (HanSig) 27 4.2.2 SigComp11 28 4.3 Preprocessing 28 4.4 Pretrain Effect 29 4.5 Triplet Mining Strategy 31 4.6 Cross Dataset Evaluation 34 4.7 Backbones Performance Comparison 37 Chapter 5 Conclusion 40 REFERENCE 42 Appendix 46
dc.language.isoen
dc.subject手寫簽名資料集zh_TW
dc.subject手寫簽名驗證zh_TW
dc.subject中文手寫簽名資料集zh_TW
dc.subjectHandwritten Signature Dataseten
dc.subjectChinese Handwritten Signature Dataseten
dc.subjectHandwritten Signature Verificationen
dc.title中文手寫簽名驗證:資料集建構與深度學習模型zh_TW
dc.titleChinese Handwritten Signature Verification System: Dataset Development and Deep Learning-Based Modelen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曹承礎(Hsin-Tsai Liu),簡宇泰(Chih-Yang Tseng)
dc.subject.keyword手寫簽名驗證,中文手寫簽名資料集,手寫簽名資料集,zh_TW
dc.subject.keywordHandwritten Signature Verification,Chinese Handwritten Signature Dataset,Handwritten Signature Dataset,en
dc.relation.page52
dc.identifier.doi10.6342/NTU202102534
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-23
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
U0001-2008202101332500.pdf
Access limited in NTU ip range
2.28 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved