請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81078完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 華國泰(Kuo-Tai Hua) | |
| dc.contributor.author | Ya-Ting Qian | en |
| dc.contributor.author | 錢雅婷 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:29:27Z | - |
| dc.date.available | 2026-09-08 | |
| dc.date.available | 2022-11-24T03:29:27Z | - |
| dc.date.copyright | 2021-10-01 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-10 | |
| dc.identifier.citation | 1.Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin, 2018. 68(1):7-30. 2.https://www.cancerresearchuk.org/ 3.Rebecca L S, et al., Cancer statistics, CA Cancer J Clin. 2018. 68(1):7-30. 4.Motzer R J,et al., Kidney cancer, Version 2.2017,NCCN clinical practice guidelines in oncology. Natl Compr Canc Netw, 2017. 15(6): 804-834. 5.Oudard, S.,et al. Treatment options in renal cell carcinoma: past, present and future. Ann Oncol, 2007. 18 (Suppl 10): 25-31. 6.Linehan WM, et al., The Metabolic Basis of Kidney Cancer. Cancer Discov, 2019. 9(8): 1006-1021. 7.Gnarra, J.R., et al., Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet, 1994. 7(1): 85-90. 8.Kovacs, G. Molecular differential pathology of renal cell tumours. Histopathology, 1993. 22(1): 1-8. 9.Zambrano, N.R., et al., Histopathology and molecular genetics of renal tumors toward unification of a classification system. J Urol, 1999. 162(4): 1246-1258. 10.Motzer R J, et al., Prognostic nomogram for sunitinib in patients with metastatic renal cell carcinoma. Cancer, 2008. 113(7): 1552-1558. 11.Janzen NK,et al., Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol Clin North Am, 2003. 30(4): 843-852. 12.Klaudia K B, et al., Choosing the right cell line for renal cell cancer research. Mol Cancer, 2016. 15(1): 83 13.Shinojima T, et al., Renal cancer cells lacking hypoxia inducible factor (HIF)-1alpha expression maintain vascular endothelial growth factor expression through HIF-2alpha. Carcinogenesis, 2007. 28(3): 529–536. 14.Kucejova B, et al., Interplay between pVHL and mTORC1 pathways in clear-cell renal cell carcinoma. Mol Cancer Res, 2011. 9(9): 1255–1265. 15.Ashida S, et al., Effects of von Hippel-Lindau gene mutation and methylation status on expression of transmembrane carbonic anhydrases in renal cell carcinoma. J Cancer Res Clin Oncol, 2002. 128(10): 561–568. 16.Lovell M, et al., The genetic locus NRC-1 within chromosome 3p12 mediates tumor suppression in renal cell carcinoma independently of histological type, tumor microenvironment, and VHL mutation. Cancer Res, 1999. 59(9): 2182–2189. 17.Furge KA, et al., Combining differential expression, chromosomal and pathway analyses for the molecular characterization of renal cell carcinoma. Can Urol Assoc J, 2007. 1(2 Suppl): S21–S27. 18.Robb VA, et al., Activation of the mTOR signaling pathway in renal clear cell carcinoma. J Urol, 2007. 177(1): 346–352. 19.Campbell L, et al., Caveolin-1 in renal cell carcinoma promotes tumour cell invasion, and in co-operation with pERK predicts metastases in patients with clinically confined disease. J Transl Med. 20.Hsu RJ, et al., WNT10A plays an oncogenic role in renal cell carcinoma by activating WNT/beta-catenin pathway. PLoS One, 2012. 7(10): e47649. 21.Lichner Z, et al., miR-17 inhibition enhances the formation of kidney cancer spheres with stem cell/tumor initiating cell properties. Oncotarget, 2015. 6(8): 5567–81. 22.Liu YH, et al., Up-Regulation of Vascular Endothelial Growth Factor-D Expression in Clear Cell Renal Cell Carcinoma by CD74: A Critical Role in Cancer Cell Tumorigenesis. J Immunol, 2008. 181(9): 6584–6594. 23.Miyake M, et al., Erythropoietin is a JAK2 and ERK1/2 effector that can promote renal tumor cell proliferation under hypoxic conditions. J Hematol Oncol, 2013. 6: 65. 24.Glube N, et al., CAKI-1 cells represent an in vitro model system for studying the human proximal tubule epithelium. Nephron Exp Nephrol, 2007. 107(2): e47–e56. 25.Ding XF, et al., The tumor suppressor pVHL down-regulates never-in-mitosis A-related kinase 8 via hypoxia-inducible factors to maintain cilia in human renal cancer cells. J Biol Chem, 2015. 290(3): 1389–1394. 26.Iliopoulos O, et al., Tumour suppression by the human von Hippel-Lindau gene product. Nat Med, 1995. 1(8): 822–826. 27.Shinojima T, et al., Renal cancer cells lacking hypoxia inducible factor (HIF)-1alpha expression maintain vascular endothelial growth factor expression through HIF-2alpha. Carcinogenesis, 2007. 28(3): 529–536. 28.Kozlowski JM, et al., Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res, 1984. 44(8): 3522–3529. 29.Miyake M, et al., Erythropoietin is a JAK2 and ERK1/2 effector that can promote renal tumor cell proliferation under hypoxic conditions. J Hematol Oncol, 2013. 6: 65. 30.Boysen G, et al., Identification and functional characterization of pVHL-dependent cell surface proteins in renal cell carcinoma. Neoplasia, 2012. 14(6): 535–546. 31.Ho MY, et al., TNF-alpha induces epithelial-mesenchymal transition of renal cell carcinoma cells via a GSK3beta-dependent mechanism. Mol Cancer Res, 2012. 10(8): 1109–1119. 32.Park J H, Jung M, Moon K C. The prognostic significance of nuclear expression of PHF2 and C/EBPα in clear cell renal cell carcinoma with consideration of adipogenic metabolic evolution. Oncotarget, 2017. 9(1): 142-151. 33.Shi, Y.G. and Y. Tsukada, The discovery of histone demethylases. Cold Spring Harb Perspect Biol, 2013.5(9) 34.Fortschegger, K. and R. Shiekhattar, Plant homeodomain fingers form a helping hand for transcription. Epigenetics, 2011. 6(1): 4-8. 35.Klose, R.J., E.M. Kallin, and Y. Zhang, JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet, 2006. 7(9):715-727. 36.Rotili, D. and A. Mai, Targeting Histone Demethylases: A New Avenue for the Fight against Cancer. Genes Cancer, 2011. 2(6): 663-679. 37.Shmakova, A., et al., Chromatin and oxygen sensing in the context of JmjC histone demethylases. Biochem J, 2014. 462(3): 385-395. 38.Tough, D.F., et al., Epigenetic pathway targets for the treatment of disease: accelerating progress in the development of pharmacological tools: IUPHAR Review 11. Br J Pharmacol, 2014. 171(22): 4981-5010 39.Park, S.Y., J.W. Park, and Y.S. Chun, Jumonji histone demethylases as emerging therapeutic targets. Pharmacol Res, 2016. 105: 146-151. 40.Lee K H,et al. The histone demethylase PHF2 promotes fat cell differentiation as an epigenetic activator of both C/EBPalpha and C/EBPdelta. Mol Cells, 2014. 37(10): 734 - 741. 41.Baba A, et al., PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B.Nat Cell Biol, 2011. 13(6): 668 - 675. 42.Hasenpusch-Theil K,et al., PHF2, a novel PHD finger gene locate on human chromosome 9q22. Mamm Genome, 1999. 10(3): 294-308. 43.Wong, R.L. and C.L. Walker, Molecular pathways: environmental estrogens activate nongenomic signaling to developmentally reprogram the epigenome. Clin Cancer Res, 2013. 19(14): 3732-3737. 44.Baba, A., et al., PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B. Nat Cell Biol, 2011. 13(6): 668-675. 45.Hata, K., et al., Arid5b facilitates chondrogenesis by recruiting the histone demethylase Phf2 to Sox9-regulated genes. Nat Commun, 2013. 4: 2850. 46.Kim, H.J., et al., Plant homeodomain finger protein 2 promotes bone formation by demethylating and activating Runx2 for osteoblast differentiation. Cell Res, 2014. 24(10): 1231-1249. 47.Okuno, Y., et al., Novel insights into histone modifiers in adipogenesis. Adipocyte. 2013. 2(4): 285-288. 48.Lee, K.H., et al., The histone demethylase PHF2 promotes fat cell differentiation as an epigenetic activator of both C/EBPalpha and C/EBPdelta. Mol Cells, 2014. 37(10): 734-741. 49.Stender, J.D., et al., Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol Cell, 2012. 48(1): 28-38. 50.Sinha, S., et al., Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: pathological significance in early- and late-onset breast carcinoma. Mol Cancer, 2008. 7: 84. 51.Sun, L.L., et al., Overexpression of Jumonji AT-rich interactive domain 1B and PHD finger protein 2 is involved in the progression of esophageal squamous cell carcinoma. Acta Histochem, 2013. 115(1): 56-62. 52.Zhang, l., et al., Significance of PHF2 expression in breast cancer. J Clin Exp Pathol, 2016. 32(1): 4-8. 53.Ghosh, A., et al., Inactivation of 9q22.3 tumor suppressor genes predict outcome for patients with head and neck squamous cell carcinoma. Anticancer Res, 2013. 33(3): 1215-1220 54.Lee, K.H., et al., PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. Oncogene, 2015. 34(22): 2897-909 55.Lee, C., et al., Implication of PHF2 Expression in Clear Cell Renal Cell Carcinoma. J Pathol Transl Med, 2017. 51(4): 359-364. 56.Hsu P J, et al., Epitranscriptomic influences on development and disease.Genome Biol, 2017. 18(1): 197-205. 57.Ge Z, et al., Plant homeodomain finger protein 2 as a novel IKAROS target in acute lymphoblastic leukemia. Epigenomics, 2018. 10(1): 59-69. 58.Lee JH et al., Histone Demethylase Gene PHF2 Is Mutated in Gastric and Colorectal Cancers. Pathol Oncol Res, 2017. 23(3): 471-476 59.Samra T, et al., Kidney cancer: The next decade, J Exp Med. 2018. 215(10): 2477–2479. 60.https://zh.wikipedia.org/wiki/3%27%E9%9D%9E%E8%BD%89%E8%AD%AF%E5%8D%80 61.Ishikawa F, et al., Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood, 2005. 106(5): 1565-1573. 62.Shultz L, et al., Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol, 2005. 174(10): 6477-6789. 63.http://c.biomart.cn/bioraylab/node/355 64.Courtois G, et al., Mutations in the NF-kappaB signaling pathway: implications for human disease. Oncogene, 2006. 25(51): 6831-6843. 65.Gutierrez H, et al., Regulation of neural process growth, elaboration and structural plasticity by NF-κB. Trends Neurosci, 2011. 34(6): 316-325. 66.Feng W, et al., PHF8 activates transcription of rRNA genes through H3k4me3 binding and H3k9me1/2 demethylation. Nat Struct Mol Biol, 2010, 17(4) : 445-50. 67.Liu W, et al., PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature,2010,466(7305) : 508-12. 68.Mellor J, It takes a PHD to read the histone code. Cell, 2006, 126(1) : 22-4. 69.https://www.proteinatlas.org/ENSG00000197724-PHF2 70.Yi F, et al., MiR-221 Promotes Hepatocellular Carcinoma Cells Migration via Targeting PHF2. Biomed Res Int, 2019: 4371405. 71.Yao M, et al., Gene expression analysis of renal carcinoma: adipose differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal carcinoma. J Pathol, 2005, 205: 377–87. 72.Yao M, et al., Expression of adipose differentiation-related protein: a predictor of cancer-specific survival in clear cell renal carcinoma. Clin Cancer Res, 2007, 13: 152–60. 73.Tun HW, et al., Pathway signature and cellular differentiation in clear cell renal cell carcinoma. PLoS One, 2010, 5: e10696. 74.Brasaemle DL, et al., Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res, 1997, 38: 2249–63. 75.Gao J, Serrero G. Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J Biol Chem, 1999, 274: 16825–16830. 76.Lee C, et al., Histologic variations and immunohistochemical features of metastatic clear cell renal cell carcinoma. Korean J Pathol, 2013, 47: 426–32. 77.Thoenes W, et al., Histopathology and classification of renal cell tumors (adenomas, oncocytomas and carcinomas): the basic cytological and histopathological elements and their use for diagnostics. Pathol Res Pract, 1986, 181: 125–143. 78.C. Lance Cowey, et al., VHL Gene Mutations in Renal Cell Carcinoma: Role as a Biomarker of Disease Outcome and Drug Efficacy. Curr Oncol Rep, 2009. 11(2): 94–101. 79.Qi Q, et al., Histone demethylase KDM4A regulates adipogenic and osteogenic diferentiation via epigenetic regulation of C/EBPα and canonical Wnt signaling. Cell Mol Life Sci, 2020. 77(12): 2407-2421. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81078 | - |
| dc.description.abstract | "腎細胞癌是泌尿系統中惡性度較高的腫瘤,佔所有惡性腫瘤的2%~3%,近年來腎細胞癌的發病率年均增長約2%。在病理上腎細胞癌分為四類,其中腎透明細胞癌占85%,且相較於其他類型的腎細胞癌預後更差。植物同源結構域(plant homeodomain, PHD結構域)是真核生物中一種進化保守的鋅指結構域,多種調控基因轉錄、細胞週期、凋亡的蛋白質含有PHD結構域,通常參與蛋白質之間的相互作用,特別是對核小體組蛋白進行甲基化、乙醯化、磷酸化等修飾。過去多個研究發現,Plant homeodomain finger 2(PHF2)在頭頸部腫瘤、結腸癌、胃癌等多種惡性腫瘤中表現量低,提示PHF2對腫瘤發生發展起負向調控作用,也許在癌症中扮演腫瘤抑制的角色。因此在本研究中,我們試圖探討PHF2在腎細胞癌中的角色,以評估其作為新穎腎細胞癌藥物或生物標誌的可能性。首先借由癌症基因組圖譜(The Cancer Genome Atlas,TCGA)發現,PHF2蛋白在腎細胞癌病人中低表現,且表現量較低的病人存活率較差,提示其可作為腎細胞癌預後標的分子。目前透過選擇初代腎透明細胞癌細胞786-O、轉移腎細胞癌細胞CAKI-1和未分類的A498細胞,以及合適的PHF2片段,進行多個體外實驗,發現抑制PHF2的表現量,使細胞生長速度、短/長期集落形成能力,轉移以及侵襲能力上升,而過表現PHF2則下降,與各細胞特性相符。在動物實驗中,我們以原位注射方式,給予NSG小鼠腎透明細胞癌細胞,發現控制組小鼠腫瘤出現兩側腎臟轉移和肺轉移,而過表現PHF2組別的小鼠不見明顯腫瘤。為了進一步釐清PHF2可能調控的基因,我們使用基因集富集分析( Gene Set Enrichment Analysis,GSEA),找到多個相關基因,並進行qPCR分析,但未能找到在三株細胞中,結果一致的基因。但根據目前所得到的數據,我們還是可以確定PHF2在腎透明細胞癌中扮演了腫瘤抑制基因的角色,但其調控機制及下游調控因子還需更多的研究,以便為腎細胞癌患者在預後、治療藥物及生物標誌等方面提供新思路。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:29:27Z (GMT). No. of bitstreams: 1 U0001-2008202112440700.pdf: 3950109 bytes, checksum: 447ea6e59a83b13cbf15f63a3e313f63 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "誌謝………………………………………………………………………………………i 縮寫表…………………………………………………………………………………ii 中文摘要……………………………………………………………………………iii 英文摘要………………………………………………………………………………v 第一章 介紹……………………………………………………………………………1 1.1腎癌…………………………………………………………………………………2 1.2腎細胞癌……………………………………………………………………………2 1.3腎透明細胞癌………………………………………………………………………5 1.4腎透明細胞癌細胞株………………………………………………………………6 1.4.1 786-O細胞株………………………………………………………………………6 1.4.2 CAKI-1細胞株……………………………………………………………………7 1.4.3 A498細胞株………………………………………………………………………7 1.5植物同源異域指2(Plant Homeodomain Finger 2, PHF2)………………………7 1.5.1離胺酸特異性組蛋白脫甲基酶(Lysine-specific histone demethylase, KDM)…7 1.5.2 PHF2的作用………………………………………………………………………9 1.5.3在人類癌症中PHF2的角色……………………………………………………10 1.6研究目的……………………………………………………………………………11 第二章 材料與方法…………………………………………………………………12 2.1細胞株、細胞培養及繼代……………………………………………………… 13 2.2抗體,試劑與材料…………………………………………………………………14 2.3 pWPI-PHF2製備與轉染(transfection)………………………………………14 2.4慢病毒製備與轉染………………………………………………………………15 2.5蛋白質含量分析與核質分離分析………………………………………………15 2.6西方墨點法(western blot)………………………………………………………16 2.7定量即時聚合酶鏈鎖反應(Quantitative real time polymerase chain reaction, q-PCR)與微陣列(microarray)實驗…………………………………………………17 2.8細胞增生(cell proliferation)與集落形成(colony formation)實驗…………19 2.9細胞轉移(migration)與侵襲(invasion)實驗………………………………19 2.10細胞挽救實驗(Cellular rescue assay)………………………………………20 2.11體內原位癌腫瘤模型建立………………………………………………………21 2.12基因集富集分析( Gene Set Enrichment Analysis,GSEA)分析………………21 2.13統計分析…………………………………………………………………………21 第三章 結果…………………………………………………………………………22 3.1腎透明細胞癌與PHF2的表現相關…………………………………………23 3.2通過選擇合適的方法和片段改變野生型腎透明細胞癌細胞株中PHF2的表現.23 3.3在腎透明細胞癌細胞株中抑制或過表現PHF2會影響細胞的短期和長期增生.24 3.4 PHF2調控腎透明細胞癌細胞株的移行和侵襲能力……………………………25 3.5確認PHF2對於腎透明細胞癌細胞株功能的影響……………………………26 3.6在小鼠體內通過過表現PHF2建設原位癌模型………………………………27 3.7深入研究在腎透明細胞癌細胞株中調控PHF2所影響的下游因數…………28 第四章 討論…………………………………………………………………………30 圖與圖例………………………………………………………………………………38 參考文獻……………………………………………………………………………67" | |
| dc.language.iso | zh-TW | |
| dc.subject | 腫瘤抑制基因 | zh_TW |
| dc.subject | 腎透明細胞癌 | zh_TW |
| dc.subject | 腎臟癌 | zh_TW |
| dc.subject | 原位注射模型 | zh_TW |
| dc.subject | kidney | en |
| dc.subject | orthotopic | en |
| dc.subject | PHF2 | en |
| dc.subject | ccRCC | en |
| dc.title | PHF2在腎細胞癌中的角色 | zh_TW |
| dc.title | The Roles of Plant Homeodomain Finger 2 (PHF2) in Renal cell carcinoma | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 簡銘賢(Hsin-Tsai Liu),李維駿(Chih-Yang Tseng) | |
| dc.subject.keyword | 腎透明細胞癌,腎臟癌,原位注射模型,腫瘤抑制基因, | zh_TW |
| dc.subject.keyword | ccRCC,PHF2,kidney,orthotopic, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU202102540 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-09-08 | - |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2008202112440700.pdf 未授權公開取用 | 3.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
