請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81073完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭益謙(Ivan-Chen Cheng) | |
| dc.contributor.author | Shao-Yi Shamy Ma | en |
| dc.contributor.author | 馬邵毅 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:29:12Z | - |
| dc.date.available | 2021-09-02 | |
| dc.date.available | 2022-11-24T03:29:12Z | - |
| dc.date.copyright | 2021-09-02 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-22 | |
| dc.identifier.citation | 1. Ferreira, C.S., et al., Measles virus infection of alveolar macrophages and dendritic cells precedes spread to lymphatic organs in transgenic mice expressing human signaling lymphocytic activation molecule (SLAM, CD150). J Virol, 2010. 84(6): p. 3033-42. 2. Paramyxoviridae and Pneumoviridae, in Fenner's Veterinary Virology. 2017. p. 327-356. 3. Sato, H., et al., Morbillivirus receptors and tropism: multiple pathways for infection. Front Microbiol, 2012. 3: p. 75. 4. Budaszewski, R.d.F. and V.v. Messling, Morbillivirus Experimental Animal Models: Measles Virus Pathogenesis Insights from Canine Distemper Virus. Viruses, 2016. 8(10). 5. Singh, B.K., et al., The Nectin-4/Afadin Protein Complex and Intercellular Membrane Pores Contribute to Rapid Spread of Measles Virus in Primary Human Airway Epithelia. J Virol, 2015. 89(14): p. 7089-96. 6. Alves, L., et al., SLAM- and nectin-4-independent noncytolytic spread of canine distemper virus in astrocytes. J Virol, 2015. 89(10): p. 5724-33. 7. Gutsche, I., et al., Near-atomic cryo-EM structure of the helical measles virus nucleocapsid. Science, 2015. 348(6235). 8. Diane, E.G. and B.A.O. Michael, Measles: History and Biology. 2009. 6: p. 103-111. 9. Fontana, J.M., et al., Regulation of interferon signaling by the C and V proteins from attenuated and wild-type strains of measles virus. Virology, 2008. 374(1): p. 71-81. 10. Sparrer, K.M., C.K. Pfaller, and K.K. Conzelmann, Measles virus C protein interferes with Beta interferon transcription in the nucleus. J Virol, 2012. 86(2): p. 796-805. 11. Chinnakannan, S.K., S.K. Nanda, and M.D. Baron, Morbillivirus v proteins exhibit multiple mechanisms to block type 1 and type 2 interferon signalling pathways. PLoS One, 2013. 8(2): p. e57063. 12. Brunel, J., et al., Sequence of events in measles virus replication: role of phosphoprotein-nucleocapsid interactions. J Virol, 2014. 88(18): p. 10851-63. 13. Guryanov, S.G., et al., Crystal Structure of the Measles Virus Nucleoprotein Core in Complex with an N-Terminal Region of Phosphoprotein. J Virol, 2015. 90(6): p. 2849-57. 14. Zhou, Y., et al., Measles Virus Forms Inclusion Bodies with Properties of Liquid Organelles. J Virol, 2019. 93(21). 15. Galloux, M., et al., Minimal Elements Required for the Formation of Respiratory Syncytial Virus Cytoplasmic Inclusion Bodies In Vivo and In Vitro. mBio, 2020. 11(5). 16. Blanchard, E.L., et al., Polymerase-tagged respiratory syncytial virus reveals a dynamic rearrangement of the ribonucleocapsid complex during infection. PLoS Pathog, 2020. 16(10): p. e1008987. 17. Rincheval, V., et al., Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nat Commun, 2017. 8(1): p. 563. 18. Li, Y., et al., Involvement of Actin-Regulating Factor Cofilin in the Inclusion Body Formation and RNA Synthesis of Human Parainfluenza Virus Type 3 via Interaction With the Nucleoprotein. Front Microbiol, 2019. 10: p. 95. 19. Ringel, M., et al., Nipah virus induces two inclusion body populations: Identification of novel inclusions at the plasma membrane. PLoS Pathog, 2019. 15(4): p. e1007733. 20. Cifuentes-Muñoz, N., et al., Human Metapneumovirus Induces Formation of Inclusion Bodies for Efficient Genome Replication and Transcription. J Virol, 2017. 91(24). 21. Ma, D., et al., Upon Infection, Cellular WD Repeat-Containing Protein 5 (WDR5) Localizes to Cytoplasmic Inclusion Bodies and Enhances Measles Virus Replication. J Virol, 2018. 92(5). 22. Ditlev, J.A., L.B. Case, and M.K. Rosen, Who's In and Who's Out-Compositional Control of Biomolecular Condensates. J Mol Biol, 2018. 430(23): p. 4666-4684. 23. Guarnaccia, A.D. and W.P. Tansey, Moonlighting with WDR5: A Cellular Multitasker. J Clin Med, 2018. 7(2). 24. Wang, Y.Y., et al., WDR5 is essential for assembly of the VISA-associated signaling complex and virus-triggered IRF3 and NF-kappaB activation. Proc Natl Acad Sci U S A, 2010. 107(2): p. 815-20. 25. Ali, A., et al., MLL/WDR5 Complex Regulates Kif2A Localization to Ensure Chromosome Congression and Proper Spindle Assembly during Mitosis. Dev Cell, 2017. 41(6): p. 605-622 e7. 26. Bryan, A.F., et al., WDR5 is a conserved regulator of protein synthesis gene expression. Nucleic Acids Res, 2020. 48(6): p. 2924-2941. 27. Lu, K., et al., The Histone H3 Lysine 4 Presenter WDR5 as an Oncogenic Protein and Novel Epigenetic Target in Cancer. Front Oncol, 2018. 8: p. 502. 28. Shirogane, Y., et al., CADM1 and CADM2 Trigger Neuropathogenic Measles Virus-Mediated Membrane Fusion by Acting in cis. J Virol, 2021. 95(14): p. e0052821. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81073 | - |
| dc.description.abstract | 許多副黏液病毒(paramyxoviruses),如麻疹病毒(MeV),犬瘟熱病毒(CDV),呼吸道合胞病毒(RSV),人副流感病毒(HPIV3)等,它們感染的細胞中都出現了包涵體(inclusion body)。在過去的研究中,包涵體被認為是病毒廢棄物(如未正確折疊的病毒蛋白,序列錯誤的病毒核酸等)的聚集地。然而,最近的研究指出,細胞質包涵體是病毒進行複製的場所,病毒蛋白,病毒RNA,病毒mRNA,聚集在包涵體內,提高了病毒複製的效率。但是目前還沒有研究能夠完整闡述包涵體的形成機制,尤其是宿主端如何調控病毒包涵體形成之研究非常缺乏。包涵體的形成,有兩項發現是被廣泛認可的:第一點,病毒的N蛋白(nucleoprotein)和P蛋白(phosphoprotein)對於包涵體的形成至關重要;第二點,形成包涵體的各種物質通過液相分離(liquid-liquid phase separation)的方式聚集。此外,在麻疹病毒的研究中,WDR5能夠和包含病毒N,P,L蛋白的複合物結合,以及,降低(knockdown)WDR5抑制了病毒的複製,所以宿主蛋白WDR5可能參與包涵體的形成。同為麻疹病毒屬(Morbillivirus genus)的犬瘟热病毒,仍然廣泛存在于未接種疫苗的家犬,以及一些野生宿主中,如野生浣熊,野生狐狸。目前仍然沒有治療犬瘟熱的特效藥,而且,對於犬瘟熱的研究大多集中在臨床,病毒在細胞內的機制研究極其匱乏。所以我們希望通過對犬瘟熱病毒包涵體的研究,去尋找治療的新方向,其次,也希望能夠對其他副黏液病毒包涵體的研究提供幫助。在我們的研究中,首先想確認在野生型病毒感染的情況下,WDR5的分佈情況。但是市售的WDR5抗體存在低親和力的問題,另外我們也無法找到一種能同時過量表達(overexpress)WDR5並且對犬瘟熱病毒有敏感性的細胞株,所以我們在Vero細胞中共表達(co-express)犬瘟熱病毒的N,P蛋白,來模擬全病毒引發的包涵體,以此建立了犬瘟熱N-P共表達模型(N-P co-expression model)。在此模型之下,我們過表達WDR5-GFP,觀察到WDR5和包涵體樣點(IB-like puncta)有共定位(colocalization)。第二,我們通過免疫共沉澱的方法(co-immunoprecipitation),觀察到WDR5和N-P複合物有結合,這也暗示了WDR5可能參與犬瘟熱包涵體的形成。第三,我們通過shRNA和siRNA的方式降低(knockdown)WDR5的表達,觀察到犬瘟熱病毒蛋白的複製受到了抑制,證明WDR5對病毒複製的重要作用,也為WDR5在包涵體的形成發揮作用提供間接證據。第四,我們用WDR5抑制劑處理N-P共表達模型,產生包涵體樣點的細胞比例從62%降到25%,直接證明WDR5在包涵體的形成中扮演至關重要的作用。最後,我們用WDR5抑制劑(CC50:101.6 µM)抑制犬瘟熱病毒的感染,50 µM的抑制劑能夠顯著緩解病毒的感染,但即使將抑制劑濃度提高到100 µM也無法完全阻斷病毒感染,這個結果與第四點中的結果符合,因為WDR5抑制劑無法破壞所有的病毒包涵體。 總而言之,我們直接證明了WDR5參與到犬瘟熱病毒的包涵體的形成中,並且發現WDR5可以作為新的犬瘟熱病毒治療標的(target)。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:29:12Z (GMT). No. of bitstreams: 1 U0001-2008202115143100.pdf: 11158019 bytes, checksum: 1d9a180dd4b3e3df6ecb019e22e55fa2 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 iv Chapter 1 Introduction 4 1.1 Pathogenesis of canine distemper virus 4 1.2 Viral entry, viral receptors, and viral tropisms 5 1.3 CDV structural proteins and nonstructural proteins 7 1.4 N-P interaction and the function 8 1.5 Introduction of inclusion bodies 10 1.6 Introduction of host protein WDR5 12 1.7 WIN site inhibitor, OICR-9429 14 1.8 Summary 14 Chapter 2 Materials and methods 16 2.1 Cells 16 2.2 Viruses 16 2.3 Plasmids construction 17 2.4 Preparation of homemade α-N antibodies 18 2.5 Reagents and commercial antibodies 19 2.6 Transfection and vaccinia virus-mediated transfection (HTK/VV system) 21 2.7 Fixation and immunofluorescence assay (IFA) 22 2.8 Cell lysis and co-immunoprecipitation (co-IP) 23 2.9 Western blotting (WB) 24 2.10 Mammalian two-hybrid (M2H) 25 2.11 shRNA and siRNA-mediated knockdown 25 2.12 Assessment of the half of cytotoxic concentration (CC50) 26 2.13 Statistical analysis 27 Chapter 3 Results 28 3.1 CDV N and P proteins are minimal requirements for IB-like puncta formation 28 3.2 Overexpressed WDR5 colocalizes with IB-like puncta in the N-P co-expression model. 28 3.3 Overexpressed WDR5 interacts with the N-P complex. 29 3.4 Knockdown of WDR5 results in a decrease in viral protein production. 30 3.5 WDR5 inhibitor impairs IB-like puncta formation in N-P co-expression model 31 3.6 WDR5 inhibitor partially blocks viral replication 32 Chapter 4 Discussion 34 Chapter 5 Figures and Tables 39 Fig 1. Paramyxoviruses entry and cellular receptors. 40 Fig 2. Cryo-EM structure of the MeV Ncore-RNA nucleocapsid and structure of two domains of MeV P protein. 42 Fig 3. N-P interaction and the interaction mediated viral processes. 44 Fig 4. A unified model of condensate composition and the introduction of WDR5. 47 Fig 5. Setting up N-P co-expression model. 49 Fig 6. Overexpressed WDR5-GFP colocalizes with N-P induced IB-like puncta. 51 Fig 7. Overexpressed WDR5 co-precipitates with N-P complex. 52 Fig 8. shRNA and siRNA mediated knockdown reduces the level of viral protein production. 54 Fig 9. WDR5 inhibitor reduces IB-like puncta formation rate in the N-P co-expression model. 57 Fig 10. WDR5 inhibitor partially blocks viral infection. 58 Fig s1. The localization of endogenous WDR5 in CDV infected B95a cells. 59 Fig s2. Functional test of homemade α-N monoclonal antibodies. 60 Fig s3. Testing the interaction between N and WDR5 by co-IP 62 Fig s4. Mapping the interaction between WDR5 and N-P complex by mammalian two-hybrid (M2H). 63 Table 1. Primers for plasmids construction 64 Chapter 6 References 65 " | |
| dc.language.iso | en | |
| dc.subject | 犬瘟熱病毒 | zh_TW |
| dc.subject | 宿主病毒互動 | zh_TW |
| dc.subject | 宿主蛋白WDR5 | zh_TW |
| dc.subject | WDR5抑制劑 | zh_TW |
| dc.subject | 包涵體 | zh_TW |
| dc.subject | canine distemper virus | en |
| dc.subject | inclusion bodies | en |
| dc.subject | WDR5 | en |
| dc.subject | host-virus interaction | en |
| dc.subject | WDR5 inhibitor | en |
| dc.title | WDR5參與犬瘟熱病毒質內包涵體形成及病毒複製之角色 | zh_TW |
| dc.title | The role of WDR5 in the formation of cytoplasmic inclusion body and replication of canine distemper virus | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宋向軒(Hsin-Tsai Liu),蔡沛學(Chih-Yang Tseng),張惠雯 | |
| dc.subject.keyword | 犬瘟熱病毒,包涵體,宿主蛋白WDR5,宿主病毒互動,WDR5抑制劑, | zh_TW |
| dc.subject.keyword | canine distemper virus,inclusion bodies,WDR5,host-virus interaction,WDR5 inhibitor, | en |
| dc.relation.page | 66 | |
| dc.identifier.doi | 10.6342/NTU202102552 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-23 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2008202115143100.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
