Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81057
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姜至剛(Chih-Kang Chiang)
dc.contributor.authorYing-Cheng Linen
dc.contributor.author林穎成zh_TW
dc.date.accessioned2022-11-24T03:28:24Z-
dc.date.available2021-08-31
dc.date.available2022-11-24T03:28:24Z-
dc.date.copyright2021-08-31
dc.date.issued2021
dc.date.submitted2021-08-20
dc.identifier.citation1. Wallace, M.A., Anatomy and physiology of the kidney. Aorn j, 1998. 68(5): p. 800, 803-16, 819-20; quiz 821-4. 2. Mehta, R.L., Timed and targeted therapy for acute kidney injury: a glimpse of the future. Kidney International, 2010. 77(11): p. 947-949. 3. Crews, D.C., A.K. Bello, and G. Saadi, 2019 World Kidney Day Editorial - burden, access, and disparities in kidney disease. J Bras Nefrol, 2019. 41(1): p. 1-9. 4. Gaitonde, D.Y., D.L. Cook, and I.M. Rivera, Chronic Kidney Disease: Detection and Evaluation. Am Fam Physician, 2017. 96(12): p. 776-783. 5. Nashar, K. and B.M. Egan, Relationship between chronic kidney disease and metabolic syndrome: current perspectives. Diabetes Metab Syndr Obes, 2014. 7: p. 421-35. 6. Hill, N.R., et al., Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One, 2016. 11(7): p. e0158765. 7. Bikbov, B., et al., Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 2020. 395(10225): p. 709-733. 8. Rana, J.S., et al., Changes in Mortality in Top 10 Causes of Death from 2011 to 2018. J Gen Intern Med, 2020: p. 1-2. 9. Ammirati, A.L., Chronic Kidney Disease. Rev Assoc Med Bras (1992), 2020. 66Suppl 1(Suppl 1): p. s03-s09. 10. Drawz, P. and M. Rahman, Chronic kidney disease. Ann Intern Med, 2015. 162(11): p. Itc1-16. 11. Bello, A.K., et al., Impact of Ramadan fasting on kidney function and related outcomes in patients with chronic kidney disease: a systematic review protocol. 2019. 9(8): p. e022710. 12. Mutsaers, H.A., et al., Chronic Kidney Disease and Fibrosis: The Role of Uremic Retention Solutes. Front Med (Lausanne), 2015. 2: p. 60. 13. Abbas, A.K. and J.C. Aster, Robbins and Cotran pathologic basis of disease. 2015: Elsevier/ Saunders. 14. Frantz, C., K.M. Stewart, and V.M. Weaver, The extracellular matrix at a glance. Journal of Cell Science, 2010. 123(24): p. 4195-4200. 15. Wynn, T.A., Cellular and molecular mechanisms of fibrosis. J Pathol, 2008. 214(2): p. 199-210. 16. Cohen, E.P., Fibrosis causes progressive kidney failure. Med Hypotheses, 1995. 45(5): p. 459-62. 17. Hewitson, T.D., Fibrosis in the kidney: is a problem shared a problem halved? Fibrogenesis Tissue Repair, 2012. 5(Suppl 1): p. S14. 18. Suárez-Álvarez, B., H. Liapis, and H.J. Anders, Links between coagulation, inflammation, regeneration, and fibrosis in kidney pathology. Lab Invest, 2016. 96(4): p. 378-90. 19. Liu, Y., Renal fibrosis: New insights into the pathogenesis and therapeutics. Kidney International, 2006. 69(2): p. 213-217. 20. Zeisberg, M. and E.G. Neilson, Mechanisms of Tubulointerstitial Fibrosis. 2010. 21(11): p. 1819-1834. 21. Gilbert, R.E. and M.E. Cooper, The tubulointerstitium in progressive diabetic kidney disease: More than an aftermath of glomerular injury? Kidney International, 1999. 56(5): p. 1627-1637. 22. Cho, M.H., Renal fibrosis. Korean J Pediatr, 2010. 53(7): p. 735-40. 23. Liu, Y., Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol, 2011. 7(12): p. 684-96. 24. Eddy, A.A., Molecular basis of renal fibrosis. Pediatr Nephrol, 2000. 15(3-4): p. 290-301. 25. Vernon, M.A., K.J. Mylonas, and J. Hughes, Macrophages and renal fibrosis. Semin Nephrol, 2010. 30(3): p. 302-17. 26. Bohle, A., et al., The role of the interstitium of the renal cortex in renal disease. Contrib Nephrol, 1979. 16: p. 109-14. 27. Frank, J., et al., Human renal tubular cells as a cytokine source: PDGF-B, GM-CSF and IL-6 mRNA expression in vitro. Exp Nephrol, 1993. 1(1): p. 26-35. 28. Howard, B.V., et al., Characterization of the collagen synthesized by endothelial cells in culture. Proc Natl Acad Sci U S A, 1976. 73(7): p. 2361-4. 29. Eddy, A.A., Molecular insights into renal interstitial fibrosis. 1996. 7(12): p. 2495-2508. 30. Lin, S.L., et al., Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol, 2008. 173(6): p. 1617-27. 31. Prud'homme, G.J., Pathobiology of transforming growth factor β in cancer, fibrosis and immunologic disease, and therapeutic considerations. Laboratory Investigation, 2007. 87(11): p. 1077-1091. 32. Böttinger, E.P. and M. Bitzer, TGF-beta signaling in renal disease. J Am Soc Nephrol, 2002. 13(10): p. 2600-10. 33. Yang, F., et al., Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension, 2009. 54(4): p. 877-84. 34. Perbal, B., CCN proteins: multifunctional signalling regulators. Lancet, 2004. 363(9402): p. 62-4. 35. Ostendorf, T., et al., Specific antagonism of PDGF prevents renal scarring in experimental glomerulonephritis. J Am Soc Nephrol, 2001. 12(5): p. 909-918. 36. Zeisberg, M., et al., BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med, 2003. 9(7): p. 964-8. 37. Chevalier, R.L., et al., Renal tubulointerstitial injury from ureteral obstruction in the neonatal rat is attenuated by IGF-1. Kidney Int, 2000. 57(3): p. 882-90. 38. Eddy, A.A., Can renal fibrosis be reversed? Pediatr Nephrol, 2005. 20(10): p. 1369-75. 39. Chmielewski, M., et al., The role of epigenetics in kidney diseases. Prilozi, 2011. 32(1): p. 45-54. 40. Bechtel, W., et al., Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med, 2010. 16(5): p. 544-50. 41. Wing, M.R., et al., Epigenetics of progression of chronic kidney disease: fact or fantasy? Semin Nephrol, 2013. 33(4): p. 363-74. 42. Gomez, I.G., N. Nakagawa, and J.S. Duffield, MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis. Am J Physiol Renal Physiol, 2016. 310(10): p. F931-44. 43. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8. 44. Dongre, A. and R.A. Weinberg, New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nature Reviews Molecular Cell Biology, 2019. 20(2): p. 69-84. 45. Kalluri, R. and E.G. Neilson, Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 2003. 112(12): p. 1776-84. 46. Zeisberg, M. and E.G. Neilson, Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009. 119(6): p. 1429-37. 47. Acloque, H., et al., Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest, 2009. 119(6): p. 1438-49. 48. Iwano, M., et al., Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest, 2002. 110(3): p. 341-50. 49. Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54. 50. Strutz, F., et al., Identification and characterization of a fibroblast marker: FSP1. 1995. 130(2): p. 393-405. 51. Ng, Y.Y., et al., Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int, 1998. 54(3): p. 864-76. 52. Fragiadaki, M. and R.M. Mason, Epithelial-mesenchymal transition in renal fibrosis - evidence for and against. Int J Exp Pathol, 2011. 92(3): p. 143-50. 53. Qi, W., et al., The renal cortical fibroblast in renal tubulointerstitial fibrosis. The International Journal of Biochemistry Cell Biology, 2006. 38(1): p. 1-5. 54. Liu, Y., Epithelial to Mesenchymal Transition in Renal Fibrogenesis: Pathologic Significance, Molecular Mechanism, and Therapeutic Intervention. Journal of the American Society of Nephrology, 2004. 15(1): p. 1. 55. Prozialeck, W.C., P.C. Lamar, and D.M. Appelt, Differential expression of E-cadherin, N-cadherin and beta-catenin in proximal and distal segments of the rat nephron. BMC Physiol, 2004. 4: p. 10. 56. Kohan, D.E.J.A.j.o.k.d., Endothelins in the kidney: physiology and pathophysiology. 1993. 22(4): p. 493-510. 57. Peinado, H., M. Quintanilla, and A. Cano, Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem, 2003. 278(23): p. 21113-23. 58. Zheng, L., et al., Matrix metalloproteinase-3 accelerates wound healing following dental pulp injury. Am J Pathol, 2009. 175(5): p. 1905-14. 59. Tian, Y.C., et al., TGF-beta1-mediated alterations of renal proximal tubular epithelial cell phenotype. Am J Physiol Renal Physiol, 2003. 285(1): p. F130-42. 60. Yang, J. and Y. Liu, Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol, 2001. 159(4): p. 1465-75. 61. Sinniah, R. and T.N. Khan, Renal tubular basement membrane changes in tubulointerstitial damage in patients with glomerular diseases. Ultrastruct Pathol, 1999. 23(6): p. 359-68. 62. Cheng, S., et al., Matrix metalloproteinase 2 and basement membrane integrity: a unifying mechanism for progressive renal injury. Faseb j, 2006. 20(11): p. 1898-900. 63. Hao, Y., D. Baker, and P. Ten Dijke, TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci, 2019. 20(11). 64. Nawshad, A., D. LaGamba, and E.D. Hay, Transforming growth factor beta (TGFbeta) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). Arch Oral Biol, 2004. 49(9): p. 675-89. 65. Mercado-Pimentel, M.E. and R.B. Runyan, Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs, 2007. 185(1-3): p. 146-56. 66. Schnaper, H.W., et al., TGF-beta signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol, 2003. 284(2): p. F243-52. 67. Meng, X.-M., et al., TGF-β/Smad signaling in renal fibrosis. 2015. 6(82). 68. Feng, X.H. and R. Derynck, Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol, 2005. 21: p. 659-93. 69. Nieto, M.A., The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol, 2002. 3(3): p. 155-66. 70. Cano, A., et al., The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2000. 2(2): p. 76-83. 71. Ikenouchi, J., et al., Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci, 2003. 116(Pt 10): p. 1959-67. 72. Kurrey, N.K., A. K, and S.A. Bapat, Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol, 2005. 97(1): p. 155-65. 73. Olmeda, D., et al., Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene, 2007. 26(13): p. 1862-1874. 74. Barrallo-Gimeno, A. and M.A. Nieto, The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development, 2005. 132(14): p. 3151-3161. 75. Boutet, A., et al., Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. Embo j, 2006. 25(23): p. 5603-13. 76. Sureshbabu, A., S.A. Muhsin, and M.E. Choi, TGF-β signaling in the kidney: profibrotic and protective effects. Am J Physiol Renal Physiol, 2016. 310(7): p. F596-f606. 77. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96. 78. Inagi, R., et al., Involvement of endoplasmic reticulum (ER) stress in podocyte injury induced by excessive protein accumulation. Kidney International, 2005. 68(6): p. 2639-2650. 79. Liu, G., et al., Apoptosis induced by endoplasmic reticulum stress involved in diabetic kidney disease. Biochemical and Biophysical Research Communications, 2008. 370(4): p. 651-656. 80. Xu, C., B. Bailly-Maitre, and J.C. Reed, Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest, 2005. 115(10): p. 2656-64. 81. Sano, R. and J.C. Reed, ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2013. 1833(12): p. 3460-3470. 82. Oakes, S.A., Endoplasmic Reticulum Stress Signaling in Cancer Cells. The American Journal of Pathology, 2020. 190(5): p. 934-946. 83. Mu, Y.P., T. Ogawa, and N. Kawada, Reversibility of fibrosis, inflammation, and endoplasmic reticulum stress in the liver of rats fed a methionine-choline-deficient diet. Lab Invest, 2010. 90(2): p. 245-56. 84. Dickhout, J.G., R.E. Carlisle, and R.C. Austin, Interrelationship between cardiac hypertrophy, heart failure, and chronic kidney disease: endoplasmic reticulum stress as a mediator of pathogenesis. Circ Res, 2011. 108(5): p. 629-42. 85. Dihazi, H., et al., Proteomics characterization of cell model with renal fibrosis phenotype: osmotic stress as fibrosis triggering factor. J Proteomics, 2011. 74(3): p. 304-18. 86. Fan, Y., et al., Inhibition of Reticulon-1A–Mediated Endoplasmic Reticulum Stress in Early AKI Attenuates Renal Fibrosis Development. Journal of the American Society of Nephrology, 2017. 28(7): p. 2007. 87. Wu, X., et al., Albumin Overload Induces Apoptosis in Renal Tubular Epithelial Cells through a CHOP-Dependent Pathway. OMICS: A Journal of Integrative Biology, 2010. 14(1): p. 61-73. 88. Peyrou, M., P.E. Hanna, and A.E. Cribb, Cisplatin, Gentamicin, and p-Aminophenol Induce Markers of Endoplasmic Reticulum Stress in the Rat Kidneys. Toxicological Sciences, 2007. 99(1): p. 346-353. 89. Dai, X., S. Zhang, and K. Zaleta-Rivera, RNA: interactions drive functionalities. Mol Biol Rep, 2020. 47(2): p. 1413-1434. 90. Mattick, J.S. and I.V. Makunin, Non-coding RNA. Human Molecular Genetics, 2006. 15(suppl_1): p. R17-R29. 91. Macfarlane, L.A. and P.R. Murphy, MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics, 2010. 11(7): p. 537-61. 92. Han, J., et al., The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev, 2004. 18(24): p. 3016-27. 93. Denli, A.M., et al., Processing of primary microRNAs by the Microprocessor complex. Nature, 2004. 432(7014): p. 231-235. 94. Filipowicz, W., RNAi: the nuts and bolts of the RISC machine. Cell, 2005. 122(1): p. 17-20. 95. O'Brien, J., et al., Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. 2018. 9(402). 96. Lorenzen, J.M., H. Haller, and T. Thum, MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat Rev Nephrol, 2011. 7(5): p. 286-94. 97. Kato, M., L. Arce, and R. Natarajan, MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol, 2009. 4(7): p. 1255-66. 98. LI, J.Y., et al., Review: The role of microRNAs in kidney disease. 2010. 15(6): p. 599-608. 99. Tian, Z., et al., MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res, 2008. 18(3): p. 404-11. 100. Chung, A.C. and H.Y. Lan, MicroRNAs in renal fibrosis. Front Physiol, 2015. 6: p. 50. 101. Li, R., et al., The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway. Kidney Int, 2013. 84(6): p. 1129-44. 102. Kriegel, A.J., et al., MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis. Physiol Genomics, 2012. 44(4): p. 259-67. 103. Morizane, R., et al., miR-34c attenuates epithelial-mesenchymal transition and kidney fibrosis with ureteral obstruction. Sci Rep, 2014. 4: p. 4578. 104. Ichii, O. and T. Horino, MicroRNAs associated with the development of kidney diseases in humans and animals. Journal of toxicologic pathology, 2018. 31(1): p. 23-34. 105. Lin, C.L., et al., MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J Am Soc Nephrol, 2014. 25(8): p. 1698-709. 106. Huang, Y., et al., miR-141 regulates TGF-β1-induced epithelial-mesenchymal transition through repression of HIPK2 expression in renal tubular epithelial cells. Int J Mol Med, 2015. 35(2): p. 311-8. 107. Zhu, S., et al., The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat Med, 2012. 18(7): p. 1077-86. 108. Mao, L., et al., miR-30 Family: A Promising Regulator in Development and Disease. BioMed Research International, 2018. 2018: p. 9623412. 109. Wu, J., et al., Downregulation of MicroRNA-30 Facilitates Podocyte Injury and Is Prevented by Glucocorticoids. 2014. 25(1): p. 92-104. 110. Liu, L., et al., TGF-β induces miR-30d down-regulation and podocyte injury through Smad2/3 and HDAC3-associated transcriptional repression. Journal of Molecular Medicine, 2016. 94(3): p. 291-300. 111. Du, B., et al., MiR-30c regulates cisplatin-induced apoptosis of renal tubular epithelial cells by targeting Bnip3L and Hspa5. Cell Death Disease, 2017. 8(8): p. e2987-e2987. 112. Tanner, N.K. and P. Linder, DExD/H Box RNA Helicases: From Generic Motors to Specific Dissociation Functions. Molecular Cell, 2001. 8(2): p. 251-262. 113. Jankowsky, E., RNA helicases at work: binding and rearranging. Trends Biochem Sci, 2011. 36(1): p. 19-29. 114. Singleton, M.R., M.S. Dillingham, and D.B. Wigley, Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem, 2007. 76: p. 23-50. 115. Jankowsky, A., U.P. Guenther, and E. Jankowsky, The RNA helicase database. Nucleic Acids Res, 2011. 39(Database issue): p. D338-41. 116. Leitão, A.L., M.C. Costa, and F.J. Enguita, Unzippers, Resolvers and Sensors: A Structural and Functional Biochemistry Tale of RNA Helicases. 2015. 16(2): p. 2269-2293. 117. Owttrim, G.W., RNA helicases: diverse roles in prokaryotic response to abiotic stress. RNA Biol, 2013. 10(1): p. 96-110. 118. Bourgeois, C.F., F. Mortreux, and D. Auboeuf, The multiple functions of RNA helicases as drivers and regulators of gene expression. Nature Reviews Molecular Cell Biology, 2016. 17(7): p. 426-438. 119. Tanaka, K., et al., DDX1 is required for testicular tumorigenesis, partially through the transcriptional activation of 12p stem cell genes. Oncogene, 2009. 28(21): p. 2142-51. 120. Schröder, M., M. Baran, and A.G. Bowie, Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation. Embo j, 2008. 27(15): p. 2147-57. 121. Fuller-Pace, F.V., DEAD box RNA helicase functions in cancer. RNA Biol, 2013. 10(1): p. 121-32. 122. Torres, V.E. and P.C. Harris, Polycystic kidney disease in 2011: Connecting the dots toward a polycystic kidney disease therapy. Nat Rev Nephrol, 2011. 8(2): p. 66-8. 123. Zhang, L., et al., RNA helicase p68 inhibits the transcription and post-transcription of Pkd1 in ADPKD. Theranostics, 2020. 10(18): p. 8281-8297. 124. Dardenne, E., et al., RNA Helicases DDX5 and DDX17 Dynamically Orchestrate Transcription, miRNA, and Splicing Programs in Cell Differentiation. Cell Reports, 2014. 7(6): p. 1900-1913. 125. 吳家賢, XBP1 在急性腎損傷到慢性腎臟病扮演之角色, in 毒理學研究所. 2016, 國立臺灣大學. p. 1-90. 126. Sriburi, R., et al., XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol, 2004. 167(1): p. 35-41. 127. Martínez-Klimova, E., et al., Unilateral Ureteral Obstruction as a Model to Investigate Fibrosis-Attenuating Treatments. Biomolecules, 2019. 9(4). 128. Le Clef, N., et al., Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice. PLoS One, 2016. 11(3): p. e0152153. 129. Yeh, C.H., et al., Unilateral ureteral obstruction evokes renal tubular apoptosis via the enhanced oxidative stress and endoplasmic reticulum stress in the rat. Neurourol Urodyn, 2011. 30(3): p. 472-9. 130. Chiang, C.K., et al., Endoplasmic reticulum stress implicated in the development of renal fibrosis. Mol Med, 2011. 17(11-12): p. 1295-305. 131. Rutkowski, D.T. and R.J. Kaufman, That which does not kill me makes me stronger: adapting to chronic ER stress. Trends in Biochemical Sciences, 2007. 32(10): p. 469-476. 132. Erguler, K., M. Pieri, and C. Deltas, A mathematical model of the unfolded protein stress response reveals the decision mechanism for recovery, adaptation and apoptosis. BMC Syst Biol, 2013. 7: p. 16. 133. Ishikawa, Y., et al., Spliced XBP1 Rescues Renal Interstitial Inflammation Due to Loss of Sec63 in Collecting Ducts. J Am Soc Nephrol, 2019. 30(3): p. 443-59. 134. Moy, R.H., et al., Stem-loop recognition by DDX17 facilitates miRNA processing and antiviral defense. Cell, 2014. 158(4): p. 764-777. 135. Xue, Y., et al., DDX17 promotes hepatocellular carcinoma progression via inhibiting Klf4 transcriptional activity. Cell Death Dis, 2019. 10(11): p. 814. 136. Li, K., et al., DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Letters, 2017. 400: p. 194-202. 137. Karimian, A., Y. Ahmadi, and B. Yousefi, Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair, 2016. 42: p. 63-71. 138. Elmaci, I., et al., Phosphorylated Histone H3 (PHH3) as a Novel Cell Proliferation Marker and Prognosticator for Meningeal Tumors: A Short Review. Applied Immunohistochemistry Molecular Morphology, 2018. 26(9). 139. Zhang, L. and X. Li, DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy. Cells, 2021. 10(6). 140. Ngo, T.D., A.C. Partin, and Y. Nam, RNA Specificity and Autoregulation of DDX17, a Modulator of MicroRNA Biogenesis. Cell Rep, 2019. 29(12): p. 4024-4035.e5. 141. Giraud, G., S. Terrone, and C.F. Bourgeois, Functions of DEAD box RNA helicases DDX5 and DDX17 in chromatin organization and transcriptional regulation. BMB Rep, 2018. 51(12): p. 613-622. 142. Wortham, N.C., et al., The DEAD-box protein p72 regulates ERalpha-/oestrogen-dependent transcription and cell growth, and is associated with improved survival in ERalpha-positive breast cancer. Oncogene, 2009. 28(46): p. 4053-64. 143. Rossow, K.L. and R. Janknecht, Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene, 2003. 22(1): p. 151-6. 144. Warner, D.R., et al., Functional interaction between Smad, CREB binding protein, and p68 RNA helicase. Biochem Biophys Res Commun, 2004. 324(1): p. 70-6. 145. Jiang, L.-h., H.-d. Zhang, and J.-h. Tang, MiR-30a: A Novel Biomarker and Potential Therapeutic Target for Cancer. Journal of Oncology, 2018. 2018: p. 5167829. 146. Wang, H., et al., miR‑30a‑3p suppresses the proliferation and migration of lung adenocarcinoma cells by downregulating CNPY2. Oncol Rep, 2020. 43(2): p. 646-654. 147. Chen, Y., et al., miR-30a-3p inhibits renal cancer cell invasion and metastasis through targeting ATG12. Transl Androl Urol, 2020. 9(2): p. 646-653. 148. Xu, Q., et al., CircHIPK3 regulates pulmonary fibrosis by facilitating glycolysis in miR-30a-3p/FOXK2-dependent manner. Int J Biol Sci, 2021. 17(9): p. 2294-2307.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81057-
dc.description.abstract"慢性腎臟病(chronic kidney disease, CKD)為腎臟受到損傷長達三個月以上無法恢復原有的結構與功能。具有很高的盛行率及死亡率。近年來許多研究指出,腎臟纖維化在CKD進展中扮演重要的角色會加速CKD的惡化並發展成末期腎臟病(End Stage Renal Disease, ESRD)。其中腎小管間質纖維化是最常見的,也是所有腎臟疾病導致CKD的致病機轉。在纖維化的過程中,上皮細胞間質轉換(epithelial-mesenchymal transition, EMT)會參與其中,將近端腎小管上皮細胞轉化成纖維母細胞,造成發炎及細胞外基質(extracellular matrix, ECM )的累積。在調控EMT的方面,乙型轉化生長因子(Transforming growth factor beta, TGF-β)是主要的途徑之一。此外內質網壓力(endoplasmic reticulum stress, ER stress)也會加速纖維化的發展。在實驗室過去的研究中,X-Box Binding Protein 1 (XBP1)的表現量在纖維化的過程中逐漸下降,並與纖維化呈現負相關。藉由蛋白質體學分析,在XBP1缺乏的人類腎臟近端腎小管上皮細胞(human proximal epithelial tubular cell, HK2)中,RNA解旋酶 DEAD-Box Helicase 17 (DDX17)的表現量降低。而DDX17參與在許多RNA的代謝、轉錄、轉譯等,是人體不可或缺的蛋白。先前研究顯示,DDX17會參與在EMT,調控其中的分子機制,但對於其在腎臟纖維化的作用仍需近一步的研究。因此本研究假設在腎臟纖維化過程中,XBP1會影響DDX17在EMT中的作用,並探討DDX17調控EMT在腎臟纖維化進展中扮演的角色。首先,使用PROMO預測XBP1 與DDX17間的調控,XBP1可能會結合在DDX17啟動子。我們發現XBP1s會結合DDX17的啟動子。接著,大量表現或抑制XBP1並不會對 DDX17的表達有太大的影響,因此認為XBP1可能不是主要調控的因子。在動物實驗中,使用單側輸尿管阻塞(unilateral ureteral obstruction, UUO)及單邊腎臟缺血再灌流損傷模式(unilateral ischemia/reperfusion injury, UIRI)來模擬纖維化的產生。發現DDX17的表現量會上升。在體外試驗,使用TGF-β誘導HK2細胞產生EMT中,DDX17的表現量也是上升。在大量表達DDX17後會上調纖連蛋白(Fibronectin)、膠原蛋白I, IV 型(Collagen I, IV)、TGF-β及轉錄因子(Snail Family Transcriptional Repressor 1, Snail)並下調密連蛋白(Claudin 1, CLDN1)。而DDX17的缺乏降低了由TGF-β誘導的纖維化相關基因。在UUO中發現到纖維化的組織DDX17會在核內表達,而使用核質分離與TGF-β處理下,DDX17在核內表現量上升。接著,在調控DDX17上,我們發現在腎纖維化進程中miR-30a-3p會被下調,藉由miRBase 與TargetScan的預測miR-30a-3p可能會結合在DDX17 3’UTR。而在大量表現miR-30a-3p會下調DDX17,相反抑制miR-30a-3p可以上調DDX17。綜合上述結果,本研究發現在纖維化過程中DDX17會受到miR-30a-3p的調控。而DDX17在腎纖維化進展中會大量表現在核內,影響EMT相關基因轉錄、轉譯。在減少DDX17的情況下可以降低EMT基因的表達進而減緩纖維化的產生。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:28:24Z (GMT). No. of bitstreams: 1
U0001-1808202117094400.pdf: 5452212 bytes, checksum: baed75483f37b054b7c946a7038b530d (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 I 誌謝 II 中文摘要 IV ABSTRACT VI CONTENTS VIII List of abbreviations XI Part I:Introduction 1 1.1 The kidney and Chronic kidney disease 1 1.2 The Renal fibrosis in CKD 2 1.2.1 Tubulointerstitial fibrosis 3 1.3 Epithelial–mesenchymal transition 6 1.3.1 The EMT in Tubulointerstitial fibrosis 7 1.3.2 The mechanism of TGF-β in EMT 8 1.4 Endoplasmic Reticulum Stress in Tubulointerstitial fibrosis 10 1.5 The epigenetic regulation - MicroRNAs 12 1.5.1 MicroRNAs and kidney diseases 14 1.6 RNA helicases 16 1.6.1 The correlation between RNA helicases and kidney diseases 17 Part II:Aims 19 Part III:Materials and Methods 21 3.1 Animal studies 21 3.2 Unilateral Ureter Obstruction (UUO) Model 21 3.3 Unilateral Renal Ischemia-Reperfusion (UIRI) Model 21 3.4 Kidney histology and immunohistochemistry 22 3.5 Cell culture 23 3.6 In vitro knockdown genes by siRNA strategy 23 3.7 In vitro overexpression genes 24 3.8 Protein extraction and immunoblot analysis 27 3.9 mRNA extraction and real-time quantitative polymerase chain reaction (q-PCR) analysis 29 3.10 miRNA targeting and in vitro miRNA transfections 30 3.11 miRNA extraction and q-PCR analysis 31 3.12 in vitro treatment of TGF-β 32 3.13 in vitro nuclear fractionation 33 3.14 Cell proliferation 33 3.15 Dual Luciferase Reporter Assay 34 3.16 Ingenuity pathway analysis 35 3.17 Statistical analysis 35 Part IV:Results 36 4.1 The regulation of XBP1 on DDX17 in PTCs 36 4.2 DDX17 expression increased gradually in CKD progression with fibrosis formation 38 4.3 Overexpression of DDX17 in the PTCs increased EMT 40 4.4 The knockdown of DDX17 eliminated TGF-β induced EMT and Fibrosis 41 4.5 DDX17 regulated EMT-associated gene at nucleus in the progression of renal fibrosis 42 4.6 DDX17 could be epigenetically regulated by miR-30a-3p in the progression of renal fibrosis 43 Part V:Discussion 46 Part VI:Conclusion 52 Part VII:Future perspectives 53 Part VIII:References 54 Part IX:Figures 72 Figure 1 72 Figure 2 76 Figure 3 78 Figure 4 79 Figure 5 82 Figure 6 87 Figure 7 88 Figure 8 90 Figure 9 93 Figure 10 94 Part X:Supplementary Figures 95 Supplementary figure 1 95 Supplementary figure 2 97 Supplementary figure 3 100 Supplementary figure 4 103 Supplementary figure 5 104
dc.language.isoen
dc.subject微小RNAzh_TW
dc.subject慢性腎臟病zh_TW
dc.subject纖維化zh_TW
dc.subject上皮細胞間質轉化zh_TW
dc.subjectRNA解旋酶zh_TW
dc.subjectrenal fibrosisen
dc.subjectmicroRNAen
dc.subjectepithelial-mesenchymal transitionen
dc.subjectChronic kidney diseaseen
dc.subjectRNA helicaseen
dc.titleDDX17調控上皮細胞間質轉化之腎臟纖維化研究zh_TW
dc.titleThe role of DDX17-regulated Epithelial-mesenchymal transition in renal fibrosisen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉興華(Hsin-Tsai Liu),洪冠予(Chih-Yang Tseng)
dc.subject.keyword慢性腎臟病,纖維化,上皮細胞間質轉化,RNA解旋酶,微小RNA,zh_TW
dc.subject.keywordChronic kidney disease,renal fibrosis,epithelial-mesenchymal transition,RNA helicase,microRNA,en
dc.relation.page105
dc.identifier.doi10.6342/NTU202102484
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
U0001-1808202117094400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved