Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81054
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹魁元(Kuei-Yuan Chan)
dc.contributor.authorYu-Lin Chenen
dc.contributor.author陳昱霖zh_TW
dc.date.accessioned2022-11-24T03:28:15Z-
dc.date.available2021-09-01
dc.date.available2022-11-24T03:28:15Z-
dc.date.copyright2021-09-01
dc.date.issued2021
dc.date.submitted2021-08-24
dc.identifier.citation[1] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based slam,” IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31–43, 2010. [2] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004. [3] P. Glira, “Iterative Closest Point,” 2016. [Online]. Available: https://youtu.be/ uzOCS_gdZuM [4] R. C. Smith and P. Cheeseman, “On the representation and estimation of spatial uncertainty,” The international journal of Robotics Research, vol. 5, no. 4, pp. 56– 68, 1986. [5] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial relationships in robotics,” in Autonomous robot vehicles. Springer, 1990, pp. 167–193. [6] A. Birk and S. Carpin, “Merging occupancy grid maps from multiple robots,” Proceedings of the IEEE, vol. 94, no. 7, pp. 1384–1397, 2006. [7] H. Li, M. Tsukada, F. Nashashibi, and M. Parent, “Multivehicle cooperative local mapping: A methodology based on occupancy grid map merging,” IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 5, pp. 2089–2100, 2014. [8] S. Yu, C. Fu, A. K. Gostar, and M. Hu, “A review on map-merging methods for typical map types in multiple-ground-robot slam solutions,” Sensors, vol. 20, no. 23, p. 6988, 2020. [9] Z. Jiang, J. Zhu, Y. Li, J. Wang, Z. Li, and H. Lu, “Simultaneous merging multiple grid maps using the robust motion averaging,” Journal of Intelligent Robotic Systems, vol. 94, no. 3, pp. 655–668, 2019. [10] Z. Jiang, J. Zhu, C. Jin, S. Xu, Y. Zhou, and S. Pang, “Simultaneously merging multirobot grid maps at different resolutions,” Multimedia Tools and Applications, vol. 79, no. 21, pp. 14 553–14 572, 2020. [11] L. Carlone, M. K. Ng, J. Du, B. Bona, and M. Indri, “Simultaneous localization and mapping using rao-blackwellized particle filters in multi robot systems,” Journal of Intelligent Robotic Systems, vol. 63, no. 2, pp. 283–307, 2011. [12] F. Amigoni, S. Gasparini, and M. Gini, “Building segment-based maps without pose information,” Proceedings of the IEEE, vol. 94, no. 7, pp. 1340–1359, 2006. [13] J. Weingarten and R. Siegwart, “3d slam using planar segments,” in 2006 IEEE/ RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006, pp. 3062–3067. [14] H. Choset and K. Nagatani, “Topological simultaneous localization and mapping (slam): toward exact localization without explicit localization,” IEEE Transactions on robotics and automation, vol. 17, no. 2, pp. 125–137, 2001. [15] O. Booij, B. Terwijn, Z. Zivkovic, and B. Krose, “Navigation using an appearance based topological map,” in Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE, 2007, pp. 3927–3932. [16] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996. [17] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The international journal of robotics research, vol. 20, no. 5, pp. 378–400, 2001. [18] H.-C. Lee, S.-H. Lee, T.-S. Lee, D.-J. Kim, and B.-H. Lee, “A survey of map merging techniques for cooperative-slam,” in 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2012, pp. 285–287. [19] K. Konolige, D. Fox, B. Limketkai, J. Ko, and B. Stewart, “Map merging for distributed robot navigation,” in Proceedings 2003 IEEE/ RSJ international conference on intelligent robots and systems (IROS 2003)(Cat. No. 03CH37453), vol. 1. IEEE, 2003, pp. 212–217. [20] X. S. Zhou and S. I. Roumeliotis, “Multi-robot slam with unknown initial correspondence: The robot rendezvous case,” in 2006 IEEE/ RSJ international conference on intelligent robots and systems. IEEE, 2006, pp. 1785–1792. [21] H. S. Lee and K. M. Lee, “Multi-robot slam using ceiling vision,” in 2009 IEEE/ RSJ International Conference on Intelligent Robots and Systems. IEEE, 2009, pp. 912–917. [22] F. Tungadi, W. L. D. Lui, L. Kleeman, and R. Jarvis, “Robust online map merging system using laser scan matching and omnidirectional vision,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2010, pp. 7– 14. [23] S. Carpin and G. Pillonetto, “Motion planning using adaptive random walks,” IEEE Transactions on Robotics, vol. 21, no. 1, pp. 129–136, 2005. [24] K.-F. Man, K. S. Tang, and S. Kwong, Genetic algorithms: concepts and designs. Springer Science Business Media, 2001. [25] J. Park, A. J. Sinclair, R. E. Sherrill, E. A. Doucette, and J. W. Curtis, “Map merging of rotated, corrupted, and different scale maps using rectangular features,” in Proceedings of IEEE/ION PLANS 2016, 2016, pp. 535–543. [26] S. Carpin, “Fast and accurate map merging for multi-robot systems,” Autonomous robots, vol. 25, no. 3, pp. 305–316, 2008. [27] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect lines and curves in pictures,” Communications of the ACM, vol. 15, no. 1, pp. 11–15, 1972. [28] V. T. Ferrão, C. D. N. Vinhal, and G. da Cruz, “An occupancy grid map merging algorithm invariant to scale, rotation and translation,” in 2017 Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 2017, pp. 246–251. [29] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the seventh IEEE international conference on computer vision, vol. 2. Ieee, 1999, pp. 1150–1157. [30] S. Arya, “A review on image stitching and its different methods,” International Journal of Advanced Research in Computer Science and Software Engineering, vol. 5, no. 5, pp. 299–303, 2015. [31] Z. Wang and Z. Yang, “Review on image-stitching techniques,” Multimedia Systems, pp. 1–18, 2020. [32] S. Saeedi, L. Paull, M. Trentini, M. Seto, and H. Li, “Group mapping: A topological approach to map merging for multiple robots,” IEEE Robotics Automation Magazine, vol. 21, no. 2, pp. 60–72, 2014. [33] D. Fox, W. Burgard, S. Thrun, and A. B. Cremers, “Position estimation for mobile robots in dynamic environments,” AAAI/IAAI, vol. 1998, pp. 983–988, 1998. [34] J. J. Koenderink, “The structure of images,” Biological cybernetics, vol. 50, no. 5, pp. 363–370, 1984. [35] T. Lindeberg, “Scale-space theory: A basic tool for analyzing structures at different scales,” Journal of applied statistics, vol. 21, no. 1-2, pp. 225–270, 1994. [36] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981. [37] S. Helgason and S. Helgason, The radon transform. Springer, 1980, vol. 2. [38] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Sensor fusion IV: control paradigms and data structures, vol. 1611. International Society for Optics and Photonics, 1992, pp. 586–606. [39] E. Huang, TS and Blostein, SD and Margerum, “Least-squares estimation of motion parameters from 3-D point correspondences,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1986, pp. 112—-115.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81054-
dc.description.abstract機器人探索環境時,根據環境感測資訊,使用即時定位與地圖建構(Simultaneous Localization And Mapping,SLAM)技術進行環境地圖的建構,達成自動化探索的任務。為使效率增加,常利用多台機器人同步地建構環境,提昇環境探索的覆蓋率。然而,每個機器人所建構的地圖座標系與比例尺不盡相同,因此必須經過額外的合併處理才能有效表達出完整的全域環境,即地圖合併(Map Merge)處理。地圖合併處理依靠局部地圖共有的資訊來建立地圖的關聯性,使地圖座標系與比例尺一致,進而完成合併地圖的需要。因此,已有文獻將地圖視作影像的一種,並擷取相同影像特徵來計算地圖比例、座標的相對關係,此方法與電腦視覺領域的影像縫合技術相似。然而,機器人的地圖不同於一般影像,可能受到感測誤差影響,即便處於相同環境,不同機器人建構的地圖也可能具有差異。另外,機器人地圖經常採用格點佔據地圖的格式,僅包含3種數值關係來表達環境的不同區域,即未知、自由、佔據區域,故可被有效擷取的特徵也較一般影像來得稀少。基於上述原因,擷取地圖影像特徵來進行處理的方法可能不易實現地圖合併處理。本研究認為,欲利用地圖的影像特徵來進行合併,必須先排除感測誤差與地圖數值造成的影響,因此我們在擷取特徵前加入了數個地圖影像修正的步驟。經過本研究的修正步驟後,可在不同地圖中擷取相同環境位置的影像特徵,以此建立地圖座標系的相對變換關係,並有效將地圖進行合併。本研究以相同案例分別測試於原特徵擷取方法與加入修正處理的方法,結果顯示經過修正後的地圖不僅可成功合併,在判斷合併的指標分數上也較原特徵擷取方法有顯著的提昇。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:28:15Z (GMT). No. of bitstreams: 1
U0001-2308202110322900.pdf: 5876297 bytes, checksum: 0d353b7db21d50acc6e7f9b0ecf812c8 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 ...................................................................................................... i 誌謝 .............................................................................................................................. ii 摘要 .............................................................................................................................. iii Abstract ........................................................................................................................ iv 目錄 .............................................................................................................................. vi 圖目錄 .......................................................................................................................... ix 表目錄 .......................................................................................................................... xii 第一章 緒論 ................................................................................................................ 1 1.1 前言 ............................................................................................................... 1 1.2 即時定位與地圖建構 ................................................................................... 1 1.3 多機器人系統 ............................................................................................... 2 1.4 研究動機與目的 ........................................................................................... 3 1.5 本文架構 ....................................................................................................... 4 第二章 文獻回顧 ........................................................................................................ 5 2.1 介紹 ............................................................................................................... 5 2.2 格點佔據地圖合併之直接類方法 ............................................................... 6 2.2.1 觀測個體資訊的方法 ....................................................................... 6 2.2.2 辨識共同物件或區域的方法 ........................................................... 7 2.2.3 直接類方法之小結 ........................................................................... 7 2.3 格點佔據地圖合併之間接類方法 ............................................................... 8 2.3.1 最佳化搜尋方法 ............................................................................... 8 2.3.2 特徵擷取方法 ................................................................................... 9 2.3.3 間接方法之小結 ............................................................................... 10 2.4 文獻回顧總結 ............................................................................................... 10 第三章 研究流程與架構 ............................................................................................ 11 3.1 問題描述 ....................................................................................................... 11 3.2 研究方法 ....................................................................................................... 12 3.2.1 流程與架構 ....................................................................................... 13 3.2.2 測試案例 ........................................................................................... 17 第四章 現有流程之技術 ............................................................................................ 19 4.1 特徵辨識 ....................................................................................................... 20 4.1.1 尺度空間之極值檢測 ....................................................................... 20 4.1.2 特徵點定位 ....................................................................................... 22 4.1.3 特徵點方向計算 ............................................................................... 23 4.1.4 特徵點描述 ....................................................................................... 23 4.2 特徵點匹配 ................................................................................................... 24 4.3 計算變換關係 ............................................................................................... 24 4.3.1 隨機採樣共識演算法 ....................................................................... 25 4.3.2 以 RANSAC 演算法計算相對變換關係 ........................................ 25 4.4 評判相對變換關係 ....................................................................................... 27 4.5 地圖銜接處理 ............................................................................................... 28 4.6 各演算法效果討論與合併測試 ................................................................... 31 4.6.1 演算法效用討論 ............................................................................... 31 4.6.2 合併測試 ........................................................................................... 36 第五章 加入地圖修正之合併方法 ............................................................................ 41 5.1 影像二值化處理 ........................................................................................... 41 5.2 雷登轉換與影像旋轉 ................................................................................... 43 5.3 閉運算處理 ................................................................................................... 46 5.4 興趣點採樣 ................................................................................................... 52 5.5 主體結構修正 ............................................................................................... 56 5.6 影像修正後合併結果討論 ........................................................................... 62 5.6.1 影像修正對特徵之差異 ................................................................... 62 5.6.2 合併測試 ........................................................................................... 66 第六章 模擬環境測試 ................................................................................................ 70 6.1 模擬環境建構 ............................................................................................... 70 6.2 合併測試與討論 ........................................................................................... 74 第七章 總結與未來展望 ............................................................................................ 77 7.1 結論 ............................................................................................................... 77 7.2 研究建議與未來展望 ................................................................................... 78 附錄 A 格點佔據地圖之格點資訊處理 .................................................................... 79 附錄 B 程式碼 ............................................................................................................ 81 參考文獻 ...................................................................................................................... 82
dc.language.isozh-TW
dc.subject影像縫合zh_TW
dc.subject即時定位與地圖建構zh_TW
dc.subject地圖合併zh_TW
dc.subject格點佔據地圖zh_TW
dc.subjectOccupancy Grid Mapen
dc.subjectMap Mergeen
dc.subjectImage Stitchingen
dc.subjectSimultaneous Localization And Mappingen
dc.title基於形態學影像前處理與特徵匹配之格點佔據地圖合併方法zh_TW
dc.titleAn Occupancy Grid Map Merging Method Based On Morphology Image Pre-process and Feature Matchingen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李綱(Hsin-Tsai Liu),蘇偉儁(Chih-Yang Tseng)
dc.subject.keyword即時定位與地圖建構,地圖合併,影像縫合,格點佔據地圖,zh_TW
dc.subject.keywordSimultaneous Localization And Mapping,Map Merge,Image Stitching,Occupancy Grid Map,en
dc.relation.page85
dc.identifier.doi10.6342/NTU202102612
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-2308202110322900.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved