請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81050完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳恩賜(Joshua Oon-Soo Goh) | |
| dc.contributor.author | Chih-Chia Hsing | en |
| dc.contributor.author | 邢芝嘉 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:28:04Z | - |
| dc.date.available | 2022-02-16 | |
| dc.date.available | 2022-11-24T03:28:04Z | - |
| dc.date.copyright | 2022-02-16 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-07 | |
| dc.identifier.citation | Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007 Baker, K. G., Halliday, G. M., Halasz, P., Hornung, J.-P., Geffen, L. B., Cotton, R. G. H., Törk, I. (1991). Cytoarchitecture of serotonin-synthesizing neurons in the pontine tegmentum of the human brain: SEROTONERGIC NEURONS IN HUMAN PONS. Synapse, 7(4), 301–320. https://doi.org/10.1002/syn.890070407 Bär, K.-J., de la Cruz, F., Schumann, A., Koehler, S., Sauer, H., Critchley, H., Wagner, G. (2016). Functional connectivity and network analysis of midbrain and brainstem nuclei. NeuroImage, 134, 53–63. https://doi.org/10.1016/j.neuroimage.2016.03.071 Beasley, T. M., Erickson, S., Allison, D. B. (2009). Rank-Based Inverse Normal Transformations are Increasingly Used, But are They Merited? Behav Genet, 39(5), 580–595. https://doi.org/10.1007/s10519-009-9281-0 Beliveau, V., Svarer, C., Frokjaer, V. G., Knudsen, G. M., Greve, D. N., Fisher, P. M. (2015). Functional connectivity of the dorsal and median raphe nuclei at rest. NeuroImage, 116, 187–195. https://doi.org/10.1016/j.neuroimage.2015.04.065 Bouret, S., Richmond, B. J. (2015). Sensitivity of Locus Ceruleus Neurons to Reward Value for Goal-Directed Actions. Journal of Neuroscience, 35(9), 4005–4014. https://doi.org/10.1523/JNEUROSCI.4553-14.2015 Charnay, Y., Léger, L. (2010). Brain serotonergic circuitries. Dialogues Clin Neurosci, 12(4), 471–487. https://doi.org/10.31887/DCNS.2010.12.4/ycharnay Chen, C.-C., Su, Y.-S., Tu, Y.-Z., Goh, J. O. S. (2019). Default-mode network activation underlies accurate contextual processing of exclusive disjunctions in older but not younger adults. NeuroImage, 201, 116012. https://doi.org/10.1016/j.neuroimage.2019.116012 Chu, S.-H., Parhi, K. K., Westlund Schreiner, M., Lenglet, C., Mueller, B. A., Klimes-Dougan, B., Cullen, K. R. (2021). Effect of SSRIs on Resting-State Functional Brain Networks in Adolescents with Major Depressive Disorder. JCM, 10(19), 4322. https://doi.org/10.3390/jcm10194322 Cover, T. M., Thomas, J. A. (2006). Elements of information theory (2nd ed). Wiley-Interscience. Eqlimi, E., riyahi alam, N., Sahraian, M., Eshaghi, A., Rad, H. (2014, January). Mutual Information Weighted Graphs for Resting State Functional Connectivity in fMRI Data. Fornito, A., Zalesky, A., Bullmore, E. T. (2016). Fundamentals of brain network analysis. Elsevier/Academic Press. Friston, K. J. (2011). Functional and Effective Connectivity: A Review. Brain Connectivity, 1(1), 13–36. https://doi.org/10.1089/brain.2011.0008 Friston, K. J., Holmes, A. P., Price, C. J., Büchel, C., Worsley, K. J. (1999). Multisubject fMRI studies and conjunction analyses. NeuroImage, 10(4), 385–396. https://doi.org/10.1006/nimg.1999.0484 Gavrilescu, M., Stuart, G. W., Rossell, S., Henshall, K., McKay, C., Sergejew, A. A., Copolov, D., Egan, G. F. (2008). Functional connectivity estimation in fMRI data: Influence of preprocessing and time course selection. Human Brain Mapping, 29(9), 1040–1052. https://doi.org/10.1002/hbm.20446 Guan, S., Jiang, R., Bian, H., Yuan, J., Xu, P., Meng, C., Biswal, B. (2020). The Profiles of Non-stationarity and Non-linearity in the Time Series of Resting-State Brain Networks. Frontiers in Neuroscience, 14, 493. https://doi.org/10.3389/fnins.2020.00493 Haber, S. N., Fudge, J. L. (1997). The Primate Substantia Nigra and VTA: Integrative Circuitry and Function. Crit Rev Neurobiol, 11(4), 323–342. https://doi.org/10.1615/CritRevNeurobiol.v11.i4.40 Hadley, J. A., Nenert, R., Kraguljac, N. V., Bolding, M. S., White, D. M., Skidmore, F. M., Visscher, K. M., Lahti, A. C. (2014). Ventral Tegmental Area/Midbrain Functional Connectivity and Response to Antipsychotic Medication in Schizophrenia. Neuropsychopharmacol, 39(4), 1020–1030. https://doi.org/10.1038/npp.2013.305 Hayes, D. J., Huxtable, A. G. (2012). Interpreting Deactivations in Neuroimaging. Frontiers in Psychology, 3. https://doi.org/10.3389/fpsyg.2012.00027 Hlinka, J., Paluš, M., Vejmelka, M., Mantini, D., Corbetta, M. (2011). Functional connectivity in resting-state fMRI: Is linear correlation sufficient? NeuroImage, 54(3), 2218–2225. https://doi.org/10.1016/j.neuroimage.2010.08.042 Horner, A. J., Andrews, T. J. (2009). Linearity of the fMRI response in category-selective regions of human visual cortex. Human Brain Mapping, 30(8), 2628–2640. https://doi.org/10.1002/hbm.20694 Huettel, S. A. (2004). Non-linearities in the blood-oxygenation-level dependent (BOLD) response measured by functional magnetic resonance imaging (fMRI). The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 4, 4413–4416. https://doi.org/10.1109/IEMBS.2004.1404227 Kranz, G. S., Hahn, A., Savli, M., Lanzenberger, R. (2012). Challenges in the differentiation of midbrain raphe nuclei in neuroimaging research. Proceedings of the National Academy of Sciences, 109(29), E2000–E2000. https://doi.org/10.1073/pnas.1206247109 Lapish, C. C., Kroener, S., Durstewitz, D., Lavin, A., Seamans, J. K. (2007). The ability of the mesocortical dopamine system to operate in distinct temporal modes. Psychopharmacology, 191(3), 609–625. https://doi.org/10.1007/s00213-006-0527-8 Lee, P. W.-H. (n.d.). Mutual Information Derived Functional Connectivity of the Electroencephalogram (EEG) [PhD Thesis]. The University of British Columbia. Li, X., Morgan, P. S., Ashburner, J., Smith, J., Rorden, C. (2016). The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J Neurosci Methods, 264, 47–56. https://doi.org/10.1016/j.jneumeth.2016.03.001 McCabe, C., Mishor, Z. (2011). Antidepressant medications reduce subcortical–cortical resting-state functional connectivity in healthy volunteers. NeuroImage, 57(4), 1317–1323. https://doi.org/10.1016/j.neuroimage.2011.05.051 Meneses, A., Liy-Salmeron, G. (2012). Serotonin and emotion, learning and memory. Reviews in the Neurosciences, 23(5–6). https://doi.org/10.1515/revneuro-2012-0060 Mohanty, R., Sethares, W. A., Nair, V. A., Prabhakaran, V. (2020). Rethinking Measures of Functional Connectivity via Feature Extraction. Sci Rep, 10(1), 1298. https://doi.org/10.1038/s41598-020-57915-w Moon, Y.-I., Rajagopalan, B., Lall, U. (1995). Estimation of mutual information using kernel density estimators. Physical Review E, 52(3), 2318–2321. https://doi.org/10.1103/PhysRevE.52.2318 Morales, M., Margolis, E. B. (2017). Ventral tegmental area: Cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci, 18(2), 73–85. https://doi.org/10.1038/nrn.2016.165 Morin, L. P. (1999). Serotonin and the regulation of mammalian circadian rhythmicity. Ann Med, 31(1), 12–33. https://doi.org/10.3109/07853899909019259 Murty, V. P., Shermohammed, M., Smith, D. V., Carter, R. M., Huettel, S. A., Adcock, R. A. (2014). Resting state networks distinguish human ventral tegmental area from substantia nigra. NeuroImage, 100, 580–589. https://doi.org/10.1016/j.neuroimage.2014.06.047 Nakamura, K. (2013). The role of the dorsal raphé nucleus in reward-seeking behavior. Front. Integr. Neurosci., 7. https://doi.org/10.3389/fnint.2013.00060 Peterson, A. C., Zhang, S., Hu, S., Chao, H. H., Li, C. R. (2017). The Effects of Age, from Young to Middle Adulthood, and Gender on Resting State Functional Connectivity of the Dopaminergic Midbrain. Front. Hum. Neurosci., 11. https://doi.org/10.3389/fnhum.2017.00052 Plini, E. R. G., O’Hanlon, E., Boyle, R., Sibilia, F., Rikhye, G., Kenney, J., Whelan, R., Melnychuk, M. C., Robertson, I. H., Dockree, P. M. (2021). Examining the Role of the Noradrenergic Locus Coeruleus for Predicting Attention and Brain Maintenance in Healthy Old Age and Disease: An MRI Structural Study for the Alzheimer’s Disease Neuroimaging Initiative. Cells, 10(7), 1829. https://doi.org/10.3390/cells10071829 Ranjbar-Slamloo, Y., Fazlali, Z. (2020). Dopamine and Noradrenaline in the Brain; Overlapping or Dissociate Functions? Front. Mol. Neurosci., 12, 334. https://doi.org/10.3389/fnmol.2019.00334 Robertson, S. D., Plummer, N. W., de Marchena, J., Jensen, P. (2013). Developmental origins of central norepinephrine neuron diversity. Nat Neurosci, 16(8), 1016–1023. https://doi.org/10.1038/nn.3458 Salamone, J. D., Correa, M. (2012). The Mysterious Motivational Functions of Mesolimbic Dopamine. Neuron, 76(3), 470–485. https://doi.org/10.1016/j.neuron.2012.10.021 Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci, 10(3), 211–223. https://doi.org/10.1038/nrn2573 Schaefer, A., Burmann, I., Regenthal, R., Arélin, K., Barth, C., Pampel, A., Villringer, A., Margulies, D. S., Sacher, J. (2014). Serotonergic Modulation of Intrinsic Functional Connectivity. Current Biology, 24(19), 2314–2318. https://doi.org/10.1016/j.cub.2014.08.024 Sheather, S. J., Jones, M. C. (1991). A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation. Journal of the Royal Statistical Society. Series B (Methodological), 53(3), 683–690. Shimazaki, H., Shinomoto, S. (2010). Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci, 29(1–2), 171–182. https://doi.org/10.1007/s10827-009-0180-4 Silverman, B. W. (1998). Density estimation for statistics and data analysis. Chapman Hall/CRC. Song, A. H., Kucyi, A., Napadow, V., Brown, E. N., Loggia, M. L., Akeju, O. (2017). Pharmacological Modulation of Noradrenergic Arousal Circuitry Disrupts Functional Connectivity of the Locus Ceruleus in Humans. J. Neurosci., 37(29), 6938–6945. https://doi.org/10.1523/JNEUROSCI.0446-17.2017 Su, Y. S., Hsu, P. S. Y., Chen, Y. L., Hsia, C. Y., Chiu, M. J., Tseng, I. W. Y., Tang, P. F., Chang, Y. L., Lee, C. L., Goh, J. O. S. (2019). Distinct locus coeruleus and precuneus responses in older adults with cognitive impairment or subjective impairment or subjective complaints during value-based choice processing. Sun, C., Yang, F., Wang, C., Wang, Z., Zhang, Y., Ming, D., Du, J. (2018). Mutual Information-Based Brain Network Analysis in Post-stroke Patients With Different Levels of Depression. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00285 Timme, N. M., Lapish, C. (2018). A Tutorial for Information Theory in Neuroscience. ENeuro, 5(3), ENEURO.0052-18.2018. https://doi.org/10.1523/ENEURO.0052-18.2018 Tomasi, D., Volkow, N. D. (2014). Functional Connectivity of Substantia Nigra and Ventral Tegmental Area: Maturation During Adolescence and Effects of ADHD. Cerebral Cortex, 24(4), 935–944. https://doi.org/10.1093/cercor/bhs382 Vazquez, A. L., Noll, D. C. (1998). Nonlinear Aspects of the BOLD Response in Functional MRI. NeuroImage, 7(2), 108–118. https://doi.org/10.1006/nimg.1997.0316 Wand, M. P. (1994). Fast Computation of Multivariate Kernel Estimators. Journal of Computational and Graphical Statistics, 3(4), 433–445. https://doi.org/10.2307/1390904 Wang, H. E., Bénar, C. G., Quilichini, P. P., Friston, K. J., Jirsa, V. K., Bernard, C. (2014). A systematic framework for functional connectivity measures. Front. Neurosci., 8. https://doi.org/10.3389/fnins.2014.00405 Wang, Z., Alahmadi, A., Zhu, D., Li, T. (2015). Brain functional connectivity analysis using mutual information. 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 542–546. https://doi.org/10.1109/GlobalSIP.2015.7418254 Yabut, J. M., Crane, J. D., Green, A. E., Keating, D. J., Khan, W. I., Steinberg, G. R. (2019). Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocrine Reviews, 40(4), 1092–1107. https://doi.org/10.1210/er.2018-00283 Zhang, S., Hu, S., Chao, H. H., Li, C.-S. R. (2016). Resting-State Functional Connectivity of the Locus Coeruleus in Humans: In Comparison with the Ventral Tegmental Area/Substantia Nigra Pars Compacta and the Effects of Age. Cereb. Cortex, 26(8), 3413–3427. https://doi.org/10.1093/cercor/bhv172 Zhang, W., Muravina, V., Azencott, R., Chu, Z. D., Paldino, M. J. (2018). Mutual Information Better Quantifies Brain Network Architecture in Children with Epilepsy. Computational and Mathematical Methods in Medicine, 2018, 1–9. https://doi.org/10.1155/2018/6142898 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81050 | - |
| dc.description.abstract | "過往學術上分析腦部在靜息態 (Resting-State) 下的功能性連結 (Functional Connectivity) 時經常使用皮爾森相關係數 (Pearson Correlation Coefficient) 來描述腦區間訊號呈現線性關聯之程度。然而,腦內的神經訊號傳遞亦可能具有非線性之關聯。作為量化資料間關聯的方式,相互資訊 (Mutual Information, MI) 不需仰賴預設模型,因此亦具備捕捉非線性關聯之潛力。本研究探討使用MI量化大腦功能性連結之可能性,並聚焦於中腦分泌單胺類神經傳導物質的四個神經核至全腦之連結。研究中分析了135位20-28歲健康受試者的靜息態功能性磁振造影結果,並分別利用相關係數及MI計算中腦分泌多巴胺的腹側背蓋區 (Ventral Tegmental Area, VTA) 、分泌血清素的背側縫核 (Dorsal Raphe Nuclei, DRN) 、中央縫核 (Median Raphe Nuclei, MRN) ,以及分泌正腎上腺素的藍斑核 (Locus Coeruleus, LC) 等四個種子區域對大腦的功能性連結。 使用相關係數運算時,我們發現VTA與前扣帶皮層 (Anterior Cingulate Cortex) 、視丘 (Thalamus) 和舌回 (Lingual Gyrus) 等區域具有較顯著的功能性連結,而DRN、MRN及LC等區域則與視丘、枕葉和小腦有顯著的功能性連結。使用MI所算出的功能性連結圖譜大致上與使用相關係數所算出之圖譜相符,代表MI至少能夠捕捉到訊號間的線性關聯。我們更進一步將兩方法運算出的圖譜相減,發現MI偵測到更多中腦與額葉 (Frontal Lobe) 的功能性連結。相對的,相關係數偵測到的功能性連結則多與視丘、大腦後側 (Posterior Brain) 及小腦相關。這些結果顯示MI至少反映了腦內的線性功能性連結,而MI亦具有潛力成為衡量靜息態磁振造影下訊號間複雜關聯性的一個附加分析工具。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:28:04Z (GMT). No. of bitstreams: 1 U0001-2901202215233900.pdf: 6539487 bytes, checksum: 572c2dd17ef178291104fbb78086248c (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Abstract iv List of Figures vii List of Tables viii Introduction 1 1.1 The Correlation-Based Functional Connectivity 1 1.2 Functional Connectivity in Mutual Information 2 1.3 The Midbrain-Cerebrum Connections 4 1.4 Rationale and Hypothesis 8 2 Method 9 2.1 Simulation 9 2.2 Data Preparation and Preprocessing 9 2.2.1 Participants 9 2.2.2 Brain Imaging Protocol 10 2.2.3 Midbrain Region Selection 10 2.2.4 MR Image Preprocessing 11 2.3 Functional Connectivity Calculations 12 2.3.1 Estimation of Probability Distribution 12 2.3.2 Calculation of MI Using Correlation 14 2.4 Group Level Analysis 17 2.4.1 Normalizations for Groupwise Analysis 17 2.4.2 Groupwise Factorial Analysis 18 3 Results 19 3.1 Simulation 19 3.2 Voxelwise Analysis 21 3.3 Group Analysis 22 3.3.1 One Sample T-test 22 3.3.2 Factorial Analysis 23 4 Discussion 26 4.1 Potentials for Mutual Information Analysis 26 4.2 Limitations and Future Directions 27 5 Conclusion 29 References 30 List of Figures 1 Performance of Correlation and Mutual Information. 37 2 Position of the Midbrain Nuclei Masks. 38 3 Rank-based Inverse Normal Transformation. 39 4 Converting From ρ to MI Terms. 40 5 Simulated Dataset for a Linear Relationship. 41 6 Simulated Dataset for a Sigmoidal Relationship. 42 7 Simulated Dataset for a Quadratic Relationship. 43 8 Results of MI and MIρ for Each Simulated Conditions. 44 9 MI as Functions of Correlation in Different Forms (Seed: VTA). 45 10 MI as Functions of Correlation in Different Forms (Seed: DRN). 46 11 MI as Functions of Correlation in Different Forms (Seed: MRN). 47 12 MI as Functions of Correlation in Different Forms (Seed: LC). 48 13 VTA Functional Connectivity Map. 49 14 DRN Functional Connectivity Map. 50 15 MRN Functional Connectivity Map. 51 16 LC Functional Connectivity Map. 52 17 Contrast Between MI and MIρ Across All Seed Regions. 53 18 Effect of Specific Seed Region vs. Other Seed Regions. 54 19 Contrast Between VTA MI and MIρ. 55 20 Contrast Between DRN MI and MIρ. 56 21 Contrast Between MRN MI and MIρ. 57 22 Contrast Between LC MI and MIρ. 58 List of Tables 1 Overview of Midbrain Functional Connections from Past Literature. 59 2 VTA Functional Connectivity Results. 60 3 DRN Functional Connectivity Results. 60 4 MRN Functional Connectivity Results. 61 5 LC Functional Connectivity Results. 61 6 Contrast Results for Factorial Analysis - Effects of MI and MIρ. 62 7 Contrast Results for Factorial Analysis - Effects of Seed Region. 63 8 Contrast Results for Factorial Analysis - VTA MI vs MIρ. 64 9 Contrast Results for Factorial Analysis - DRN MI vs MIρ. 64 10 Contrast Results for Factorial Analysis - MRN MI vs MIρ. 65 11 Contrast Results for Factorial Analysis - LC MI vs MIρ. 65 | |
| dc.language.iso | en | |
| dc.subject | 靜息態磁振造影 | zh_TW |
| dc.subject | 相互資訊 | zh_TW |
| dc.subject | 功能性連結 | zh_TW |
| dc.subject | 相關係數 | zh_TW |
| dc.subject | 中腦神經核 | zh_TW |
| dc.subject | mutual information | en |
| dc.subject | resting-state fMRI | en |
| dc.subject | midbrain nuclei | en |
| dc.subject | correlation coefficient | en |
| dc.subject | functional connectivity | en |
| dc.title | 以相互資訊和相關係數所計算之中腦與大腦靜息態功能性連結差異 | zh_TW |
| dc.title | Mutual Information and Correlations Capture Different Midbrain-Cerebrum Resting-State Functional Connectivity | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭立威(Chih-Hao Chen),黃從仁(Meng-Hsin Lin) | |
| dc.subject.keyword | 相互資訊,功能性連結,相關係數,中腦神經核,靜息態磁振造影, | zh_TW |
| dc.subject.keyword | mutual information,functional connectivity,correlation coefficient,midbrain nuclei,resting-state fMRI, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU202200258 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-02-09 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 腦與心智科學研究所 | zh_TW |
| 顯示於系所單位: | 腦與心智科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2901202215233900.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
