請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81049完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
| dc.contributor.author | Lun-Zhang Guo | en |
| dc.contributor.author | 郭倫彰 | zh_TW |
| dc.contributor.author | f01548047 | |
| dc.date.accessioned | 2022-11-24T03:28:01Z | - |
| dc.date.available | 2022-03-07 | |
| dc.date.available | 2022-11-24T03:28:01Z | - |
| dc.date.copyright | 2022-03-07 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-02-14 | |
| dc.identifier.citation | M. E. K. J. B. F. N. J. P. R. J. R. J. Wang P., “Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines,” Cell. Mol. Life Sci.,61(18), p. 2405–2417, 2004. H. H., “Secretory factors from human adipose tissue and their functional role,” Proc. Nutr. Soc.,64(02), p. 163–169 , 2005. F. G., “Adipose tissue, adipokines, and inflammation,” J. Allergy Clin. Immunol.,115(5), p. 911–919, 2005. M. M. L. C. K. M. J. C. M. V. H. C. J. F. B. Bastard J. P., “Recent advances in the relationship between obesity, inflammation, and insulin resistance,” Eur. Cytokine Netw.,17(1), p. 4–12 , 2006. D. I. L. Z. M. D. H. D. M. M. K. M. H. M. Dolinková M., “The endocrine profile of subcutaneous and visceral adipose tissue of obese patients,” Mol. Cell. Endocrinol.,291(1-2), p. 63–70, 2008. A. P. C. J. F. A. R. L. S. B. M. Hotamisligil G. S., “Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance,” J. Clin. Invest.,95(5), p. 2409–2415 , 1995. P. P. L. E. P. P. M. A. D. J. P. Mathieu P., “Visceral obesity and the heart,” Int. J. Biochem. Cell Biol.,40(5), p. 821–836 , 2008. W. B. L., “Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome,” Endocr. Rev.,21(6), p. 697–738 , 2000. H. G. S. Wellen K. E., “Obesity-induced inflammatory changes in adipose tissue,” J. Clin. Invest.,112(12), p. 1785–1788, 2003. B. P., ““Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes,” Arteriosclerosis,10(4), p. 493–496, 1990. M. A. K. H. M. L. C. P. B. S. W. Fain J. N., “Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans,” Endocrinology,145(5), p. 2273–2282, 2004. M. D. D. M. R. M. L. R. L. F. A. W. J. Weisberg S. P., “Obesity is associated with macrophage accumulation in adipose tissue,” J. Clin. Invest.,112(12), p. 1796–1808, 2003. N. e. a. Kloting, “Insulin-sensitive obesity,” Am. J. Physiol. Endocrinol. Metab., p. E506–E515, 2010. G. e. a. Twig, “Diabetes risk among overweight and obese metabolically healthy young adults,” Diabetes Care, p. 2989–2995, 2014. H. Cao, K. Gerhold, J. R. Mayers, M. M. Wiest, S. M. Watkins 且 a. G. S. Hotamisligil, “Identification of a Lipokine, a Lipid Hormone Linking Adipose Tissue to Systemic Metabolism,” Cell, p. 933–944, 134 (6) 2008. O. Kuda, M. Brezinova, M. Rombaldova, B. Slavikova, M. Posta, P. Beier, P. Janovska, J. Veleba, J. J. Kopecky, E. Kudova, T. Pelikanova 且 J. Kopecky, “Docosahexaenoic acid-derived fatty acid esters of hydroxy fatty acids (FAHFAs) with anti-inflammatory properties,” Diabetes, p. 2580–2590, 2016. I. P. Díez JJ, “The role of the novel adipocyte-derived hormone adiponectin in human disease,” European Journal of Endocrinology, p. 293–300, 148 (3) March 2003. S. M. Ukkola O, “Adiponectin: a link between excess adiposity and associated comorbidities?,” Journal of Molecular Medicine, p. 696–702, 80 (11) November 2002. K. J. W. H. T. Y. K. N. H. K. M. Y. I. T. M. K. T.-K. N. E. O. A. Y. G. O. V. C. R. M. K. H. S. K. Y. M. N. Y. T. K. N. R. K. S. T. M. F. P. K. Yamauchi T, “The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity,” Nature Medicine, p. 941–6, 7 (8) August 2001. G. J. S. Z. Pan H, “Advances in understanding the interrelations between leptin resistance and obesity,” Physiology Behavior, p. 157–169, 130 May 2014. M. G. H. J. B. R. B. S. L. R. Lord GM, “Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression,” Nature, p. 897–901, 394 (6696) August 1998. F. R. Fantuzzi G, “Leptin in the regulation of immunity, inflammation, and hematopoiesis,” Journal of Leukocyte Biology, p. 437–446, 68 (4) October 2000. M. M. Ibrahim, “Subcutaneous and visceral adipose tissue: structural and functional differences,” Epub,11(1), pp. 11-8, 28 Jul 2009. P. J. L. J. W. K. Ouchi N, “February 2011,” Adipokines in inflammation and metabolic disease, p. 85–97, 11 (2) February 2011Nature Reviews. Immunology. J. L. P. J. J. L. . K. W. Noriyuki Ouchi, “Adipokines in inflammation and metabolic disease,” Nature Reviews Immunology,11, p. 85–97, 21 January 2011. N. K. . M. Blüher, “Adipocyte dysfunction, inflammation and metabolic syndrome,” Reviews in Endocrine and Metabolic Disorders,15, p. 277–287, 26 October 2014. S. F. C. C. O. S. D. J. C. A. S. C. V.-D. V. T. D. R. S. G. M. I. X. M. Y. S. S. H. Nicolas Suárez-Zamorano, “Microbiota depletion promotes browning of white adipose tissue and reduces obesity,” Nature Medicine,21, p. 1497–1501, 16 November 2015. S. O. S. H. M. L. G. D. H. A. S. B. T. W. G. L. J. L. K. J. T. L. P. M. P. R. E. Jaworski D. M., “Sexually dimorphic diet-induced insulin resistance in obese tissue inhibitor of metalloproteinase-2 (TIMP-2)-deficient mice,” Endocrinology,152(4), p. 1300–1313, 2011. D. B. R. M. P. A. G. S. m. G. N Abate, “Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers,” Jurnal of Lipid Research,35(8), pp. 1490-1496, 01 AUGUST 1994. O. W. P. Z. R. M. A. v. G. . D. G. RP Stolk, “Validity and reproducibility of ultrasonography for the measurement of intra-abdominal adipose tissue,” International Journal of Obesity,25, p. 1346–1351, 12 September 2001. J. V. T. Tilsed, “ESTES guidelines: acute mesenteric ischaemia,” Eur J Trauma Emerg Surg, p. 42:253–270, 28 January 2016. S. S. YILDIZ, “The Utility of the Novel Hematologic Parameters for,” Bezmialem Science,7(4), pp. 259-64, 2019. J. P. Derikx, “Serological markers for human intestinal ischemia: A systematic,” Best Practice Research Clinical Gastroenterology, pp. 69-74, 2017. S. M. E. T. S. T. N. K. N. D. A. L. a. N. A. Aikaterini Mastoraki, “Mesenteric ischemia: Pathogenesis and challenging diagnostic and therapeutic modalities,” World J Gastrointest Pathophysiol,7(1), p. 125–130, 15 Feb 2016. N. Treskes, “Diagnostic accuracy of novel serological biomarkers to detect,” Intern Emerg Med, p. 12:821–836, 6 May 2017. B. Luther, “The Ongoing Challenge of Acute Mesenteric Ischemia,” Clinical Therapeutic Review, p. 34:217–223, 18 June 2018. M. Bala, “Acute mesenteric ischemia: guidelines of,” World Journal of Emergenvy Surgery, p. 12:38, 2017. M. Montagnana, “Biochemical markers of acute intestinal ischemia: possibilities,” Annals of Translational Medicine, p. 6(17):341, 2018. Z. S. C. J. C. R. J. X. Huang Z., “Multiphoton microscopic imaging of adipose tissue based on second-harmonic generation and two-photon excited fluorescence,” Scanning,30(6), p. 452–456, 2008. P. E. O. P. M. C. D. L. C. P. X. X. S. Evans C. L., “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.,102(46), p. 16807–16812, 2005. S.-Y. C. D.-B. S. P.-J. L. a. C.-K. S. Ming-Rung Tsai, “In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy,” Biomedical Optics Express, pp. 2317-2328, 2011. G. V. S. R. S. H. D. L. K. K. L. . I. G. Kyle P. Quinn, “Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation,” Scientific Reports,3, p. 3432, 05 December 2013. A. K. D. S. J. P. V. N. M Seeger, “Multimodal optoacoustic and multiphoton microscopy of human carotid atheroma,” Photoacoustics, pp. 102-111, 4(3) September 2016. M. P. G. H. T. B. B. W. L. M. M. H. G. . P. K. Sarah Kretschmer, “Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways,” Laboratory Investigation,96, p. 918–931, 11 July 2016. M. N. D. S. T. W. S. a. J. D. M. K. Esumi, “NADH measurements in adult rat myocytes during simulated ischemia,” American Journal of Physiology-Heart and Circulatory Physiology, pp. H1743-H1752, 260(6) June 1991. R. C. V. J. B. B. “Columnar Alterations of NADH Fluorescence during Hypoxia-Ischemia in Immature Rat Brain,” Journal of Cerebral Blood Flow Metabolism,2(2), pp. 221-228, 1 June 1982. G. V. S. R. S. H. D. L. K. K. L. . I. G. Kyle P. Quinn, “Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation,” Scientific Reports,3, p. Article number: 3432, 05 December 2013. M. M. J. C. A. A. e. A Habibalahi, “Non-invasive real-time imaging of reactive oxygen species (ROS) using auto-fluorescence multispectral imaging technique: A novel tool for redox biology,” Redox Biology, p. 101561, 34 July 2020. A. B. A. P. S. P. J. X. K. M. I. G. Jonathan M. Levitt, “Intrinsic fluorescence and redox changes associated with apoptosis of primary human epithelial cells,” J. of Biomedical Optics,11(6), p. 064012, 1 November 2006. H. Wang, “In Vitro and In Vivo Two-Photon Lumi-nescence Imaging of Single Gold Nanorods,” Proc. Natl. Acad, pp. 102, 15752-15756, 2005. N. J. Durr, “Two-Photon Luminescence Imaging of Can-cer Cells Using Molecularly Targeted Gold nanorods,” Nano Lett, pp. 7, 941-945, 2007. Y. Jiang, “Bioimaging with Two-Photon-Induced Luminescence from Triangular Nanoplates and Nanoparticle Aggregates of Gold,” Adv. Mater, pp. 21, 2309-2313, 2009. L. Au, “Quantifying the Cellular Uptake of An-tibody-Conjugated Au Nanocages by Two-Photon Microscopy and Inductively Coupled Plasma Mass Spectrometry,” ACS Nano, pp. 4, 35-42, 2010. L. Tong, “Bright Three-Photon Luminescence from Gold/Silevr Alloyed Nanostructures for Bioimaging with Negligible Photothermal Toxicity,” Angew. Chem. Int. Ed, pp. 49, 3485-3488, 2010. K.-W. Hu, “Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures,” J. Am. Chem, pp. 131, 14186-14187, 2009. W. R. Dichtel, “Singlet Oxygen Generation via Two-Photon Excited FRET,” J. Am. Chem. Soc., pp. 5380-5381, 2004. S. Kim, “Organically Modified Silica Nanoparticles Co-encapsulating Photosensitizing Drug and Aggregation-Enhanced Two-Photon Absorbing Fluorescent Dye Aggre-gates for Two-Photon Photodynamic Therapy,” J. Am. Chem., pp. 2669-2675, 2007. S. Dayal, “Semiconductor Quantum Dots as Two-Photon Sensitizers,” J. Am. Chem., pp. 130, 2890-2891, 2008. J. R. Starkey, “New Two-Photon Activated Photodynamic Therapy Sensitizers Induce Xenograft Tumor Regressions after Near-IR Laser Treatment through the Body of the Host Mouse,” Clin. Cancer Res, pp. 14, 6564-6573., 2008. DGYAO, “DGYAO Red Light Infrared Therapy Panel Large Pain Relief Therapy Pads Deep Penetrate Therapy Device,” DGYAO, 17 July 2020. [線上]. Available: https://www.amazon.com/DGYAO-Infrared-Therapy-Relieve-Penetrate/dp/B08BJ563GX. [存取日期: 21 12 2021]. A. M. Smith, M. C. Mancini 且 S. Nie, “Second Window for In Vivo Imaging,” Nat. Nanotechnol, pp. 710-711, 2009. K. Welsher, S. P. Sherlock 且 H. Dai, “Deep-Tissue Anatomical Imaging of Mice Using Carbon Nanotube Fluorophores in the Second Near-Infrared Window,” Proc. Natl. Acad. Sci. USA , pp. 8942-8948, 2011. 華聯歐國際貿易, “E+H光譜分析儀的工作原理,” 7 11 2018. [線上]. Available: http://m.hlo-trade.com/mobile/info/4/eh-165.html. [存取日期: 21 12 2021]. FranzMaier, “The heterogeneous morphology of networked collagen in distal colon and rectum of mice quantified via nonlinear microscopy,” Journal of the Mechanical Behavior of Biomedical Materials, p. 104116, Volume 113 January 2021. T. S. T. S. M. A. Y. E. U. H. K. S. T. M. Gunduz A, “Time-dependent variations in ischemia-modified albumin levels in mesenteric ischemia,” Acad Emerg Med, pp. 539-43, 16(6) Jun 2009. R. W. Sloper, “THE QUANTUM YIELD FOR BILIRUBIN PHOTOISOMERISATION,” Photochemistry and Photobiology, May 1982 . E. M. W. . C. W. Swenson, “Intestinal Permeability Enhancement: Efficacy, Acute Local Toxicity, and Reversibility,” Pharm Res, p. 1132–1142, 1994. L.-Z. Guo, “Plasmon Resonant Two-Photon Luminescence Inducing Photosensitization and Nonlinear Optical Microscopy In Vivo by Near-Infrared Excitation of Au Nanopeanuts,” Applied Sciences, p. 10875, 2021. N. R. Jana, L. Gearheart 且 C. J. Murphy, “Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods,” J. Phys. Chem. B, pp. 4065-4067, 2001. M. Liu 且 P. Guyot-Sionnest, “Synthesis and Optical Characterization of Au/Ag Core/Shell Nanorods,” J. Phys. Chem. B, pp. 5882-5888, 2004. K. Park, L. F. Drummy 且 R. A. Vaia, “Ag Shell Morphology on Au Nanorod Core : Role of Ag Precursor Comples,” J. Mater. Chem., pp. 15608-15618, 2011. Y. Xiang, X. Wu, D. Liu, Z. Li, W. Chu, L. Feng, K. Zhang, W. Zhou 且 S. Xie, “Gold Nanorod-Seeded Growth of Silver Nanostructures: From Homogeneous Coating to Anisotropic Coating,” Langmuir, pp. 3465-3470, 2008. K.-W. Hu, T.-M. Liu, K.-Y. Chung, K.-S. Huang, C.-T. Hsieh, C.-K. Sun 且 C.-S. Yeh, “fficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures,” J. Am. Chem. Soc., pp. 14186-14187, 2009. A. M. Glass, P. F. Liao, J. G. Bergman 且 D. H. Olson, “Interaction of Metal Particles with Adsorbed Dye Molecules: Ab-sorption and Luminescence,” Opt. Lett., pp. 368-370, 1980. N. Kometani, M. Tsubonishi, T. Fujita, K. Asami 且 Y. Yonezawa, “Preparation and Optical Absorption Spectra of Dye-Coated Au, Ag, and Au/Ag Colloidal Nanoparticles in Aqueous Solutions and in Alternate Assemblies,” Langmuir, pp. 578-580, 2001. S. Nie 且 S. R. Emory, “Probing Single Molecules and Singles Nanoparticles by Surface-Enhanced Raman Scattering,” Science, pp. 1102-1106, 1997. B. Lamprecht, J. R. Krenn, A. Leitner 且 F. R. Aussenegg, “Resonant and Off-Resonant Light-Driven Plasmons in Metal Nanoparticles Studied by Femotosecond-Resolution Third-Harmonic Generation,” Phys. Rev. Lett., pp. 4421-4424, 1999. M. Lippitz, M. A. V. Dijk 且 M. Orrit, “Third-Harmonic Generation from Single Gold Nanoparticles,” Nano Lett, pp. 799-802, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81049 | - |
| dc.description.abstract | 現代醫療技術有兩個主要趨勢:一是微小化,在細胞分子層級釐清病生理關聯,達成早期診斷與精準治療;二是非侵入式,期望在無創、低介入的前提下,協助疾病的診斷與追蹤。然而,這兩項趨勢在臨床上卻相互衝突,微分子檢測一般不能在活體內進行,而非侵入式檢驗則無法提供細胞分子層級的資訊。 生醫光電是將光學技術應用於生物醫學檢測、診斷或治療的新興熱門領域。生物體常見的輔酶NADH、FAD,具有特異性的螢光光譜,可用以監測細胞組織的代謝活性且不需添加染劑或顯影劑。加上非線性光學技術提供檢測深度,卻仍可維持次微米及的解析度。光學檢測技術的低介入、特異性、高靈敏度、高解析度等特點,使其具有非常大的潛力開發活體代謝檢測工具。 本論文主要是應用光電技術到生物醫學領域,包含三個應用研究:脂肪細胞代謝研究,急性腸繫膜缺血(AMI)研究,及腫瘤光動力療法研究。 脂肪細胞代謝研究是與臨床醫師合作,採集病患脂肪組織進行NADH與FAD的雙光子螢光檢測,分析螢光與糖尿病的關聯性。前期成果顯示糖尿病患的脂肪組織FAD與NADH的螢光均較對照組弱。 急性腸繫膜缺血研究是以大鼠模型進行血液螢光檢測,分析AMI大鼠血液螢光的變化。結果顯示AMI會造成血液螢光顯著上升,最早能在缺血50分鐘時看出變化。血液螢光有機會做為一個AMI早期篩檢的指標。 腫瘤光動力療法研究是利用非線性光學技術開發可以提升其作用深度的新型載體。我們利用特殊結構的金奈米花生產生表面電漿共振,以接收NIR雙光子激發,再將能量轉供給光敏劑釋出單線氧,產生細胞毒性殺死腫瘤細胞。並在組織細胞與動物活體中驗證其安全性與有效性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:28:01Z (GMT). No. of bitstreams: 1 U0001-1302202211490300.pdf: 5159504 bytes, checksum: 9647d564a223a5fbd968c8f84a810be3 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | "致謝 I 中文摘要 II Abstract IV 第 一 章 緒論 1 1.1 前言 1 1.2 背景 1 1.2.1 脂肪細胞代謝研究 2 1.2.2 急性腸繫膜缺血早期診斷 2 1.2.3 生醫光電研究進展 4 1.2.4 腫瘤光動力療法 4 1.3 研究目的與論文架構 5 第 二 章 基礎理論 6 2.1 光致發光原理 6 2.1.1 光致螢光(Photoluminescence, PL) 6 2.1.2 多光子螢光(Multiphoton fluorescence, MP) 8 2.1.3 倍頻諧振(Hormonic Generation) 9 2.1.4 光波長與皮膚穿透深度 10 2.2 光學量測儀器原理 11 2.2.1 光學量測概念 11 2.2.2 單光儀原理 12 2.2.3 共軛焦掃描顯微鏡(Confocal microscope) 13 2.2.4 多光子顯微鏡(MP microscope) 14 第 三 章 人體胸外膜脂肪組織代謝螢光研究 15 3.1 研究方法 15 3.1.1 脂肪組織樣本 15 3.1.2 照影取像 15 3.1.3 圖像分析 16 3.2 結果討論 18 第 四 章 腸繫膜缺血大鼠血液螢光光譜研究 20 4.1 研究方法 20 4.1.1 實驗設計與分組 20 4.1.2 動物實驗 20 4.1.3 生化檢驗 21 4.1.4 螢光光譜量測 21 4.1.5 激發條件測試 24 4.2 結果討論 26 4.2.1 大鼠模型驗證 26 4.2.2 E70組大鼠血液螢光變化 28 4.2.3 缺血時間調變實驗 30 第 五 章 NIR PDT金奈米花生的腫瘤治療試驗研究 32 5.1 研究方法 32 5.1.1 實驗設計 32 5.1.2 粒子檢測 33 5.1.3 細胞毒性試驗 (MTT) 33 5.1.4 在633 nm二極管激光器下測量的不同時間的單線態氧檢測 33 5.1.5 暗場和螢光圖像監視器 34 5.1.6 由紅外飛秒Cr: 鎂橄欖石1230 nm激光激發的聚乙二醇化奈米粒子和TBO-聚乙二醇化奈米粒子的單線態氧檢測 34 5.1.7 治療下細胞的體外顯微成像 34 5.1.8 帶微型培養箱的多光子非線性光學顯微鏡 35 5.1.9 活體成像 36 5.2 結果討論 37 5.2.1 金奈米花生測試 37 5.2.2 細胞毒性測試 39 5.2.3 633激發TBO-PEG奈米花生PDT測試 40 5.2.4 1230激發TBO-PEG金奈米花生 41 5.2.5 Ex.1230 TBO-PEG金奈米粒子 43 第 六 章 結論 47 參考文獻 48" | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米花生 | zh_TW |
| dc.subject | 自體螢光分子 | zh_TW |
| dc.subject | 非線性光學 | zh_TW |
| dc.subject | 脂肪組織 | zh_TW |
| dc.subject | 急性腸繫膜缺血 | zh_TW |
| dc.subject | 光動力療法 | zh_TW |
| dc.subject | auto-fluorescent molecules | en |
| dc.subject | nanopeanut | en |
| dc.subject | photodynamic therapy (PDT) | en |
| dc.subject | mesenteric ischemia (AMI) | en |
| dc.subject | adipose tissue | en |
| dc.subject | nonlinear optics | en |
| dc.title | 光學光譜與顯微術於生物醫學之應用 | zh_TW |
| dc.title | Application of Optical Spectroscopy and Microscopy in Biomedicine | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉子銘(Feng-An Yang),呂東武(Po-Ju Chang),賴逸儒,曹昱 | |
| dc.subject.keyword | 自體螢光分子,非線性光學,脂肪組織,急性腸繫膜缺血,光動力療法,奈米花生, | zh_TW |
| dc.subject.keyword | auto-fluorescent molecules,nonlinear optics,adipose tissue,mesenteric ischemia (AMI),photodynamic therapy (PDT),nanopeanut, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU202200584 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-02-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1302202211490300.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
