請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81046完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾琬瑜(Wan-Yu Tseng) | |
| dc.contributor.author | Cen-Wei Su | en |
| dc.contributor.author | 蘇政維 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:27:53Z | - |
| dc.date.available | 2021-08-31 | |
| dc.date.available | 2022-11-24T03:27:53Z | - |
| dc.date.copyright | 2021-08-31 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-25 | |
| dc.identifier.citation | 1.Chevalier, J., et al., Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials, 2004. 25(24): p. 5539-5545. 2.McLean, J.W., Evolution of dental ceramics in the twentieth century. Journal of Prosthetic Dentistry, 2001. 85(1): p. 61-66. 3.Gautam, C., et al., Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton transactions, 2016. 45(48): p. 19194-19215. 4.Christel, P., et al., Mechanical properties and short‐term in vivo evaluation of yttrium‐oxide‐partially‐stabilized zirconia. Journal of biomedical materials research, 1989. 23(1): p. 45-61. 5.Žmak, I., et al., Hardness and indentation fracture toughness of slip cast alumina and alumina-zirconia ceramics. Materials, 2020. 13(1): p. 122. 6.Ross, I., et al., The role of trace additions of alumina to yttria–tetragonal zirconia polycrystals (Y–TZP). Scripta Materialia, 2001. 45(6): p. 653-660. 7.De Aza, A., et al., Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials, 2002. 23(3): p. 937-945. 8.Nevins, M., et al., Pilot clinical and histologic evaluations of a two-piece zirconia implant. International Journal of Periodontics Restorative Dentistry, 2011. 31(2). 9.Stadlinger, B., et al., Comparison of zirconia and titanium implants after a short healing period. A pilot study in minipigs. International journal of oral and maxillofacial surgery, 2010. 39(6): p. 585-592. 10.Scarano, A., et al., Bone response to zirconia ceramic implants: an experimental study in rabbits. Journal of Oral Implantology, 2003. 29(1): p. 8-12. 11.Dubruille, J.-H., et al., Evaluation of combinations of titanium, zirconia, and alumina implants with 2 bone fillers in the dog. International Journal of Oral and Maxillofacial Implants, 1999. 14(2): p. 271-277. 12.Kohal, R.J., et al., Loaded custom‐made zirconia and titanium implants show similar osseointegration: an animal experiment. Journal of Periodontology, 2004. 75(9): p. 1262-1268. 13.Mostafa, D. and M. Aboushelib, Bioactive–hybrid–zirconia implant surface for enhancing osseointegration: an in vivo study. International journal of implant dentistry, 2018. 4(1): p. 1-7. 14.Albrektsson, T., H. Hansson, and B. Ivarsson, Interface analysis of titanium and zirconium bone implants. Biomaterials, 1985. 6(2): p. 97-101. 15.Uo, M., et al., Cytotoxicity and bonding property of dental ceramics. Dental Materials, 2003. 19(6): p. 487-492. 16.Blaschke, C. and U. Volz, Soft and hard tissue response to zirconium dioxide dental implants--a clinical study in man. Neuroendocrinology letters, 2006. 27(1): p. 69-72. 17.Hisbergues, M., S. Vendeville, and P. Vendeville, Zirconia: Established facts and perspectives for a biomaterial in dental implantology. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2009. 88(2): p. 519-529. 18.Größner‐Schreiber, B., et al., Focal adhesion contact formation by fibroblasts cultured on surface‐modified dental implants: an in vitro study. Clinical oral implants research, 2006. 17(6): p. 736-745. 19.Pae, A., et al., Cell attachment and proliferation of bone marrow-derived osteoblast on zirconia of various surface treatment. The journal of advanced prosthodontics, 2014. 6(2): p. 96. 20.Sumant Ugalmugle, R.S. Osseointegration Implants Market Size to exceed $8.5bn by 2025. 2019; Available from: https://www.gminsights.com/pressrelease/osseointegration-implants-market. 21.PI, B., Vital microscopy of bone marrow in rabbit. Scandinavian journal of clinical and laboratory investigation, 1959. 11: p. 1-82. 22.Zarb, G.A. and S. Koka, Osseointegration: promise and platitudes. International Journal of Prosthodontics, 2012. 25(1): p. 11. 23.Berglundh, T., et al., De novo alveolar bone formation adjacent to endosseous implants: a model study in the dog. Clinical oral implants research, 2003. 14(3): p. 251-262. 24.Schwarz, F., et al., Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA® titanium implants: preliminary results of a pilot study in dogs. Clinical oral implants research, 2007. 18(4): p. 481-488. 25.Colnot, C., et al., Molecular analysis of healing at a bone-implant interface. Journal of dental research, 2007. 86(9): p. 862-867. 26.Meyer, U., et al., Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biomaterials, 2004. 25(10): p. 1959-1967. 27.Davies, J., Mechanisms of endosseous integration. International Journal of Prosthodontics, 1998. 11(5). 28.Davies, J.E., Understanding peri‐implant endosseous healing. Journal of dental education, 2003. 67(8): p. 932-949. 29.Abrahamsson, I., et al., Early bone formation adjacent to rough and turned endosseous implant surfaces: an experimental study in the dog. Clinical oral implants research, 2004. 15(4): p. 381-392. 30.Kolar, P., et al., The early fracture hematoma and its potential role in fracture healing. Tissue Engineering Part B: Reviews, 2010. 16(4): p. 427-434. 31.Wang, Y., Y. Zhang, and R.J. Miron, Health, maintenance, and recovery of soft tissues around implants. Clinical implant dentistry and related research, 2016. 18(3): p. 618-634. 32.Villar, C.C., et al., Wound healing around dental implants. Endodontic Topics, 2011. 25(1): p. 44-62. 33.Parr, G.R., Tissue-integrated prostheses: Osseointegration in clinical dentistry: Per-Ingvar Branemark, MD, Ph. D., George A. Zarb, DSS, MS, FRCD (C), and Thomas Albrektsson, MD, Ph. D. Chicago, 1985, Quintessence Publishing Company, Inc. 350 pages, illustrated, indexed. Price $88.00. Journal of Prosthetic Dentistry, 1985. 54(4): p. 611-612. 34.Yoshinari, M., Future prospects of zirconia for oral implants—A review. Dental materials journal, 2019. 35.Schünemann, F.H., et al., Zirconia surface modifications for implant dentistry. Materials Science and Engineering: C, 2019. 98: p. 1294-1305. 36.Yin, L., et al., A review of engineered zirconia surfaces in biomedical applications. Procedia Cirp, 2017. 65: p. 284-290. 37.Hafezeqoran, A. and R. Koodaryan, Effect of zirconia dental implant surfaces on bone integration: a systematic review and meta-analysis. BioMed research international, 2017. 2017. 38.Roehling, S., et al., In vitro biofilm formation on titanium and zirconia implant surfaces. Journal of Periodontology, 2017. 88(3): p. 298-307. 39.Gahlert, M., et al., Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. Clinical oral implants research, 2007. 18(5): p. 662-668. 40.Xie, H., et al., Effects of acid treatment on dental zirconia: an in vitro study. PloS one, 2015. 10(8): p. e0136263. 41.Thamrongananskul, N., et al., Dental zirconia can be etched by hydrofluoric acid. Dental materials journal, 2014. 33(1): p. 79-85. 42.Flamant, Q., et al., Hydrofluoric acid etching of dental zirconia. Part 1: etching mechanism and surface characterization. Journal of the European Ceramic Society, 2016. 36(1): p. 121-134. 43.Fischer, J., A. Schott, and S. Märtin, Surface micro‐structuring of zirconia dental implants. Clinical oral implants research, 2016. 27(2): p. 162-166. 44.Zhang, Y., et al., Damage accumulation and fatigue life of particle-abraded ceramics. International Journal of Prosthodontics, 2006. 19(5). 45.Roehling, S.K., B. Meng, and D.L. Cochran, Sandblasted and acid-etched implant surfaces with or without high surface free energy: experimental and clinical background, in Implant surfaces and their biological and clinical impact. 2015, Springer. p. 93-136. 46.Henningsen, A., et al., Changes in surface characteristics of titanium and zirconia after surface treatment with ultraviolet light or non‐thermal plasma. European journal of oral sciences, 2018. 126(2): p. 126-134. 47.Delgado‐Ruíz, R., et al., Femtosecond laser microstructuring of zirconia dental implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011. 96(1): p. 91-100. 48.Att, W., et al., Enhanced osteoblast function on ultraviolet light-treated zirconia. Biomaterials, 2009. 30(7): p. 1273-1280. 49.Brezavšček, M., et al., The effect of UV treatment on the osteoconductive capacity of zirconia-based materials. Materials, 2016. 9(12): p. 958. 50.Pardun, K., et al., Magnesium-containing mixed coatings on zirconia for dental implants: mechanical characterization and in vitro behavior. Journal of biomaterials applications, 2015. 30(1): p. 104-118. 51.Kirsten, A., et al., Bioactive and thermally compatible glass coating on zirconia dental implants. Journal of dental research, 2015. 94(2): p. 297-303. 52.Catauro, M., et al., Investigation on bioactivity, biocompatibility, thermal behavior and antibacterial properties of calcium silicate glass coatings containing Ag. Journal of Non-Crystalline Solids, 2015. 422: p. 16-22. 53.Zhang, Y. and J.-W. Kim, Graded zirconia glass for resistance to veneer fracture. Journal of dental research, 2010. 89(10): p. 1057-1062. 54.Kohal, R.J., et al., Ceramic abutments and ceramic oral implants. An update. Periodontology 2000, 2008. 47(1): p. 224-243. 55.Osman, R.B., et al., Ceramic implants (Y‐TZP): are they a viable alternative to titanium implants for the support of overdentures? A randomized clinical trial. Clinical oral implants research, 2014. 25(12): p. 1366-1377. 56.Nishihara, H., M.H. Adanez, and W. Att, Current status of zirconia implants in dentistry: preclinical tests. Journal of prosthodontic research, 2019. 63(1): p. 1-14. 57.Beger, B., et al., In vitro surface characteristics and impurity analysis of five different commercially available dental zirconia implants. International journal of implant dentistry, 2018. 4(1): p. 1-10. 58.Quirynen, M. and C. Bollen, The influence of surface roughness and surface‐free energy on supra‐and subgingival plaque formation in man: A review of the literature. Journal of clinical periodontology, 1995. 22(1): p. 1-14. 59.Andreiotelli, M. and R.J. Kohal, Fracture strength of zirconia implants after artificial aging. Clinical implant dentistry and related research, 2009. 11(2): p. 158-166. 60.Payer, M., et al., Immediate provisional restoration of single‐piece zirconia implants: a prospective case series–results after 24 months of clinical function. Clinical oral implants research, 2013. 24(5): p. 569-575. 61.Suntola, T. and J. Antson, Method for producing compound thin films. 1977, Google Patents. 62.Marichy, C., M. Bechelany, and N. Pinna, Atomic layer deposition of nanostructured materials for energy and environmental applications. Advanced Materials, 2012. 24(8): p. 1017-1032. 63.Van Delft, J., D. Garcia-Alonso, and W. Kessels, Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing. Semiconductor Science and Technology, 2012. 27(7): p. 074002. 64.Ritala, M. and J. Niinistö, Industrial applications of atomic layer deposition. ECS transactions, 2009. 25(8): p. 641. 65.Vitiello, J., F. Piallat, and L. Bonnet. Alternative deposition solution for cost reduction of TSV integration. in International Symposium on Microelectronics. 2017. International Microelectronics Assembly and Packaging Society. 66.ctechnano coating technologies. What is Atomic Layer Deposition. 2018; Available from: https://ctechnano.com/coating-technologies/what-is-atomic-layer-deposition-ald/. 67.章詠湟, 陳智, and 彭智龍, 原子層沉積系統原理及其應用. 科儀新知, 2007(159): p. 33-43. 68.Eisenbarth, E., et al., Interactions between cells and titanium surfaces. Biomolecular engineering, 2002. 19(2-6): p. 243-249. 69.Branemark, P.-I., Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand. J. Plast. Reconstr. Surg. Suppl., 1977. 16. 70.Ask, M., J. Lausmaa, and B. Kasemo, Preparation and surface spectroscopic characterization of oxide films on Ti6Al4V. Applied surface science, 1989. 35(3): p. 283-301. 71.Sunada, K., Watanabe T and Hashimoto KJ. J. Photochem. Photobiol. A, 2003. 2003: p. 156. 72.Visai, L., et al., Titanium oxide antibacterial surfaces in biomedical devices. The International journal of artificial organs, 2011. 34(9): p. 929-946. 73.Silva, M., et al., Surface modification of Ti implants by plasma oxidation in hollow cathode discharge. Surface and Coatings Technology, 2006. 200(8): p. 2618-2626. 74.Camargo, W.A., et al., Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation. Acta biomaterialia, 2017. 57: p. 511-523. 75.Salou, L., et al., Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta biomaterialia, 2015. 11: p. 494-502. 76.Kwon, D.H., et al., Bone tissue response following local drug delivery of bisphosphonate through titanium oxide nanotube implants in a rabbit model. Journal of clinical periodontology, 2017. 44(9): p. 941-949. 77.Biggs, M.J., et al., Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2009. 91(1): p. 195-208. 78.Dalby, M.J., et al., Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials, 2006. 27(8): p. 1306-1315. 79.Palin, E., H. Liu, and T.J. Webster, Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology, 2005. 16(9): p. 1828. 80.Bierbaum, S., et al., Osteogenic nanostructured titanium surfaces with antibacterial properties under conditions that mimic the dynamic situation in the oral cavity. Biomaterials science, 2018. 6(6): p. 1390-1402. 81.Mendonça, G., et al., The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials, 2009. 30(25): p. 4053-4062. 82.Schultze, J.W. and M. Lohrengel, Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochimica Acta, 2000. 45(15-16): p. 2499-2513. 83.Drnovšek, N., et al., The properties of bioactive TiO2 coatings on Ti-based implants. Surface and Coatings Technology, 2012. 209: p. 177-183. 84.Santiago-Medina, P., P. Sundaram, and N. Diffoot-Carlo, Titanium oxide: a bioactive factor in osteoblast differentiation. International journal of dentistry, 2015. 2015. 85.Yang, W.-E., et al., Nano/submicron-scale TiO2 network on titanium surface for dental implant application. Journal of Alloys and Compounds, 2009. 479(1-2): p. 642-647. 86.Bumgardner, J., et al., Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. Journal of Biomaterials Science, Polymer Edition, 2003. 14(12): p. 1401-1409. 87.Markaki, A., alamarBlue Assay for Assessment of Cell Proliferation using the FLUOstar OPTIMA. Offenburg: BMG Lab Tech, 2009. 88.PUCHTLER, H., S.N. Meloan, and M.S. TERRY, On the history and mechanism of alizarin and alizarin red S stains for calcium. Journal of Histochemistry Cytochemistry, 1969. 17(2): p. 110-124. 89.Bharadwaj, S., et al., Milk ribonuclease-enriched lactoferrin induces positive effects on bone turnover markers in postmenopausal women. Osteoporosis international, 2009. 20(9): p. 1603-1611. 90.Bächle, M., et al., Behavior of CAL72 osteoblast‐like cells cultured on zirconia ceramics with different surface topographies. Clinical oral implants research, 2007. 18(1): p. 53-59. 91.Rani, V.D., et al., Osteointegration of titanium implant is sensitive to specific nanostructure morphology. Acta biomaterialia, 2012. 8(5): p. 1976-1989. 92.Puckett, S.D., et al., The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials, 2010. 31(4): p. 706-713. 93.Iatsunskyi, I., et al., Atomic layer deposition TiO2 coated porous silicon surface: Structural characterization and morphological features. Thin Solid Films, 2015. 589: p. 303-308. 94.Chaukulkar, R.P. and S. Agarwal, Atomic layer deposition of titanium dioxide using titanium tetrachloride and titanium tetraisopropoxide as precursors. Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films, 2013. 31(3): p. 031509. 95.Miikkulainen, V., et al., Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. Journal of Applied Physics, 2013. 113(2): p. 2. 96.Jin, C., et al., Structure and photoluminescence of the TiO 2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone. Nanoscale research letters, 2015. 10(1): p. 1-9. 97.Lee, W.-J. and M.-H. Hon, Space-limited crystal growth mechanism of TiO2 films by atomic layer deposition. The Journal of Physical Chemistry C, 2010. 114(15): p. 6917-6921. 98.Wilson, R.L., et al., The effect of film thickness on the gas sensing properties of ultra-thin TiO2 films deposited by atomic layer deposition. Sensors, 2018. 18(3): p. 735. 99.Welsch, F., et al., Karyotype, growth, and cell cycle analysis of human embryonic palatal mesenchymal cells: relevance to the use of these cells in an in vitro teratogenicity screening assay. Teratogenesis, carcinogenesis, and mutagenesis, 1986. 6(5): p. 383-392. 100.Schneider, G.B., et al., Differentiation of preosteoblasts is affected by implant surface microtopographies. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2004. 69(3): p. 462-468. 101.Page, B., M. PAGE, and C. NOEL, A new fluorometric assay for cytotoxicity measurements in-vitro. International journal of oncology, 1993. 3(3): p. 473-476. 102.Shahramian, K., et al., TiO2 coating and UV photofunctionalization enhance blood coagulation on zirconia surfaces. BioMed research international, 2019. 2019. 103.Bao, L., et al., Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications. Applied surface science, 2014. 290: p. 48-52. 104.Ducy, P. and G. Karsenty, Genetic control of cell differentiation in the skeleton. Current opinion in cell biology, 1998. 10(5): p. 614-619. 105.Fakhry, M., et al., Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World journal of stem cells, 2013. 5(4): p. 136. 106.Avery, S.J., et al., Interrogating the Osteogenic Potential of Implant Surfaces In Vitro: A Review of Current Assays. Tissue Engineering Part B: Reviews, 2020. 26(3): p. 217-229. 107.Mozumder, M.S., J. Zhu, and H. Perinpanayagam, TiO2-enriched polymeric powder coatings support human mesenchymal cell spreading and osteogenic differentiation. Biomedical Materials, 2011. 6(3): p. 035009. 108.Frandsen, C.J., et al., Hybrid micro/nano-topography of a TiO2 nanotube-coated commercial zirconia femoral knee implant promotes bone cell adhesion in vitro. Materials Science and Engineering: C, 2013. 33(5): p. 2752-2756. 109.Boyan, B.D., et al., Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. Eur Cell Mater, 2003. 6(24): p. 22-27. 110.Yamashita, D., et al., Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dental materials journal, 2009. 28(4): p. 461-470. 111.Zhao, G., et al., Requirement for both micron-and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials, 2007. 28(18): p. 2821-2829. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81046 | - |
| dc.description.abstract | "近年來,氧化鋯已被廣泛地應用於牙科植體領域。氧化鋯植體具有良好的機械性質與化學穩定性,不僅比鈦金屬更接近自然牙齒顏色,與組織的生物相容性佳,因此被認為是理想的牙科植體材料。然而,二氧化鋯屬於生物惰性材料,造成植體植入後不易與骨組織形成穩定的界面,且其材料特性不易使用機械或化學等方式來進行表面改質,限制其發展與臨床的應用。 過往的研究已顯示奈米級二氧化鈦鍍膜對於牙科植體的種種優點,臨床上可以藉由加強二氧化鈦保護層來提升植體的生物特性。不僅如此,二氧化鈦也是原子層沉積技術中常用來鍍膜的金屬氧化物,加上其技術可以均勻、大面積、精細的控制鍍膜厚度,因此本研究將利用奈米級二氧化鈦鍍膜表面改質以優化二氧化鋯特性,提升表面生物活性並骨整合。 本研究使用原子層沉積技術(ALD),分別鍍上0 (未鍍膜), 25, 50, 100 nm的奈米級非晶型二氧化鈦薄膜於二氧化鋯試片上,試片原始表面粗糙度介於0.5-1.1 µm,並將鍍膜好的試片分別作材料及細胞實驗。材料測試包含使用電子顯微鏡、原子力顯微鏡以及使用細微形狀測定儀量測表面型態與粗糙度;而細胞測試包含細胞存活率、茜素紅染色、骨鈣素測試以及螢光染色測定法。 由電子顯微鏡的觀察得知,越厚的二氧化鈦鍍膜層其晶體顆粒更緻密。原子力顯微鏡的3D表面型態顯示,受到二氧化鋯表面粗糙不均的結構所影響,奈米級二氧化鈦鍍膜對二氧化鋯試片的表面型態無顯著差異。細胞測試無論是在細胞存活率或礦化能力分析,結果都指出100 nm的非晶型二氧化鈦薄膜有最佳的實驗數據。螢光染色測定結果顯示鍍膜組其細胞外型較立體為多角形,細胞的絲狀偽足數量有增加。 綜合以上實驗結果,原子層沉積技術可以精準的控制奈米級二氧化鈦鍍膜厚度,而且二氧化鈦鍍膜可以促進細胞生長、加速細胞產生鈣化組織的速度,其中又以鍍膜為100 nm厚度的組別效果最佳。因此,本技術與材料應用於臨床時,可預期可以大幅提升骨整合速率與效果。 " | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:27:53Z (GMT). No. of bitstreams: 1 U0001-2308202117013800.pdf: 3984882 bytes, checksum: 8e5afbde61ff3774fa6a12be29b909d8 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 目錄 口試委員審定書………………………………………………………………………...i 摘要……………………………………………………………………………………...ii Abstract…………………………………………………………………...……...……..iv 目錄…………………………………………………………………………………......vi 圖表目錄………………………………………………………………………………..ix Chapter 1 文獻回顧……………………………………………………..………….….1 1.1 氧化鋯………………………………………………………………………...1 1.1.1 歷史………………………………………………………………………1 1.1.2 氧化鋯的性質…....………………………………………………………1 1.1.3 氧化鋯植體的生物相容性………………………………………………3 1.1.4 氧化鋯植體市場…………………………………………………………4 1.2 骨整合………………………………………………………………………...5 1.2.1 骨整合的過程……………………………………………………………5 1.2.2 植體穩定度………………………………………………………………7 1.3 植體表面處理………………………………………………………………...8 1.3.1 機械加工植體表面………………………………………………………9 1.3.2 酸蝕處理植體表面……………………………………………………..10 1.3.3 噴砂處理植體表面……………………………………………….…….11 1.3.4 噴砂及酸蝕處理植體表面……………………………….……….……12 1.3.5 雷射處理植體表面……………………………………………………..12 1.3.6 紫外光處理植體表面…………………………………………………..13 1.3.7 生物活性物質披覆植體表面…………………………………………..14 1.3.8 市面上氧化鋯植體之比較……………………………………………..16 1.4 原子層沉積技術…………………………………………………………….18 1.5 二氧化鈦保護層…………………………………………………………….21 Chapter 2 研究動機與目的………………………………………………..…………23 2.1 研究動機……………………………………………………………………..23 2.2 研究目的……………………………………………………………………..23 Chapter 3 實驗材料及方法……………………………………………………..……25 3.1 各項名詞縮寫………………………………………………………………..25 3.2 實驗流程圖…………………………………………………………………..25 3.3 實驗材料製備………………………………………………………………..26 3.4 實驗細胞及培養環境………………………………………………………..27 3.5 掃描式電子顯微鏡…………………………………………………………..28 3.5.1 說明……………………………………………………………………...28 3.5.2 實驗步驟………………………………………………………………...28 3.6 原子力顯微鏡………………………………………………………………..28 3.6.1 說明……………………………………………………………………...28 3.6.2 實驗步驟………………………………………………………………...29 3.7 細微形狀測定機……………………………………………………………..29 3.7.1 說明……………………………………………………………………...29 3.7.2 實驗步驟………………………………………………………………...30 3.8 Alamar blue assay…………………………………………………………….30 3.8.1 說明……………………………………………………………………...30 3.8.2 實驗步驟………………………………………………………………...32 3.9 茜素紅然色試驗……………………………………………………………..33 3.9.1 說明……………………………………………………………………...33 3.9.2 實驗步驟………………………………………………………………...33 3.10 骨鈣素試驗…………………………………………………………………34 3.10.1 說明…………………………………………………………………….34 3.10.2 實驗步驟……………………………………………………………….35 3.11 免疫螢光染色試驗…………………………………………………………36 3.11.1 說明…………………………………………………………………….36 3.11.2 實驗步驟……………………………………………………………….37 3.12 統計分析……………………………………………………………………38 Chapter 4 實驗結果……………………………………………………………..……39 4.1 掃描式電子顯微鏡…………………………………………………………..39 4.2 原子力顯微鏡………………………………………………………………..41 4.2.1 3D表面粗糙度分佈圖…………………………………………………..41 4.3 細微形狀測定機……………………………………………………………..42 4.4 Alamar blue assay….………………………………………………………….43 4.5 茜素紅染色試驗……………………………………………………………..47 4.6 骨鈣素試驗…………………………………………………………………..51 4.7 免疫螢光染色試驗…………………………………………………………..53 Chapter 5 討論………………………………………………………………………..60 5.1 材料測試……………………………………………………………………..60 5.2 細胞實驗……………………………………………………………………..64 5.2.1 生物相容性……………………………………………………………...64 5.2.2 骨礦化能力分析………………………………………………………...66 5.2.3 細胞形態………………………………………………………………...68 Chapter 6 結論與未來研究方向…………………………………………..…………70 6.1 結論…………………………………………………………………………..70 6.2 未來研究方向………………………………………………………………..71 參考文獻……………………………………………………………………………….72 圖附錄………………………………………………………………………………….81 圖表目錄 圖1- 1氧化鋯的相變過程[3] 2 圖1- 3氧化鋯抗斷裂的機制[5] 2 圖1- 4細胞培養一天後SEM下氧化鋯經表面處理與成骨細胞有良好的貼附[19] 3 圖1- 5細胞培養兩天後SEM下氧化鋯經表面處理與成骨細胞有成長的趨勢[19] 4 圖1- 6美國植體市場的成長趨勢[20] 4 圖1- 7骨整合的過程[31] 6 圖1- 8 SEM下植體骨整合的過程[32] A:植牙後2周開始有軟狀骨(woven bone)生成,形成骨小量堆積 B:4周時成熟骨頭持續生成,使骨髓腔明顯變小,骨小樑變厚 C:8周時骨頭進行重塑(bone remodeling),舊骨被取代骨質密度增加 6 圖1- 9植體初級及次級穩定度比較[32] 7 圖1- 10臨床常見的氧化鋯植體表面處理及其SEM[35] 8 圖1- 11 SEM下機械加工植體表面,可以看到細微的溝陷形態[39] 9 圖1- 12 SEM下酸蝕處理氧化鋯植體表面[42] 10 圖1- 13 SEM下噴砂處理氧化鋯植體表面 [39] 11 圖1- 14 SEM下噴砂及酸蝕處理氧化鋯植體表面[45] 12 圖1- 15 SEM下飛秒雷射處理植體表面[47] 13 圖1- 16紫外光處理的氧化鋯表面[48] 14 圖1- 17各種氧化鋯植體表面披覆材料[35] 15 圖1- 18市面上氧化鋯植體的材料[56] 16 圖1- 19市面上氧化鋯植體的粗糙度[57] 16 圖1- 20市面上的氧化鋯植體的表面處理[56] 17 圖1- 21 ALD與傳統鍍膜方式的差異[65] 18 圖1- 22原子沉積技術示意圖[66] 19 圖1- 23原子層沉積技術應用於25:1高深寬比的深溝渠內[67] 20 圖1- 24 Al2O3薄膜經原子層沈積技術均勻地覆蓋在基材表面上[67] 20 圖1- 25二氧化鈦保護層的抗菌機制[72] 21 圖1- 26在5秒與60秒時二氧化鈦度膜的親水性差異[73] (a)未處理過的鈦植體 (b)二氧化鈦鍍膜後的鈦植體 22 圖3- 1本實驗流程圖 26 圖3- 2 Surfcorder ET-200 29 圖3- 3 Alamar blue反應示意圖[81] 31 圖4- 1 SEM 二氧化鈦鍍膜 1000倍 A. Amo0、B. Amo25、C. Amo50、D. Amo100 39 圖4- 2 SEM二氧化鈦鍍膜 5000倍 A. Amo0、B. Amo25、C. Amo50、D. Amo100 40 圖4- 3 SEM 二氧化鈦鍍膜 20000倍 A. Amo0、B. Amo25、C. Amo50、D. Amo100 40 圖4-4 AFM二氧化鈦鍍膜3D表面形態 41 圖4-5 AFM二氧化鈦鍍膜3D表面形態 42 圖4- 6 Surfcorder二氧化鈦鍍膜平均粗糙度 ( Ra ) 43 圖4- 7 第一天細胞存活率實驗 ( alamar blue assay ) 44 圖4- 8 第四天細胞存活率實驗 ( alamar blue assay ) 44 圖4- 9 第七天細胞存活率實驗 ( alamar blue assay ) 45 圖4- 10 第十天細胞存活率實驗 ( alamar blue assay ) 45 圖4- 11 第十四天細胞存活率實驗 ( alamar blue assay ) 46 圖4- 12 二氧化鈦鍍膜不同厚度各組別存活率比較 46 圖4- 13 ARS Day 7 HEPM Cell (A)Control (B)TCPS(with induction medium) ARS Day 10 HEPM Cell (C)Control (D)TCPS(with induction medium) ARS Day 14 HEPM Cell (E)Control (F)TCPS(with induction medium) 47 圖4- 14 ARS Day 7二氧化鈦鍍膜(A)Amo0 (B)Amo25 (C)Amo50 (D)Amo100 ARS Day 10二氧化鈦鍍膜(E)Amo0 (F)Amo25 (G)Amo50 (H)Amo100 ARS Day 14二氧化鈦鍍膜(I)Amo0 (J)Amo25 (K)Amo50 (L)Amo100 48 圖4- 15第七天茜素紅染色試驗 ( ARS assay ) 49 圖4- 16第十天茜素紅染色試驗 ( ARS assay ) 49 圖4- 17第十四天茜素紅染色試驗 ( ARS assay ) 50 圖4- 18二氧化鈦鍍膜不同厚度各組茜素紅染色試驗結果比較 50 圖4- 19第七天骨鈣素試驗結果 ( OCN assay ) 51 圖4- 20第十天骨鈣素試驗結果 ( OCN assay ) 52 圖4- 21第十四天骨鈣素試驗結果 ( OCN assay ) 52 圖4- 22二氧化鈦鍍膜不同厚度各組骨鈣素試驗結果比較 53 圖4- 23 IFA Day 1 (A)TCPS (B)Amo0 (C)Amo25 (D)Amo50 (E)Amo100 100x IFA Day 1 (F)TCPS (G)Amo0 (H)Amo25 (I)Amo50 (J)Amo100 400x 55 圖4- 24 IFA Day 4 (A)TCPS (B)Amo0 (C)Amo25 (D)Amo50 (E)Amo100 100x IFA Day 4 (F)TCPS (G)Amo0 (H)Amo25 (I)Amo50 (J)Amo100 400x 56 圖4- 25 IFA Day 7 (A)TCPS (B)Amo0 (C)Amo25 (D)Amo50 (E)Amo100 100x IFA Day 7 (F)TCPS (G)Amo0 (H)Amo25 (I)Amo50 (J)Amo100 400x 57 圖4- 26 IFA Day10 (A)TCPS (B)Amo0 (C)Amo25 (D)Amo50 (E)Amo100 100x IFA Day10 (F)TCPS (G)Amo0 (H)Amo25 (I)Amo50 (J)Amo100 400x 58 圖4- 27 IFA Day14 (A)TCPS (B)Amo0 (C)Amo25 (D)Amo50 (E)Amo100 100x IFA Day14 (F)TCPS (G)Amo0 (H)Amo25 (I)Amo50 (J)Amo100 400x 59 圖4- 28 IFA Day1 (A)TCPS (B)Amo0 (C)Amo25 (D)Amo50 (E)Amo100 200x 81 圖4- 29 IFA Day4 (A)TCPS (B)Amo0 (C)Amo25 (D)Amo50 (E)Amo100 200x 82 圖4- 30 IFA Day7 (A)TCPS (B)Amo0 (C)Amo25 (D)Amo50 (E)Amo100 200x 83 圖4- 31 IFA Day10 (A)TCPS (B)Amo0 (C)Amo25 (D)Amo50 (E)Amo100 200x 84 圖4- 32 IFA Day14 (A)TCPS (B)Amo0 (C)Amo25 (D)Amo50 (E)Amo100 200x 85 圖5- 1經過100個ALD循環後不同溫度下二氧化鈦之SEM影像[97] (a) 150度 (b) 200度 (c) 250度 (d) 300度 (e) 350度 (f) 500度 62 圖5- 2經過1000個ALD循環後不同溫度下二氧化鈦之SEM影像[97] (a) 100°C (b) 150°C (c) 200°C (d) 250°C (e) 300°C (f) 350°C (g) 400°C (h) 450°C (i) 500°C 63 圖5- 3 ALD在200°C時不同厚度的二氧化鈦之AFM影像[98] a) 10 nm b) 50 nm 64 圖5- 4 HEPM cell不同時間點的相襯顯微照片( phase contrast micrograph )[99] a) 0hr b) 3hr (c) 24hr (d) 48hr (e) 72hr (f) 96 hr 65 圖5- 5 氧化鋯表面鍍膜二氧化鈦對於血小板與紅血球之SEM影像[102] A) 未鍍膜組 B) 鍍膜氧化鈦組;血小板(白箭頭) 紅血球(黑箭頭) 66 圖5- 6骨整合各時期的基因表現[106] 67 圖5- 7經UV照射10天及20天時的氧化鋯試片之礦化物的生成[49] 68 圖5- 8 MC3T3-E1細胞在不同粗糙度及時間點於氧化鋯表面的細胞型態[110] 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 茜素紅染色 | zh_TW |
| dc.subject | 氧化鋯植體 | zh_TW |
| dc.subject | 表面處理 | zh_TW |
| dc.subject | 原子層沉積技術 | zh_TW |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 生物相容性 | zh_TW |
| dc.subject | 粗糙度 | zh_TW |
| dc.subject | 骨鈣素 | zh_TW |
| dc.subject | biocompatibility | en |
| dc.subject | osteocalcin | en |
| dc.subject | zirconia | en |
| dc.subject | implant surface | en |
| dc.subject | atomic layer deposition technique | en |
| dc.subject | titanium dioxide | en |
| dc.subject | mirco-roughness | en |
| dc.subject | alizarin red staining | en |
| dc.title | 利用原子層沉積技術鍍膜奈米二氧化鈦於氧化鋯植體材料表面之研究 | zh_TW |
| dc.title | Improving Zirconia Implants by Coating Nano-TiO2 using Atomic Layer Deposition Technique | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林立德(Hsin-Tsai Liu),洪志遠(Chih-Yang Tseng) | |
| dc.subject.keyword | 氧化鋯植體,表面處理,原子層沉積技術,二氧化鈦,生物相容性,粗糙度,骨鈣素,茜素紅染色, | zh_TW |
| dc.subject.keyword | zirconia,implant surface,atomic layer deposition technique,titanium dioxide,biocompatibility,mirco-roughness,osteocalcin,alizarin red staining, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU202102636 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-25 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2308202117013800.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
