Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81044
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋(Jian-Jang Huang)
dc.contributor.authorLi-Chan Laien
dc.contributor.author賴立展zh_TW
dc.date.accessioned2022-11-24T03:27:46Z-
dc.date.available2021-09-02
dc.date.available2022-11-24T03:27:46Z-
dc.date.copyright2021-09-02
dc.date.issued2021
dc.date.submitted2021-08-25
dc.identifier.citation[1] Statista, ' Global mobile data traffic from 2017 to 2022', ed, 2019. [2] F. Deicke, W.-J. Fisher, and M. Faulwaßer, 'Optical wireless communication to eco-system.' pp. 1-8. [3] S. Rajbhandari, J. J. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, and M. D. Dawson, “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semiconductor Science and Technology, vol. 32, no. 2, pp. 023001, 2017. [4] A. Kerans, D. Vo, P. Conder, and S. Krusevac, 'Pricing of spectrum based on physical criteria.' pp. 223-230. [5] R. X. Ferreira, E. Xie, J. J. McKendry, S. Rajbhandari, H. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. Gu, and R. V. Penty, “High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications,” IEEE Photonics Technology Letters, vol. 28, no. 19, pp. 2023-2026, 2016. [6] C. C. Ruppel, L. Reindl, and R. Weigel, “SAW devices and their wireless communications applications,” IEEE microwave magazine, vol. 3, no. 2, pp. 65-71, 2002. [7] H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “VLC: Beyond point-to-point communication,” IEEE Communications Magazine, vol. 52, no. 7, pp. 98-105, 2014. [8] H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Communications Magazine, vol. 49, no. 9, pp. 56-62, 2011. [9] H. Lan, I. Tseng, H. Kao, Y. Lin, G. Lin, and C. Wu, “752-MHz Modulation Bandwidth of High-Speed Blue Micro Light-Emitting Diodes,” IEEE Journal of Quantum Electronics, vol. 54, no. 5, pp. 1-6, 2018. [10] H.-Y. Lan, I. C. Tseng, Y.-H. Lin, G.-R. Lin, D.-W. Huang, and C.-H. Wu, “High-speed integrated micro-LED array for visible light communication,” Optics Letters, vol. 45, no. 8, pp. 2203-2206, 2020/04/15, 2020. [11] S. W. H. Chen, Y. M. Huang, Y. H. Chang, Y. Lin, F. J. Liou, Y. C. Hsu, J. Song, J. Choi, C. W. Chow, C. C. Lin, R. H. Horng, Z. Chen, J. Han, T. Z. Wu, and H. C. Kuo, “High-Bandwidth Green Semipolar (20-21) InGaN/GaN Micro Light-Emitting Diodes for Visible Light Communication,” Acs Photonics, vol. 7, no. 8, pp. 2228-2235, Aug, 2020. [12] A. Rashidi, M. Monavarian, A. Aragon, S. Okur, M. Nami, A. Rishinaramangalam, S. Mishkat-Ul-Masabih, and D. Feezell, “High-Speed Nonpolar InGaN/GaN LEDs for Visible-Light Communication,” Ieee Photonics Technology Letters, vol. 29, no. 4, pp. 381-384, Feb, 2017. [13] X. Ding, C. Gui, H. Hu, M. Liu, X. Liu, J. Lv, and S. Zhou, “Reflectance bandwidth and efficiency improvement of light-emitting diodes with double-distributed Bragg reflector,” Applied Optics, vol. 56, no. 15, pp. 4375-4380, 2017/05/20, 2017. [14] S. L. Mei, X. Y. Liu, W. L. Zhang, R. Liu, L. R. Zheng, R. Q. Guo, and P. F. Tian, “High-Bandwidth White-Light System Combining a Micro-LED with Perovskite Quantum Dots for Visible Light Communication,” Acs Applied Materials Interfaces, vol. 10, no. 6, pp. 5641-5648, Feb, 2018. [15] R. X. G. Ferreira, E. Y. Xie, J. J. D. McKendry, S. Rajbhandari, H. C. Chun, G. Faulkner, S. Watson, A. E. Kelly, E. D. Gu, R. V. Penty, I. H. White, D. C. O'Brien, and M. D. Dawson, “High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications,” Ieee Photonics Technology Letters, vol. 28, no. 19, pp. 2023-2026, Oct, 2016. [16] C. Ruan, Y. Zhang, M. Lu, C. Y. Ji, C. Sun, X. B. Chen, H. D. Chen, V. L. Colvin, and W. W. Yu, “White Light-Emitting Diodes Based on AgInS2/ZnS Quantum Dots with Improved Bandwidth in Visible Light Communication,” Nanomaterials, vol. 6, no. 1, pp. 8, Jan, 2016. [17] H. Sheng-Kwang, L. Jia-Ming, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 5, pp. 974-981, 2004. [18] X. Lin, G. Xia, Z. Shang, T. Deng, X. Tang, L. Fan, Z. Gao, and Z. Wu, “Frequency-modulated continuous-wave generation based on an optically injected semiconductor laser with optical feedback stabilization,” Optics Express, vol. 27, no. 2, pp. 1217-1225, 2019/01/21, 2019. [19] C.-H. Tseng, Y.-H. Hung, and S.-K. Hwang, “Frequency-modulated continuous-wave microwave generation using stabilized period-one nonlinear dynamics of semiconductor lasers,” Optics Letters, vol. 44, no. 13, pp. 3334-3337, 2019/07/01, 2019. [20] J.-P. Zhuang, X.-Z. Li, S.-S. Li, and S.-C. Chan, “Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser,” Optics Letters, vol. 41, no. 24, pp. 5764-5767, 2016/12/15, 2016. [21] P. Zhou, F. Zhang, and S. Pan, “Generation of Linear Frequency-Modulated Waveforms by a Frequency-Sweeping Optoelectronic Oscillator,” Journal of Lightwave Technology, vol. 36, no. 18, pp. 3927-3934, 2018. [22] M. Y. Tsai, S. Y. Pan, and J. J. Huang, “Observation of 990-MHz Optical Oscillation From Light Emitters Excited by High-Order Harmonics of Surface Acoustic Waves,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, no. 3, pp. 854-858, 2021. [23] M. Y. Tsai, L. C. Lai, and J. J. Huang, “Observation of Acoustic Charge Transport in GaN-Based Quantum Well Structures Under Surface Acoustic Wave Excitations,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, no. 5, pp. 1949-1954, 2021. [24] A. V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Du, and M. Zahn, “Interdigital sensors and transducers,” Proceedings of the IEEE, vol. 92, no. 5, pp. 808-845, 2004. [25] J. Shilton, V. Talyanskii, M. Pepper, D. Ritchie, J. Frost, C. Ford, C. Smith, and G. Jones, “High-frequency single-electron transport in a quasi-one-dimensional GaAs channel induced by surface acoustic waves,” Journal of Physics: Condensed Matter, vol. 8, no. 38, pp. L531, 1996. [26] W. C. Choy, E. H. Li, and B. L. Weiss, “Asymmetric double-quantum-well phase modulator using surface acoustic waves,” IEEE journal of quantum electronics, vol. 34, no. 10, pp. 1846-1853, 1998. [27] W. C. Choy, E. H. Li, and B. L. Weiss, “Electro-optic and electro-absorptive modulations of AlGaAs/GaAs quantum well using surface acoustic wave,” Journal of applied physics, vol. 83, no. 2, pp. 858-866, 1998. [28] P. V. Santos, and R. Hey, “Modulation of the electronic properties of GaAs quantum wells induced by surface acoustic waves,” Physica E: Low-dimensional Systems and Nanostructures, vol. 7, no. 3-4, pp. 559-562, 2000. [29] C. Rocke, S. Zimmermann, A. Wixforth, J. P. Kotthaus, G. Böhm, and G. Weimann, “Acoustically driven storage of light in a quantum well,” Physical Review Letters, vol. 78, no. 21, pp. 4099, 1997. [30] C. Rocke, A. Govorov, A. Wixforth, G. Böhm, and G. Weimann, “Exciton ionization in a quantum well studied by surface acoustic waves,” Physical Review B, vol. 57, no. 12, pp. R6850, 1998. [31] P. Santos, M. Ramsteiner, and F. Jungnickel, “Spatially resolved photoluminescence in GaAs surface acoustic wave structures,” Applied physics letters, vol. 72, no. 17, pp. 2099-2101, 1998. [32] F. Guediri, R. Martin, B. Hunsinger, and F. Fliegel, 'Performance of acoustic charge transport programmable tapped delay line.' pp. 11-14. [33] M. Cecchini, G. De Simoni, V. Piazza, F. Beltram, H. Beere, and D. Ritchie, “Acoustic charge transport in an-i-n three terminal device,” Applied physics letters, vol. 88, no. 21, pp. 212101, 2006. [34] M. Weiß, and H. J. Krenner, “Interfacing quantum emitters with propagating surface acoustic waves,” Journal of Physics D: Applied Physics, vol. 51, no. 37, pp. 373001, 2018. [35] T. Hosey, V. Talyanskii, S. Vijendran, G. Jones, M. Ward, D. Unitt, C. Norman, and A. Shields, “Lateral n–p junction for acoustoelectric nanocircuits,” Applied Physics Letters, vol. 85, no. 3, pp. 491-493, 2004. [36] K. Hashimoto, '6.1 Substrate Material and Device Characteristics,' Surface Acoustic Wave Devices in Telecommunications, pp. 163-167: Springer-Verlag, 2000. [37] L. Zhang, S. Wang, L. Xie, T. Ma, J. Du, J. Wang, and Y. Yong, 'Frequency-temperature relations of novel cuts of quartz crystals for thickness-shear resonators.' pp. 1-4. [38] P. Lee, and J. Wang, “Frequency–temperature relations of thickness‐shear and flexural vibrations of contoured quartz resonators,” Journal of applied physics, vol. 80, no. 6, pp. 3457-3465, 1996. [39] P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Physical Review X, vol. 2, no. 1, pp. 011008, 2012. [40] R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Optics express, vol. 19, no. 9, pp. 8285-8290, 2011. [41] A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Advances in optics and photonics, vol. 2, no. 1, pp. 1-59, 2010. [42] J. Zehnpfennig, G. Bahl, M. Tomes, and T. Carmon, “Surface optomechanics: calculating optically excited acoustical whispering gallery modes in microspheres,” Optics Express, vol. 19, no. 15, pp. 14240-14248, 2011. [43] H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nature communications, vol. 4, no. 1, pp. 1-10, 2013. [44] C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, and G.-C. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nature communications, vol. 6, no. 1, pp. 1-6, 2015. [45] J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nature Physics, vol. 11, no. 3, pp. 275-280, 2015. [46] F. Ruesink, M.-A. Miri, A. Alu, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nature communications, vol. 7, no. 1, pp. 1-8, 2016. [47] S. A. Tadesse, and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nature communications, vol. 5, no. 1, pp. 1-7, 2014. [48] D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica, vol. 2, no. 2, pp. 76-83, 2015. [49] W. Zhang, and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photonics Technology Letters, vol. 23, no. 23, pp. 1775-1777, 2011. [50] D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nature Photonics, vol. 5, no. 10, pp. 605-609, 2011. [51] M. Metcalfe, S. M. Carr, A. Muller, G. S. Solomon, and J. Lawall, “Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves,” Physical review letters, vol. 105, no. 3, pp. 037401, 2010. [52] G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nature communications, vol. 2, no. 1, pp. 1-6, 2011. [53] S. Tallur, and S. A. Bhave, “Electromechanically Induced GHz Rate Optical Frequency Modulation in Silicon,” IEEE Photonics Journal, vol. 4, no. 5, pp. 1474-1483, 2012. [54] G. O'Clock Jr, and M. Duffy, “Acoustic surface wave properties of epitaxially grown aluminum nitride and gallium nitride on sapphire,” Applied physics letters, vol. 23, no. 2, pp. 55-56, 1973. [55] Y. Li, M. Shao, B. Jiang, and L. Cao, “Surface acoustic wave pressure sensor and its matched antenna design,” Measurement and Control, vol. 52, no. 7-8, pp. 947-954, 2019. [56] M.-Y. Tsai, L.-C. Lai, and J.-J. Huang, “Observation of Acoustic Charge Transport in GaN-Based Quantum Well Structures Under Surface Acoustic Wave Excitations,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, no. 5, pp. 1949-1954, 2020. [57] A. Maskay, D. M. Hummels, and M. P. D. Cunha, “In-Phase and Quadrature Analysis for Amplitude and Frequency Modulations Due to Vibrations on a Surface-Acoustic-Wave Resonator,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 66, no. 1, pp. 91-100, 2019. [58] M. Engelson, “Modern spectrum analyzer theory and applications,” 1984. [59] M. Weiß, D. Wigger, M. Nägele, K. Müller, J. J. Finley, T. Kuhn, P. Machnikowski, and H. J. Krenner, “Optomechanical wave mixing by a single quantum dot,” Optica, vol. 8, no. 3, pp. 291-300, 2021/03/20, 2021. [60] J. Wagner, A. Ramakrishnan, H. Obloh, and M. Maier, “Effect of strain and associated piezoelectric fields in InGaN/GaN quantum wells probed by resonant Raman scattering,” Applied physics letters, vol. 74, no. 25, pp. 3863-3865, 1999. [61] C. Xu, X. Liu, L. F. Mollenauer, and X. Wei, “Comparison of return-to-zero differential phase-shift keying and on-off keying in long-haul dispersion managed transmission,” IEEE photonics technology letters, vol. 15, no. 4, pp. 617-619, 2003. [62] A. Van Der Ziel, and E. R. Chenette, 'Noise in Solid State Devices,' Advances in Electronics and Electron Physics, L. Marton, ed., pp. 313-383: Academic Press, 1978. [63] N. Ren, Z. Fu, S. Lei, H. Liu, and S. Tian, “Methodology for Digital Synthesis of Deterministic and Random Jitter Generation on Rising or Falling Edges of Data Pattern,” Electronics, vol. 8, no. 12, pp. 1510, 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81044-
dc.description.abstract至今,可見光通訊(VLC)系統已廣泛應用於我們的日常生活中。由於能夠與一般照明結合,VLC 系統作為替代的通訊方式有著強大的潛力。近年來,隨著無線通訊的需求不斷增加,提升元件速率變得越來越重要。藍光發光二極體(LED)已逐漸取代傳統燈泡成為主要的發光源。然而,其調變頻寬仍然受到自發性載子壽命週期的限制。因此,提高LED的操作速率是本論文的主要目標。 近年來,III-V族半導體材料非常流行,尤其是具有壓電特性的相關半導體,引來更多學者關注。本文中利用不同頻率的表面聲波可以觀察到發光二極體不同強度的光輸出,這取決於thickness-shear 振動模態。而隨著外加於二極體的電壓提升,額外的溫度上升造成的熱擾動也影響表面聲波的傳輸特性,進而影響發光二極體的光學響應。了解聲波的作用機制後,不僅可以於常溫下達到超過1 GHz的光學振盪,更可以透過施加不同的外加偏壓於LED上實現可調式光學頻率響應裝置。 除此之外,光頻調變在過去幾年中已經有很廣泛的研究。在本論文中,我們提供一種新的方法是通過千兆赫頻率下的表面聲波經頻率上轉換導致的光頻調變現象。透過此方式,可以從帶通濾波器中消除低頻雜訊後,再經下轉換得到降噪後的訊號,這是傳統方法無法實現的。因此,對於長距離的傳輸下可以實現更高的訊雜比。我們的方法提供了一個新的可見光通訊指向其具有更好的長距離傳輸品質。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:27:46Z (GMT). No. of bitstreams: 1
U0001-2408202111595000.pdf: 3635910 bytes, checksum: 40fee632c64770e8db117d97cdcd1037 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 i 致謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Overview of Optical Communication and Surface Acoustic Wave Devices 1 1.2 Research Motivation 3 1.3 Thesis Outline 5 Chapter2 Mechanism of GaN LEDs Integrated with a Surface Acoustic Wave IDT at Room Temperature 6 2.1 Review of Surface Acoustic Wave Applications 6 2.2 Process Flow of LEDs and IDTs 7 2.3 Electro-Optical Behavior of LEDs 11 2.4 Mechanism of Surface Acoustic Wave Modulated GaN LEDs 19 2.4.1 Correlation of Surface Acoustic Wave and the LED Light Output Power 19 2.4.2 Bias Voltage Dependent Frequency Response 21 2.5 Summary 23 Chapter 3 GHz Optical Up-conversion from the Lateral LED Modulated with Surface Acoustic Waves 24 3.1 Review of Surface Acoustic Wave Applications with Frequency Mixing 24 3.2 Process Flow of Lateral LEDs and IDTs 25 3.3 Characteristics of the DC Property of LED and IDT 27 3.4 Acoustic-optical Behavior in a Lateral LED for Frequency Domain 31 3.4.1 Surface Acoustic Wave Induced Optical Oscillation 31 3.4.2 Relationship between Surface Acoustic Wave and the Data Signal 34 3.5 Signal with and without Frequency Up Conversion 36 3.6 On-off keying (OOK) Modulation Technique 38 3.7 Acoustic-optical Signal Integrity with Digital Modulation 39 3.8 Summary 42 Chapter 4 Conclusions 43 REFERENCE 45
dc.language.isoen
dc.subject光學振盪zh_TW
dc.subject頻率響應zh_TW
dc.subject上轉換zh_TW
dc.subject發光二極體zh_TW
dc.subject可見光通訊zh_TW
dc.subject表面聲波zh_TW
dc.subjectup-conversionen
dc.subjectoptical oscillationen
dc.subjectsurface acoustic waveen
dc.subjectvisible light communicationen
dc.subjectlight-emitting diodeen
dc.subjectfrequency responseen
dc.title基於聲光效應下的光頻調變分析zh_TW
dc.titleOptical Frequency Modulation Based on Acoustic-Optical Effecten
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林恭如(Hsin-Tsai Liu),楊志忠(Chih-Yang Tseng),吳肇欣
dc.subject.keyword發光二極體,可見光通訊,表面聲波,光學振盪,上轉換,頻率響應,zh_TW
dc.subject.keywordlight-emitting diode,visible light communication,surface acoustic wave,optical oscillation,up-conversion,frequency response,en
dc.relation.page49
dc.identifier.doi10.6342/NTU202102665
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2408202111595000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved