Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81030
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李立仁(Li-Jen Lee)
dc.contributor.authorMing-Yen Hsiehen
dc.contributor.author謝明諺zh_TW
dc.date.accessioned2022-11-24T03:26:59Z-
dc.date.available2021-09-16
dc.date.available2022-11-24T03:26:59Z-
dc.date.copyright2021-09-16
dc.date.issued2021
dc.date.submitted2021-08-25
dc.identifier.citationBakker CE, Verheij C, Willemsen R, Helm RD, Oerlemans F, Vermey M, Bygrave A, Hoogeveen AT, Oostra BA, Reyniers E, Boule KD, Hooge RD, Cras P, Velzen DV, Nagels G, Martin JJ, Deyn PPD, Darby JK, Willems PJ. Fmr1 knockout mice: A model to study fragile X mental retardation. Cell. 1994. 78:23-33. doi: https://doi.org/10.1016/0092-8674(94)90569-X. Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH. BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci. 2008. 105:2711-6. doi: 10.1073/pnas.0711863105. Bellone C, Lüscher C, Mameli M. Mechanisms of synaptic depression triggered by metabotropic glutamate receptors. Cell Mol Life Sci. 2008. 65:2913-23. doi: 10.1007/s00018-008-8263-3. Bhatt DH, Zhang S, Gan WB. Dendritic spine dynamics. Annu Rev Physiol. 2009. 71:261-82. doi: 10.1146/annurev.physiol.010908.163140. Brazil DP, Park J, Hemmings BA. PKB binding proteins. Getting in on the Akt. Cell. 2002. 111:293-303. doi: 10.1016/s0092-8674(02)01083-8. Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol. 2003. 467:1-10. doi: 10.1002/cne.10874. Catusi I, Garzo M, Capra AP, Briuglia S, Baldo C, Canevini MP, Cantone R, Elia F, Forzano F, Galesi O, Grosso E, Malacarne M, Peron A, Romano C, Saccani M, Larizza L, Recalcati MP. 8p23.2-pter microdeletions: seven new cases narrowing the candidate region and review of the literature. Genes (Basel). 2021. 12:652. doi: 10.3390/genes12050652. Chien WH, Gau SS, Wu YY, Huang YS, Fang JS, Chen YJ, Soong WT, Chiu YN, Chen CH. Identification and molecular characterization of two novel chromosomal deletions associated with autism. Clin Genet. 2010. 78:449-56. doi: 10.1111/j.1399-0004.2010.01395.x. Coba MP, Ramaker MJ, Ho EV, Thompson SL, Komiyama NH, Grant SGN, Knowles JA, Dulawa SC. Dlgap1 knockout mice exhibit alterations of the postsynaptic density and selective reductions in sociability. Sci Rep. 2018. 8:2281. doi: 10.1038/s41598-018-20610-y. Costales JL, Kolevzon A. Phelan-McDermid Syndrome and SHANK3: Implications for treatment. Neurotherapeutics. 2015. 12:620-30. doi: 10.1007/s13311-015-0352-z. Ferraguti F, Shigemoto R. Metabotropic glutamate receptors. Cell Tissue Res. 2006. 326:483-504. doi: 10.1007/s00441-006-0266-5. Gil-Sanz C, Delgado-García JM, Fairén A, Gruart A. Involvement of the mGluR1 receptor in hippocampal synaptic plasticity and associative learning in behaving mice. Cereb Cortex. 2008. 18:1653-63. doi: 10.1093/cercor/bhm193. Gonçalves JT, Schafer ST, Gage FH. Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior. Cell. 2016. 167:897-914. doi: 10.1016/j.cell.2016.10.021. Greger IH, Esteban JA. AMPA receptor biogenesis and trafficking. Curr Opin Neurobiol. 2007. 17:289-97. doi: 10.1016/j.conb.2007.04.007. Grossman AW, Elisseou NM, McKinney BC, Greenough WT. Hippocampal pyramidal cells in adult Fmr1 knockout mice exhibit an immature-appearing profile of dendritic spines. Brain Res. 2006. 1084:158-64. doi: 10.1016/j.brainres.2006.02.044. Hori K, Yamashiro K, Nagai T, Shan W, Egusa SF, Shimaoka K, Kuniishi H, Sekiguchi M, Go Y, Tatsumoto S, Yamada M, Shiraishi R, Kanno K, Miyashita S, Sakamoto A, Abe M, Sakimura K, Sone M, Sohya K, Kunugi H, Wada K, Yamada M, Yamada K, Hoshino M. AUTS2 regulation of synapses for proper synaptic inputs and social communication. iScience. 2020. 23:101183. doi: 10.1016/j.isci.2020.101183. Jacot-Descombes S, Keshav NU, Dickstein DL, Wicinski B, Janssen WGM, Hiester LL, Sarfo EK, Warda T, Fam MM, Harony-Nicolas H, Buxbaum JD, Hof PR, Varghese M. Altered synaptic ultrastructure in the prefrontal cortex of Shank3-deficient rats. Mol Autism. 2020. 11:89. doi: 10.1186/s13229-020-00393-8. Jiang-Xie LF, Liao HM, Chen CH, Chen YT, Ho SY, Lu DH, Lee LJ, Liou HH, Fu WM, Gau SS. Autism-associated gene Dlgap2 mutant mice demonstrate exacerbated aggressive behaviors and orbitofrontal cortex deficits. Mol Autism. 2014. 5:32. doi: 10.1186/2040-2392-5-32. Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol. 2000. 10:381-91. doi: 10.1016/s0959-4388(00)00092-1. Kasem E, Kurihara T, Tabuchi K. Neurexins and neuropsychiatric disorders. Neurosci Res. 2018. doi: 10.1016/j.neures.2017.10.012. Kelleher RJ 3rd, Geigenmüller U, Hovhannisyan H, Trautman E, Pinard R, Rathmell B, Carpenter R, Margulies D. High-throughput sequencing of mGluR signaling pathway genes reveals enrichment of rare variants in autism. PLoS One. 7:e35003. doi: 10.1371/journal.pone.0035003. Kraeuter AK, Guest PC, Sarnyai Z. The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. Methods Mol Biol. 2019. 1916:105-111. doi: 10.1007/978-1-4939-8994-2_10. Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, Freret T. Object recognition test in mice. Nat Protoc. 2013. 8:2531-7. doi: 10.1038/nprot.2013.155. Liu D, Bei D, Parmar H, Matus A. Activity-regulated, cytoskeleton-associated protein (Arc) is essential for visceral endoderm organization during early embryogenesis. Mech Dev. 2000. 92:207-15. doi: 10.1016/s0925-4773(99)00340-8. Loftis JM, Janowsky A. The N-methyl-D-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol Ther. 2003. 97:55-85. doi: 10.1016/s0163-7258(02)00302-9. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. Lancet. 2018. 392:508-520. doi: 10.1016/S0140-6736(18)31129-2. Lüscher C, Huber KM. Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron. 2010. 65:445-59. doi: 10.1016/j.neuron.2010.01.016. Lüscher C, Huber KM. Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron. 2010. 65:445-59. doi: 10.1016/j.neuron.2010.01.016. Maenner MJ, Shaw KA, Baio J; EdS1, Washington A, Patrick M, DiRienzo M, Christensen DL, Wiggins LD, Pettygrove S, Andrews JG, Lopez M, Hudson A, Baroud T, Schwenk Y, White T, Rosenberg CR, Lee LC, Harrington RA, Huston M, Hewitt A; PhD-7, Esler A, Hall-Lande J, Poynter JN, Hallas-Muchow L, Constantino JN, Fitzgerald RT, Zahorodny W, Shenouda J, Daniels JL, Warren Z, Vehorn A, Salinas A, Durkin MS, Dietz PM. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveill Summ. 2020. 69:1-12. doi: 10.15585/mmwr.ss6904a1. Moss J, Howlin P. Autism spectrum disorders in genetic syndromes: implications for diagnosis, intervention and understanding the wider autism spectrum disorder population. J Intellect Disabil Res. 2009. 53:852-73. doi: 10.1111/j.1365-2788.2009.01197.x. Nakanishi M, Nomura J, Ji X, Tamada K, Arai T, Takahashi E, Bućan M, Takumi T. Functional significance of rare neuroligin 1 variants found in autism. PLoS Genet. 2017. 13:e1006940. doi: 10.1371/journal.pgen.1006940. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010. 50:295-322. doi: 10.1146/annurev.pharmtox.011008.145533. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013. 155:1596-609. doi: 10.1016/j.cell.2013.11.030. Plümpe T, Ehninger D, Steiner B, Klempin F, Jessberger S, Brandt M, Römer B, Rodriguez GR, Kronenberg G, Kempermann G. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation. BMC Neurosci. 2006. 7:77. doi: 10.1186/1471-2202-7-77. Pons-Espinal M, de Lagran MM, Dierssen M. Functional implications of hippocampal adult neurogenesis in intellectual disabilities. Amino Acids. 2013. 45:113-31. doi: 10.1007/s00726-013-1489-x. Rasmussen AH, Rasmussen HB, Silahtaroglu A. The DLGAP family: neuronal expression, function and role in brain disorders. Mol Brain. 2017. 10:43. doi: 10.1186/s13041-017-0324-9. Reim K, Regus-Leidig H, Ammermüller J, El-Kordi A, Radyushkin K, Ehrenreich H, Brandstätter JH, Brose N. Aberrant function and structure of retinal ribbon synapses in the absence of complexin 3 and complexin 4. J Cell Sci. 2009. 122:1352-61. doi: 10.1242/jcs.045401. Risher WC, Ustunkaya T, Singh Alvarado J, Eroglu C. Rapid Golgi analysis method for efficient and unbiased classification of dendritic spines. PLoS One. 2014. 9:e107591. doi: 10.1371/journal.pone.0107591. Robertson HR, Feng G. Annual Research Review: Transgenic mouse models of childhood-onset psychiatric disorders. J Child Psychol Psychiatry. 2011. 52:442-75. doi: 10.1111/j.1469-7610.2011.02380.x. Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 2012. 66:105-43. doi: 10.1016/j.phrs.2012.04.005. Sahay A, Scobie KN, Hill AS, O'Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011. 472:466-70. doi: 10.1038/nature09817. Salussolia CL, Prodromou ML, Borker P, Wollmuth LP. Arrangement of subunits in functional NMDA receptors. J Neurosci. 2011. 31:11295-304. doi: 10.1523/JNEUROSCI.5612-10.2011. Sanchack KE, Thomas CA. Autism spectrum disorder: primary care principles. Am Fam Physician. 2016. 94:972-979. Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol. 2005. 192:348-56. doi: 10.1016/j.expneurol.2004.11.016. Schob C, Morellini F, Ohana O, Bakota L, Hrynchak MV, Brandt R, Brockmann MD, Cichon N, Hartung H, Hanganu-Opatz IL, Kraus V, Scharf S, Herrmans-Borgmeyer I, Schweizer M, Kuhl D, Wöhr M, Vörckel KJ, Calzada-Wack J, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Garner CC, Kreienkamp HJ, Kindler S. Cognitive impairment and autistic-like behaviour in SAPAP4-deficient mice. Transl Psychiatry. 2019. 9:7. doi: 10.1038/s41398-018-0327-z. Scotto-Lomassese S, Nissant A, Mota T, Néant-Féry M, Oostra BA, Greer CA, Lledo PM, Trembleau A, Caillé I. Fragile X mental retardation protein regulates new neuron differentiation in the adult olfactory bulb. J Neurosci. 2011. 31:2205-15. doi: 10.1523/JNEUROSCI.5514-10.2011. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature. 1994. 368:144-7. doi: 10.1038/368144a0. Shi S, Lin S, Chen B, Zhou Y. Isolated chromosome 8p23.2‑pter deletion: Novel evidence for developmental delay, intellectual disability, microcephaly and neurobehavioral disorders. Mol Med Rep. 2017. 16:6837-6845. doi: 10.3892/mmr.2017.7438. Song I, Huganir RL. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 2002. 25:578-88. doi: 10.1016/s0166-2236(02)02270-1. Song TJ, Lan XY, Wei MP, Zhai FJ, Boeckers TM, Wang JN, Yuan S, Jin MY, Xie YF, Dang WW, Zhang C, Schön M, Song PW, Qiu MH, Song YY, Han SP, Han JS, Zhang R. Altered behaviors and impaired synaptic function in a novel rat model with a complete Shank3 deletion. Front Cell Neurosci. 2019. 13:111. doi: 10.3389/fncel.2019.00111. Takeuchi M, Hata Y, Hirao K, Toyoda A, Irie M, Takai Y. SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. J Biol Chem. 1997. 272:11943-51. doi: 10.1074/jbc.272.18.11943. Thiagarajan TC, Piedras-Renteria ES, Tsien RW. alpha- and betaCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron. 2002. 36:1103-14. doi: 10.1016/s0896-6273(02)01049-8. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010. 62:405-96. doi: 10.1124/pr.109.002451. Tuan LH, Lee LJ. Microglia-mediated synaptic pruning is impaired in sleep-deprived adolescent mice. Neurobiol Dis. 130:104517. doi: 10.1016/j.nbd.2019.104517. Verma A, Chauhan SS, Pankaj V, Srivastva N, Srivastava P. Network biology approaches to identify the drug lead molecule for neurodevelopmental disorders in human. Open Bioinform. J. 2020. 13:15-24. doi: 10.2174/1875036202013010015. Verma M, Choi J, Cottrell KA, Lavagnino Z, Thomas EN, Pavlovic-Djuranovic S, Szczesny P, Piston DW, Zaher HS, Puglisi JD, Djuranovic S. A short translational ramp determines the efficiency of protein synthesis. Nat Commun. 2019. 10:5774. doi: 10.1038/s41467-019-13810-1. Wall MJ, Collins DR, Chery SL, Allen ZD, Pastuzyn ED, George AJ, Nikolova VD, Moy SS, Philpot BD, Shepherd JD, Müller J, Ehlers MD, Mabb AM, Corrêa SAL. The temporal dynamics of Arc expression regulate cognitive flexibility. Neuron. 2018. 98:1124-1132.e7. doi: 10.1016/j.neuron.2018.05.012. Waltereit R, Dammermann B, Wulff P, Scafidi J, Staubli U, Kauselmann G, Bundman M, Kuhl D. Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J Neurosci. 2001. 21:5484-93. doi: 10.1523/JNEUROSCI.21-15-05484.2001. Welch JM, Lu J, Rodriguiz RM, Trotta NC, Peca J, Ding JD, Feliciano C, Chen M, Adams JP, Luo J, Dudek SM, Weinberg RJ, Calakos N, Wetsel WC, Feng G. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature. 2007. 448:894-900. doi: 10.1038/nature06104. Welch JM, Wang D, Feng G. Differential mRNA expression and protein localization of the SAP90/PSD-95-associated proteins (SAPAPs) in the nervous system of the mouse. J Comp Neurol. 2004. 472:24-39. doi: 10.1002/cne.20060. Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci. 2003. 91:267-70. doi: 10.1254/jphs.91.267. Yamauchi T. Neuronal Ca2+/calmodulin-dependent protein kinase II--discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull. 2005. 28:1342-54. doi: 10.1248/bpb.28.1342. Zanazzi G, Matthews G. Enrichment and differential targeting of complexins 3 and 4 in ribbon-containing sensory neurons during zebrafish development. Neural Dev. 2010. 5:24. doi: 10.1186/1749-8104-5-24. Zeng M, Shang Y, Guo T, He Q, Yung WH, Liu K, Zhang M. A binding site outside the canonical PDZ domain determines the specific interaction between Shank and SAPAP and their function. Proc Natl Acad Sci. 2016. 113:E3081-90. doi: 10.1073/pnas.1523265113.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81030-
dc.description.abstract泛自閉症障礙 (ASDs)的特徵是溝通與社會互動障礙,以及出現侷限性的重複行為。在近期的研究中發現,一位台灣自閉症男孩的染色體8p23末端區域發現了長度大約2.4 Mb的缺失。在鑑定該區域缺失的基因後,發現一種對應在腦中高表達的突觸後支架蛋白DLGAP2基因,可能與泛自閉症障礙的發病機制有關。為了闡明DLGAP2的功能,我們鑑定了Dlgap2異型合子(Dlgap2 Het)和同型合子(Dlgap2 Homo)的基因敲除小鼠的表現型。在開放場地試驗(open field test)中,Dlgap2異型合子與同型合子突變小鼠的活動能力均沒有明顯差異,惟Dlgap2同型合子小鼠表現出較焦慮的行為。在新物體辨別測試 (novel object recognition test)和Y型迷宮測試 (Y-maze test)中,Dlgap2突變小鼠表現了正常的短期辨別記憶和工作記憶。然而,在本實驗室張荷清小姐先前所做之水迷宮 (Morris water maze)實驗中發現,Dlgap2同型合子突變小鼠空間記憶的能力不良,表示缺乏DLGAP2會造成海馬迴的功能異常。因此,我們檢測了海馬迴中,包括突處後支架蛋白 (postsynaptic scaffolding proteins)、谷氨酸受體 (glutamate receptors)、信號分子 (signaling molecules)和突觸前蛋白 (presynaptic protein)在內的蛋白質表現。我們發現在Dlgap2 同型合子突變小鼠中,包括 SHANK3、PSD95、Homer1、GluR2、GluN2A、βCaMKII、Akt、Erk1/2、BDNF和Arc在內的許多突觸後蛋白表達量都降低了;然而,在Dlgap2同型合子突變小鼠中,mGluR5的表達量卻都增加了。接下來,我們檢測了齒狀迴(dentate gyrus)中顆粒細胞(granular cell)的形態特徵。我們發現在Dlgap2突變小鼠中,齒狀迴顆粒細胞的複雜性和分支模式,與野生型小鼠(Dlgap2 WT)之間,只有些微的變化。在樹突棘 (dendritic spine)的結構分析中,Dlgap2同型合子突變小鼠的樹突棘,在齒狀迴顆粒細胞的近端樹突處密度提高。同時,在Dlgap2同型合子突變小鼠中,成熟的蕈菇型樹突棘 (mushroom-type spine)百分比降低。隨後,我們檢測了海馬迴中的神經新生 (neurogenesis),並沒有發現齒狀迴顆粒層底部 (subgranular zone)表現Ki67的細胞密度,在Dlgap2突變小鼠中有任何變化。我們的結果,說明了DLGAP2在突觸後蛋白質的表達,和齒狀迴顆粒細胞的樹突棘成熟過程中,扮演重要的角色。此外,DLGAP2也影響了許多維持細胞功能相關的幾個下游信號分子。在本研究中,我們在Dlgap2同型合子突變小鼠發現,海馬迴突觸後蛋白的表達異常,以及齒狀迴中樹突棘結構的改變,證明DLGAP2在海馬迴的重要性,這些改變可能與智能障礙(intellectual disability)相關的空間記憶缺損有關。Dlgap2基因突變小鼠,表現出自閉症及智能障礙的共病性,可做為一個合適的泛自閉症障礙動物模型。在未來的研究中,這些小鼠將更利於我們對泛自閉症障礙的瞭解。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:26:59Z (GMT). No. of bitstreams: 1
U0001-2508202113575000.pdf: 3326231 bytes, checksum: db426a069a8395497eb3e812ba658283 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 i 中文摘要 ii Abstract iv Contents vi List of figures and table viii Chapter 1. Introduction 1 1.1 Autism Spectrum disorders 1 1.2 8p23 terminal region deletion 2 1.3 DLGAP2 3 1.4 Dlgap2 mutant mouse model 5 Chapter 2. Materials and methods 7 2.1 Animals 7 2.2 Behavioral tests 8 2.3 Histological examinations 10 2.4 Biochemical analyses 13 2.5 Statistical analysis 14 Chapter 3. Results 15 3.1 Verification in Dlgap2 mutant mice 15 3.2 Behavioral phenotypes in Dlgap2 mutant mice 15 3.3 Altered synaptic protein expression in Dlgap2 mutant mice 17 3.4 Altered dendritic branching pattern in the DG granular cells in Dlgap2 mutant mice 21 3.5 Increased spine density in the proximal dendrites of the DG granular cells in Dlgap2 Homo mice 22 3.6 Altered dendritic spine morphology in the DG granular cells in Dlgap2 Homo mice 23 3.7 Unchanged neurogenesis in the subgranular zone in Dlgap2 mutant mice 24 Chapter 4. Discussion 26 4.1 Aberrant expression of postsynaptic scaffolding proteins associated with abnormal behaviors in rodent models 26 4.2 DLGAP2 plays important roles in the expression of postsynaptic proteins and the spinogenesis in the DG granular cells 28 4.3 DLGAP2 affect several downstream signaling molecules linked to numerous cellular processe 33 4.4 DLGAP2 deficiency does not affect complexin3 expression 36 4.5 Conclusion 37 References 85
dc.language.isoen
dc.subject智能障礙zh_TW
dc.subject泛自閉症障礙zh_TW
dc.subject突觸蛋白zh_TW
dc.subjectDLGAP2zh_TW
dc.subject海馬迴zh_TW
dc.subject樹突棘zh_TW
dc.subjectDisks large-associated protein 2 (DLGAP2)en
dc.subjectAutism Spectrum Disorders (ASDs)en
dc.subjectIntellectual disabilityen
dc.subjecthippocampusen
dc.subjectDendritic spinesen
dc.subjectsynaptic proteinsen
dc.title自閉症相關基因Dlgap2突變小鼠在海馬迴突觸蛋白表達異常及結構改變並影響空間記憶能力zh_TW
dc.title"Dlgap2 mutant mice exhibit altered synaptic protein expression, aberrant spine morphology and impaired spatial memory"en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王培育(Hsin-Tsai Liu),高淑芬(Chih-Yang Tseng),鄭菡若,廖文霖
dc.subject.keyword泛自閉症障礙,智能障礙,DLGAP2,海馬迴,樹突棘,突觸蛋白,zh_TW
dc.subject.keywordAutism Spectrum Disorders (ASDs),Intellectual disability,Disks large-associated protein 2 (DLGAP2),hippocampus,Dendritic spines,synaptic proteins,en
dc.relation.page90
dc.identifier.doi10.6342/NTU202102715
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
U0001-2508202113575000.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved