Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81029
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姜至剛(Chih-Kang Chiang)
dc.contributor.authorHao-Chun Chuangen
dc.contributor.author莊皓淳zh_TW
dc.date.accessioned2022-11-24T03:26:56Z-
dc.date.available2021-08-31
dc.date.available2022-11-24T03:26:56Z-
dc.date.copyright2021-08-31
dc.date.issued2021
dc.date.submitted2021-08-20
dc.identifier.citation1. Chang, S.F. and P.L. Lin, Systematic Literature Review and Meta-Analysis of the Association of Sarcopenia With Mortality. Worldviews Evid Based Nurs, 2016. 13(2): p. 153-62. 2. Franceschi, C. and J. Campisi, Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci, 2014. 69 Suppl 1: p. S4-9. 3. Ferrucci, L. and E. Fabbri, Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol, 2018. 15(9): p. 505-522. 4. Furman, D., et al., Chronic inflammation in the etiology of disease across the life span. Nat Med, 2019. 25(12): p. 1822-1832. 5. Cobo, G., B. Lindholm, and P. Stenvinkel, Chronic inflammation in end-stage renal disease and dialysis. Nephrol Dial Transplant, 2018. 33(suppl_3): p. iii35-iii40. 6. Cruz-Jentoft, A.J., et al., Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing, 2019. 48(1): p. 16-31. 7. Chen, L.K., et al., Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc, 2020. 21(3): p. 300-307.e2. 8. Yang, L., et al., Comparison of revised EWGSOP criteria and four other diagnostic criteria of sarcopenia in Chinese community-dwelling elderly residents. Exp Gerontol, 2020. 130: p. 110798. 9. Studenski, S.A., et al., The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci, 2014. 69(5): p. 547-58. 10. Jheng, J.R., et al., The double-edged sword of endoplasmic reticulum stress in uremic sarcopenia through myogenesis perturbation. J Cachexia Sarcopenia Muscle, 2018. 9(3): p. 570-584. 11. Rygiel, K.A., M. Picard, and D.M. Turnbull, The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. J Physiol, 2016. 594(16): p. 4499-512. 12. Ali, A.M. and H. Kunugi, Apitherapy for Age-Related Skeletal Muscle Dysfunction (Sarcopenia): A Review on the Effects of Royal Jelly, Propolis, and Bee Pollen. Foods, 2020. 9(10). 13. Rom, O., et al., Sarcopenia and smoking: a possible cellular model of cigarette smoke effects on muscle protein breakdown. Ann N Y Acad Sci, 2012. 1259: p. 47-53. 14. Stenvinkel, P., et al., Muscle wasting in end-stage renal disease promulgates premature death: established, emerging and potential novel treatment strategies. Nephrol Dial Transplant, 2016. 31(7): p. 1070-7. 15. Brooks, S.V., Current topics for teaching skeletal muscle physiology. Adv Physiol Educ, 2003. 27(1-4): p. 171-82. 16. Rajabi, H.N., C. Takahashi, and M.E. Ewen, Retinoblastoma protein and MyoD function together to effect the repression of Fra-1 and in turn cyclin D1 during terminal cell cycle arrest associated with myogenesis. J Biol Chem, 2014. 289(34): p. 23417-27. 17. Codato, R., et al., The SMYD3 methyltransferase promotes myogenesis by activating the myogenin regulatory network. Sci Rep, 2019. 9(1): p. 17298. 18. Cervelli, M., et al., Skeletal Muscle Pathophysiology: The Emerging Role of Spermine Oxidase and Spermidine. Medical Sciences, 2018. 6. 19. Sandri, M., Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda), 2008. 23: p. 160-70. 20. Gomes, M.D., et al., Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A, 2001. 98(25): p. 14440-5. 21. Mizushima, N., Autophagy: process and function. Genes Dev, 2007. 21(22): p. 2861-73. 22. Liu, W., et al., The Ubiquitin Conjugating Enzyme: An Important Ubiquitin Transfer Platform in Ubiquitin-Proteasome System. Int J Mol Sci, 2020. 21(8). 23. Pohl, C. and I. Dikic, Cellular quality control by the ubiquitin-proteasome system and autophagy. Science, 2019. 366(6467): p. 818-822. 24. Sartori, R., V. Romanello, and M. Sandri, Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun, 2021. 12(1): p. 330. 25. Wilson, V.G., Introduction to Sumoylation. Adv Exp Med Biol, 2017. 963: p. 1-12. 26. Citro, S., et al., A role for paralog-specific sumoylation in histone deacetylase 1 stability. J Mol Cell Biol, 2013. 5(6): p. 416-27. 27. Bohren, K.M., et al., A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem, 2004. 279(26): p. 27233-8. 28. Guo, D., et al., A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet, 2004. 36(8): p. 837-41. 29. Sarge, K.D. and O.K. Park-Sarge, Sumoylation and human disease pathogenesis. Trends Biochem Sci, 2009. 34(4): p. 200-5. 30. Flotho, A. and F. Melchior, Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem, 2013. 82: p. 357-85. 31. Krol, J., I. Loedige, and W. Filipowicz, The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 2010. 11(9): p. 597-610. 32. Huntzinger, E. and E. Izaurralde, Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet, 2011. 12(2): p. 99-110. 33. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97. 34. Eulalio, A., E. Huntzinger, and E. Izaurralde, Getting to the root of miRNA-mediated gene silencing. Cell, 2008. 132(1): p. 9-14. 35. van Rooij, E., The art of microRNA research. Circ Res, 2011. 108(2): p. 219-34. 36. Horak, M., J. Novak, and J. Bienertova-Vasku, Muscle-specific microRNAs in skeletal muscle development. Dev Biol, 2016. 410(1): p. 1-13. 37. Chen, J.F., et al., The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006. 38(2): p. 228-33. 38. Eisenberg, I., et al., Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci U S A, 2007. 104(43): p. 17016-21. 39. Keshtkar, S., N. Azarpira, and M.H. Ghahremani, Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther, 2018. 9(1): p. 63. 40. Abels, E.R. and X.O. Breakefield, Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol, 2016. 36(3): p. 301-12. 41. Teng, F. and M. Fussenegger, Shedding Light on Extracellular Vesicle Biogenesis and Bioengineering. Adv Sci (Weinh), 2020. 8(1): p. 2003505. 42. Raposo, G., et al., B lymphocytes secrete antigen-presenting vesicles. J Exp Med, 1996. 183(3): p. 1161-72. 43. Yang, Y., et al., Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res, 2018. 28(8): p. 862-864. 44. Zhang, Y., et al., Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell, 2010. 39(1): p. 133-44. 45. Nakamura, Y., et al., Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett, 2015. 589(11): p. 1257-65. 46. Fulzele, S., et al., Muscle-derived miR-34a increases with age in circulating extracellular vesicles and induces senescence of bone marrow stem cells. Aging (Albany NY), 2019. 11(6): p. 1791-1803. 47. 鄭詠翰, TGFβ1 誘導之骨骼肌胞外體在肌肉分化中的角色, in 毒理學研究所. 2019, 國立臺灣大學. p. 1-80. 48. Blobe, G.C., W.P. Schiemann, and H.F. Lodish, Role of transforming growth factor beta in human disease. N Engl J Med, 2000. 342(18): p. 1350-8. 49. Prud'homme, G.J., Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest, 2007. 87(11): p. 1077-91. 50. Abdollah, S., et al., TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem, 1997. 272(44): p. 27678-85. 51. Wan, M., et al., Smad4 protein stability is regulated by ubiquitin ligase SCF beta-TrCP1. J Biol Chem, 2004. 279(15): p. 14484-7. 52. Kavsak, P., et al., Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell, 2000. 6(6): p. 1365-75. 53. Weiss, A. and L. Attisano, The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol, 2013. 2(1): p. 47-63. 54. Ikushima, H. and K. Miyazono, TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer, 2010. 10(6): p. 415-24. 55. Ciacci, C., S.E. Lind, and D.K. Podolsky, Transforming growth factor beta regulation of migration in wounded rat intestinal epithelial monolayers. Gastroenterology, 1993. 105(1): p. 93-101. 56. Wang, H., et al., Transforming growth factor beta regulates cell-cell adhesion through extracellular matrix remodeling and activation of focal adhesion kinase in human colon carcinoma Moser cells. Oncogene, 2004. 23(32): p. 5558-61. 57. Meng, X.M., et al., TGF-β/Smad signaling in renal fibrosis. Front Physiol, 2015. 6: p. 82. 58. Chen, H.Y., et al., MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol Ther, 2014. 22(4): p. 842-53. 59. Du, B., et al., High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett, 2010. 584(4): p. 811-6. 60. Delaney, K., et al., The role of TGF-β1 during skeletal muscle regeneration. Cell Biol Int, 2017. 41(7): p. 706-715. 61. Schabort, E.J., et al., TGF-beta's delay skeletal muscle progenitor cell differentiation in an isoform-independent manner. Exp Cell Res, 2009. 315(3): p. 373-84. 62. Burks, T.N. and R.D. Cohn, Role of TGF-β signaling in inherited and acquired myopathies. Skelet Muscle, 2011. 1(1): p. 19. 63. Zhang, L., F. Zhou, and P. ten Dijke, Signaling interplay between transforming growth factor-β receptor and PI3K/AKT pathways in cancer. Trends Biochem Sci, 2013. 38(12): p. 612-20. 64. Sandri, M., et al., Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell, 2004. 117(3): p. 399-412. 65. Stitt, T.N., et al., The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell, 2004. 14(3): p. 395-403. 66. Chen, J.L., et al., Specific targeting of TGF-β family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease. Proc Natl Acad Sci U S A, 2017. 114(26): p. E5266-e5275. 67. McPherron, A.C., A.M. Lawler, and S.J. Lee, Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997. 387(6628): p. 83-90. 68. Schuelke, M., et al., Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med, 2004. 350(26): p. 2682-8. 69. Abrigo, J., et al., Transforming growth factor type beta (TGF-β) requires reactive oxygen species to induce skeletal muscle atrophy. Cell Signal, 2016. 28(5): p. 366-376. 70. Paul, R., et al., miR-422a suppresses SMAD4 protein expression and promotes resistance to muscle loss. J Cachexia Sarcopenia Muscle, 2018. 9(1): p. 119-128. 71. van de Worp, W., et al., Regulation of muscle atrophy by microRNAs: 'AtromiRs' as potential target in cachexia. Curr Opin Clin Nutr Metab Care, 2018. 21(6): p. 423-429. 72. Carlson, M.E., M. Hsu, and I.M. Conboy, Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature, 2008. 454(7203): p. 528-32. 73. Sun, Q., et al., Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res, 2008. 36(8): p. 2690-9. 74. Jourde-Chiche, N. and S. Burtey, Accumulation of protein-bound uremic toxins: the kidney remains the leading culprit in the gut-liver-kidney axis. Kidney Int, 2020. 97(6): p. 1102-1104. 75. Zhang, L.S. and S.S. Davies, Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med, 2016. 8(1): p. 46. 76. Banoglu, E., G.G. Jha, and R.S. King, Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur J Drug Metab Pharmacokinet, 2001. 26(4): p. 235-40. 77. Banoglu, E. and R.S. King, Sulfation of indoxyl by human and rat aryl (phenol) sulfotransferases to form indoxyl sulfate. Eur J Drug Metab Pharmacokinet, 2002. 27(2): p. 135-40. 78. Liu, W.C., et al., Effect of uremic toxin-indoxyl sulfate on the skeletal system. Clin Chim Acta, 2018. 484: p. 197-206. 79. Gao, H. and S. Liu, Role of uremic toxin indoxyl sulfate in the progression of cardiovascular disease. Life Sci, 2017. 185: p. 23-29. 80. Rodrigues, G.G.C., et al., Indoxyl Sulfate Contributes to Uremic Sarcopenia by Inducing Apoptosis in Myoblasts. Arch Med Res, 2020. 51(1): p. 21-29. 81. Enoki, Y., et al., Potential therapeutic interventions for chronic kidney disease-associated sarcopenia via indoxyl sulfate-induced mitochondrial dysfunction. J Cachexia Sarcopenia Muscle, 2017. 8(5): p. 735-747. 82. He, X., et al., Indoxyl sulfate promotes osteogenic differentiation of vascular smooth muscle cells by miR-155-5p-dependent downregulation of matrix Gla protein via ROS/NF-κB signaling. Exp Cell Res, 2020. 397(1): p. 112301. 83. Zhang, H., et al., Indoxyl sulfate accelerates vascular smooth muscle cell calcification via microRNA-29b dependent regulation of Wnt/β-catenin signaling. Toxicol Lett, 2018. 284: p. 29-36. 84. Li, X., et al., Indoxyl sulfate promotes the atherosclerosis through up-regulating the miR-34a expression in endothelial cells and vascular smooth muscle cells in vitro. Vascul Pharmacol, 2020. 131: p. 106763. 85. Alique, M., et al., Microvesicles from indoxyl sulfate-treated endothelial cells induce vascular calcification in vitro. Comput Struct Biotechnol J, 2020. 18: p. 953-966. 86. Patel, H.J. and B.M. Patel, TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sci, 2017. 170: p. 56-63. 87. van Horssen, R., T.L. Ten Hagen, and A.M. Eggermont, TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist, 2006. 11(4): p. 397-408. 88. Zhou, J., et al., Cytokine Signaling in Skeletal Muscle Wasting. Trends Endocrinol Metab, 2016. 27(5): p. 335-347. 89. Thoma, A. and A.P. Lightfoot, NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. Adv Exp Med Biol, 2018. 1088: p. 267-279. 90. Reid, M.B. and Y.P. Li, Tumor necrosis factor-alpha and muscle wasting: a cellular perspective. Respir Res, 2001. 2(5): p. 269-72. 91. Bu, L., et al., Decreased secretion of tumor necrosis factor-α attenuates macrophages-induced insulin resistance in skeletal muscle. Life Sci, 2020. 244: p. 117304. 92. Adams, V., et al., Induction of MuRF1 is essential for TNF-alpha-induced loss of muscle function in mice. J Mol Biol, 2008. 384(1): p. 48-59. 93. Li, C.W., et al., Circulating factors associated with sarcopenia during ageing and after intensive lifestyle intervention. J Cachexia Sarcopenia Muscle, 2019. 10(3): p. 586-600. 94. Yen, Y.P., et al., Arsenic inhibits myogenic differentiation and muscle regeneration. Environ Health Perspect, 2010. 118(7): p. 949-56. 95. Mahdy, M.A.A., Glycerol-induced injury as a new model of muscle regeneration. Cell Tissue Res, 2018. 374(2): p. 233-241. 96. Heras, G., et al., Muscle RING-finger protein-1 (MuRF1) functions and cellular localization are regulated by SUMO1 post-translational modification. J Mol Cell Biol, 2019. 11(5): p. 356-370. 97. Sakai, H., et al., Dexamethasone exacerbates cisplatin-induced muscle atrophy. Clin Exp Pharmacol Physiol, 2019. 46(1): p. 19-28. 98. Sato, E., et al., Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Sci Rep, 2016. 6: p. 36618. 99. Kim, H.Y., et al., Indoxyl sulfate (IS)-mediated immune dysfunction provokes endothelial damage in patients with end-stage renal disease (ESRD). Sci Rep, 2017. 7(1): p. 3057. 100. 吳宜庭, TGF-β1誘導的線粒體功能障礙與肌肉生成有關, in 毒理學研究所. 2020, 國立臺灣大學. p. 1-59. 101. Redondo, S., et al., Age-dependent defective TGF-beta1 signaling in patients undergoing coronary artery bypass grafting. J Cardiothorac Surg, 2014. 9: p. 24. 102. Tsapenko, M.V., et al., Measurement of urinary TGF-β1 in patients with diabetes mellitus and normal controls. Clin Biochem, 2013. 46(15): p. 1430-5. 103. Khuu, L.A., et al., Aqueous humour concentrations of TGF-β, PLGF and FGF-1 and total retinal blood flow in patients with early non-proliferative diabetic retinopathy. Acta Ophthalmol, 2017. 95(3): p. e206-e211. 104. Park, J.H., et al., Protective effect of melatonin on TNF-α-induced muscle atrophy in L6 myotubes. J Pineal Res, 2013. 54(4): p. 417-25. 105. Li, J., et al., miR-29b contributes to multiple types of muscle atrophy. Nat Commun, 2017. 8: p. 15201. 106. Bian, A.L., et al., A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α. Eur J Med Res, 2017. 22(1): p. 25. 107. Chen, F.X., et al., Inflammation-dependent downregulation of miR-532-3p mediates apoptotic signaling in human sarcopenia through targeting BAK1. Int J Biol Sci, 2020. 16(9): p. 1481-1494. 108. Lim, J., et al., Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science, 2018. 361(6403): p. 701-704. 109. Shin, J., et al., Essential role for non-canonical poly(A) polymerase GLD4 in cytoplasmic polyadenylation and carbohydrate metabolism. Nucleic Acids Res, 2017. 45(11): p. 6793-6804. 110. Wa, Q., et al., Ectopic Expression of miR-532-3p Suppresses Bone Metastasis of Prostate Cancer Cells via Inactivating NF-κB Signaling. Mol Ther Oncolytics, 2020. 17: p. 267-277. 111. Yamada, Y., et al., Role of pre-miR-532 (miR-532-5p and miR-532-3p) in regulation of gene expression and molecular pathogenesis in renal cell carcinoma. Am J Clin Exp Urol, 2019. 7(1): p. 11-30. 112. Gérard, C. and A. Goldbeter, The balance between cell cycle arrest and cell proliferation: control by the extracellular matrix and by contact inhibition. Interface Focus, 2014. 4(3): p. 20130075. 113. Wotton, D., L.F. Pemberton, and J. Merrill-Schools, SUMO and Chromatin Remodeling. Adv Exp Med Biol, 2017. 963: p. 35-50. 114. Shiio, Y. and R.N. Eisenman, Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci U S A, 2003. 100(23): p. 13225-30. 115. de Ruijter, A.J., et al., Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J, 2003. 370(Pt 3): p. 737-49. 116. Joung, H., et al., Sumoylation of histone deacetylase 1 regulates MyoD signaling during myogenesis. Exp Mol Med, 2018. 50(1): p. e427. 117. Grégoire, S. and X.J. Yang, Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol Cell Biol, 2005. 25(6): p. 2273-87. 118. Dardenne, E., et al., RNA helicases DDX5 and DDX17 dynamically orchestrate transcription, miRNA, and splicing programs in cell differentiation. Cell Rep, 2014. 7(6): p. 1900-13. 119. Ebert, M.S., J.R. Neilson, and P.A. Sharp, MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods, 2007. 4(9): p. 721-6. 120. Xie, J., D.R. Burt, and G. Gao, Adeno-associated virus-mediated microRNA
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81029-
dc.description.abstract"全球正面臨人口老化的危機,伴隨而來的健康風險急劇攀升,而患有「肌少症」的年長者更被視為首當其衝的議題。肌少症為肌肉在質量、力量與功能方面的降低與不全,常源自於年齡增長、慢性疾病以及發炎反應等。先前已有研究指出促發炎細胞激素,如tumor necrosis factor alpha (TNF-α)、糖皮質激素,如dexamethasone (DEX)以及尿毒素,如indoxyl sulfate (IS)均會促使肌少症的發生。此外,肌少症患者常出現肌肉再生能力減損與肌肉纖維化的情形,其中,transforming growth factor beta (TGF-β) 是廣為人知的促纖維化因子,能抑制肌肉生成(myogenesis),而肌肉為全身最大器官之一,可受其他全身性因子影響。近來胞外小體(extracellular vesicles, EVs)研究顯示,由肌肉所分泌出之EVs能夠於自身或至其他器官產生自分泌或旁分泌之交互作用。為探討肌少症誘發之總體調控因子,本實驗室過去研究發現C2C12肌纖維母細胞暴露於TGF-β1下所分泌出的分化胞外體不利於肌肉之分化,更進一步在TGF-β1之分化胞外體中發現微小核醣核酸(microRNA, miRNA)有所變化,其中,對肌肉具有專一性且已知的myomiR,如miR-1、 miR-133、206之表現量降低;此外,尚有新發現之miR-532-3P 表現亦下降,然而仍未知曉其功能。因此,本篇研究欲探討miR-532-3P在骨骼肌生成的過程中所扮演的角色與調控機轉,並模擬於TGF-β1之分化胞外體中其缺乏的現象,進而釐清miR-532-3P 對骨骼肌之影響。首先,於老化導致活動力下降之小鼠與肥胖模式之糖尿病小鼠合併肌肉耗損之骨骼肌中,我們發現伴隨TGF-β1含量增加,miR-532-3P之表現量減少;再者,於細胞實驗中,由myosin heavy chain (MyH)蛋白表現而論,不管TGF-β1或IS 皆會抑制肌肉分化,而TNF-α 則會促進肌肉降解,令人感興趣的是內源性miR-532-3P之含量皆一致性的減少。為了確立miR-532-3P對肌纖維母細胞增生之作用,當抑制內源性miR-532-3P時並不會影響肌纖維母細胞的增生;其次,當肌纖維母細胞分化時,抑制miR-532-3P將導致分化不佳,並弱化分化指標,如MyoD (myoblast determination protein 1)、MyoG (myogenin)、MyH蛋白表現降低,使肌小管(myotube)生成減少;接著,經由miRNA序列作用標的預測,我們提出分化不良可能與small ubiquitin-related modifier 1 (SUMO1)和terminal nucleotidyltransferase 4B (TENT4B)表現增加具有關聯性,但詳細機轉尚待更深入的探討。另一方面,儘管抑制miR-532-3P不會促進已分化之肌小管萎縮,然而,大量表達miR-532-3P卻能挽救DEX誘發之肌肉萎縮。最後,於甘油誘導肌肉損傷與再生之動物模式中,發現內源性miR-532-3P含量隨之增加。綜合而論,miR-532-3P在骨骼肌中扮演著有益於肌生成之myomiR的角色。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:26:56Z (GMT). No. of bitstreams: 1
U0001-1808202117180400.pdf: 4878013 bytes, checksum: 3bde3582767a6b3989c1308526e370e4 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員會審定書 I 致謝 II 中文摘要 IV Abstract VI List of abbreviations VIII Contents XI Chapter 1 Introduction 1 1.1 Aging worldwide 1 1.2 Sarcopenia 2 1.3 Skeletal muscle myogenesis 5 1.4 Anabolic and catabolic signaling pathways in skeletal muscles 6 1.4.1 Small ubiquitin-related modifier 8 1.5 MicroRNAs 10 1.6 Extracellular vesicles 12 1.7 Transforming growth factor β 15 1.8 Indoxyl sulfate 18 1.9 Tumor necrosis factor alpha 19 Chapter 2 Aims 22 Chapter 3 Materials and Methods 23 3.1 Cell culture and treatments 23 3.2 Animal model 23 3.2.1 Glycerol-induced muscle injury and muscle regeneration 23 3.2.2 Senile mice 24 3.2.3 Diabetic nephropathy-related sarcopenia 24 3.3 Transfection 25 3.4 RNA extraction, reverse transcription, and quantitative real-time PCR 26 3.5 Protein extraction and immunoblotting 28 3.6 Assessment of cell proliferation 29 3.7 Cell cycle analysis and flow cytometry 30 3.8 Construct of SUMO1-3’-UTR 30 3.9 Dual luciferase reporter assay 31 3.10 Morphological analysis 32 3.10.1 Hematoxylin and eosin staining 32 3.10.2 Masson's trichrome staining 33 3.11 Statistical Analysis 34 Chapter 4 Results 35 4.1 MiR-532-3P is reduced in skeletal muscles of aged and db/db mice 35 4.2 MiR-532-3P is downregulated in impaired myogenic differentiation and enhanced muscle degradation in vitro models. 36 4.3 Knockdown of miR-532-3P cannot thoroughly suppress myoblast proliferation. 37 4.4 Inhibition of miR-532-3P jeopardizes myogenic differentiation. 38 4.5 SUMO1 is the potential target of TGF-β1-mediated miR-532-3P during myogenic differentiation. 39 4.6 TENT4B is the probable target of TGF-β1-mediated miR-532-3P during myogenic differentiation. 40 4.7 Repression of miR-532-3P cannot give rise to muscle atrophy of the well-differentiated myotubes. 41 4.8 Overexpression of miR-532-3P reverses dexamethasone-induced muscle atrophy. 41 4.9 MiR-532-3P is upregulated during muscle regeneration. 42 Chapter 5 Discussion 44 Chapter 6 Conclusion 51 Chapter 7 Future perspectives 52 7.1 MiR-532-3P inhibition or mimicry in vivo 52 7.2 Clinical specimen of miR-532-3P among sarcopenia individuals 52 Chapter 8 References 54 Chapter 9 Figures 66 Figure 1 66 Figure 2 67 Figure 3 68 Figure 4 71 Figure 5 75 Figure 6 78 Figure 7 82 Figure 8 85 Figure 9 87 Figure 10 90 Figure 11 92 Chapter 10 Supplementary Figures 93 Supplementary Figure 1 93 Supplementary Figure 2 96 Supplementary Figure 3 99"
dc.language.isoen
dc.subject再生zh_TW
dc.subject肌少症zh_TW
dc.subject微小核醣核酸zh_TW
dc.subject肌肉生成zh_TW
dc.subject萎縮zh_TW
dc.subjectmicroRNAen
dc.subjectregenerationen
dc.subjectatrophyen
dc.subjectmyogenesisen
dc.subjectsarcopeniaen
dc.titleMiR-532-3P在肌肉生成的過程中所扮演的角色zh_TW
dc.titleThe role of microRNA-532-3P in myogenesisen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉興華(Hsin-Tsai Liu),洪冠予(Chih-Yang Tseng)
dc.subject.keyword肌少症,微小核醣核酸,肌肉生成,萎縮,再生,zh_TW
dc.subject.keywordsarcopenia,microRNA,myogenesis,atrophy,regeneration,en
dc.relation.page100
dc.identifier.doi10.6342/NTU202102485
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
U0001-1808202117180400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved