Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81010
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正平(Jen-Ping Chen)
dc.contributor.authorChung-Kai Wuen
dc.contributor.author吳鍾愷zh_TW
dc.date.accessioned2022-11-24T03:26:01Z-
dc.date.available2021-09-17
dc.date.available2022-11-24T03:26:01Z-
dc.date.copyright2021-09-17
dc.date.issued2021
dc.date.submitted2021-08-31
dc.identifier.citationAckerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon (2004), The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432(7020), 1014-1017, doi:10.1038/nature03174. Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. V. Ramanathan, and E. J. Welton (2000), Reduction of tropical cloudiness by soot, Science, 288(5468), 1042-1047, doi:10.1126/science.288.5468.1042. Agee, E. M. (1987), Mesoscale cellular convection over the oceans, Dynam Atmos Oceans, 10(4), 317-341, doi:10.1016/0377-0265(87)90023-6. Agee, E. M., and R. P. Howley (1977), Latent and Sensible Heat Flux Calculations at the Air-Sea Interface During AMTEX 74, Journal of Applied Meteorology, 16(4), 443-447, doi:10.1175/1520-0450(1977)016<0443:LASHFC>2.0.CO;2. Agee, E. M., and F. E. Lomax (1978), Structure of the Mixed Layer and Inversion Layer Associated with Patterns of Mesoscale Cellular Convection During AMTEX 75, Journal of the Atmospheric Sciences, 35(12), 2281-2301, doi:10.1175/1520-0469(1978)035<2281:Sotmla>2.0.Co;2. Albrecht, B. A. (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science, 245(4923), 1227-1230, doi:10.1126/science.245.4923.1227. Alpers, W., and B. Brümmer (1994), Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite, Journal of Geophysical Research, 99(C6), 12613-12621, doi:10.1029/94jc00421. Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. Silva-Dias (2004), Smoking rain clouds over the Amazon, Science, 303(5662), 1337-1342, doi:10.1126/science.1092779. Atkinson, B. W., and J. Wu Zhang (1996), Mesoscale shallow convection in the atmosphere, Rev Geophys, 34(4), 403-431, doi:10.1029/96rg02623. Bai, H., C. Gong, M. Wang, Z. Zhang, and T. L'Ecuyer (2018), Estimating precipitation susceptibility in warm marine clouds using multi-sensor aerosol and cloud products from A-Train satellites, Atmospheric Chemistry and Physics, 18(3), 1763-1783, doi:10.5194/acp-18-1763-2018. Bretherton, C. S., and P. N. Blossey (2017), Understanding Mesoscale Aggregation of Shallow Cumulus Convection Using Large‐Eddy Simulation, Journal of Advances in Modeling Earth Systems, 9(8), 2798-2821, doi:10.1002/2017ms000981. Bretherton, C. S., and M. C. Wyant (1997), Moisture Transport, Lower-Tropospheric Stability, and Decoupling of Cloud-Topped Boundary Layers, Journal of the Atmospheric Sciences, 54(1), 148-167, doi:10.1175/1520-0469(1997)054<0148:Mtltsa>2.0.Co;2. Brown, R. A. (1980), Longitudinal instabilities and secondary flows in the planetary boundary layer: A review, Rev Geophys, 18(3), 683-697, doi:10.1029/RG018i003p00683. Carrico, C. M., P. Kus,M. J. Rood, P. K. Quinn, T. S. Bates (2003). Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE‐Asia: Radiative properties as a function of relative humidity. Journal of Geophysical Research: Atmospheres, 108(D23), doi:10.1029/2003JD003405. Cha, Y.-M., H.-W. Lee, and S.-H. Lee (2011), Impacts of the High-Resolution Sea Surface Temperature Distribution on Modeled Snowfall Formation over the Yellow Sea during a Cold-Air Outbreak, Weather and Forecasting, 26(4), 487-503, doi:10.1175/waf-d-10-05019.1. Chang, C.-W. (2017), The Susceptibility of East Asian Marine Warm Clouds to Aerosol Index During Winter and Sparing From Satellite Observation, National Taiwan University. Chen, G., W.-C. Wang, and J.-P. Chen (2015), Aerosol–Stratocumulus–Radiation Interactions over the Southeast Pacific, Journal of the Atmospheric Sciences, 72(7), 2612-2621, doi:10.1175/jas-d-14-0319.1. Chen, G., and W.-C. Wang (2016), Aerosol–Stratocumulus–Radiation Interactions over the Southeast Pacific: Implications to the Underlying Air–Sea Coupling, Journal of the Atmospheric Sciences, 73(7), 2759-2771, doi:10.1175/JAS-D-15-0277.1. Chen, G. T.-J., S.-Y. Chen, and M.-H. Yan (1980), A preliminary study of abnormal rainfall over northern Taiwan under the northeast monsoon influence in winter season., Atmos. Sci., Meteor. Soc. R.O.C., 7, 73-84. Chen, G. T.-J., S.-Y. Chen, and M.-H. Yan (1983), The Winter Diurnal Circulation and Its Influence on Precipitation over the Coastal Area of Northern Taiwan, Mon Weather Rev, 111(11), 2269-2274, doi:10.1175/1520-0493(1983)111<2269:Twdcai>2.0.Co;2. Chen, G. T.-J., and K.-Y. Liu (1981), On the winter abnormal heavy rainfall (AHR) over northern Taiwan, Papers in Meteorological Research, 4(1/2), 1-12. Chen, J.-P., and S.-T. Liu (2004), Physically based two-moment bulkwater parametrization for warm-cloud microphysics, Quarterly Journal of the Royal Meteorological Society, 130(596), 51-78, doi:10.1256/qj.03.41. Chen, J. P., T. S. Tsai, and S. C. Liu (2011), Aerosol nucleation spikes in the planetary boundary layer, Atmospheric Chemistry and Physics, 11(14), 7171-7184, doi:10.5194/acp-11-7171-2011. Chen, Y., H. Yuan, and S. Gao (2019), A High‐Resolution Simulation of Roll Convection Over the Yellow Sea During a Cold Air Outbreak, Journal of Geophysical Research: Atmospheres, 124(20), 10608-10625, doi:10.1029/2019jd030968. Chen, Y. C., M. W. Christensen, D. J. Diner, and M. J. Garay (2015b), Aerosol‐cloud interactions in ship tracks using Terra MODIS/MISR, Journal of Geophysical Research: Atmospheres, 120(7), 2819-2833, doi:doi.org/10.1002/2014JD022736. Chen, Y. C., M. W. Christensen, G. L. Stephens, and J. H. Seinfeld (2014), Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds, Nat Geosci, 7(9), 643-646, doi:10.1038/Ngeo2214. Chen, Y. C., M. W. Christensen, L. Xue, A. Sorooshian, G. L. Stephens, R. M. Rasmussen, and J. H. Seinfeld (2012), Occurrence of lower cloud albedo in ship tracks, Atmospheric Chemistry and Physics, 12(17), 8223-8235, doi:10.5194/acp-12-8223-2012. Cheng, C.-T., W.-C. Wang, and J.-P. Chen (2007), A modelling study of aerosol impacts on cloud microphysics and radiative properties, Quarterly Journal of the Royal Meteorological Society, 133(623), 283-297, doi:10.1002/qj.25. Cheng, C.-T., W.-C. Wang, and J.-P. Chen (2010), Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system, Atmospheric Research, 96(2-3), 461-476, doi:10.1016/j.atmosres.2010.02.005. Christensen, M. W., and G. L. Stephens (2011), Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening, Journal of Geophysical Research: Atmospheres, 116(D3), doi:doi.org/10.1029/2010JD014638. Comstock, K. K., C. S. Bretherton, and S. E. Yuter (2005), Mesoscale variability and drizzle in Southeast Pacific stratocumulus, Journal of the Atmospheric Sciences, 62(10), 3792-3807, doi:Doi 10.1175/Jas3567.1. Dagan, G., I. Koren, and O. Altaratz (2015), Aerosol effects on the timing of warm rain processes, Geophys Res Lett, 42(11), 4590-4598, doi:10.1002/2015gl063839. Dagan, G., I. Koren, O. Altaratz, and R. H. Heiblum (2016), Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields, Sci Rep, 6, 38769, doi:10.1038/srep38769. Dagan, G., I. Koren, O. Altaratz, and R. H. Heiblum (2017), Time-dependent, non-monotonic response of warm convective cloud fields to changes in aerosol loading, Atmospheric Chemistry and Physics, 17(12), 7435-7444, doi:10.5194/acp-17-7435-2017. Dagan, G., I. Koren, O. Altaratz, and Y. Lehahn (2018), Shallow Convective Cloud Field Lifetime as a Key Factor for Evaluating Aerosol Effects, iScience, 10, 192-202, doi:10.1016/j.isci.2018.11.032. De Roode, S. R., A. P. Siebesma, S. Dal Gesso, H. J. J. Jonker, J. Schalkwijk, and J. Sival (2014), A mixed-layer model study of the stratocumulus response to changes in large-scale conditions, Journal of Advances in Modeling Earth Systems, 6(4), 1256-1270, doi:10.1002/2014ms000347. Dearden, C., G. Vaughan, T. Tsai, and J. P. Chen (2016), Exploring the Diabatic Role of Ice Microphysical Processes in Two North Atlantic Summer Cyclones, Mon Weather Rev, 144(4), 1249-1272, doi:10.1175/Mwr-D-15-0253.1. Dey, S., L. Di Girolamo, G. Y. Zhao, A. L. Jones, and G. M. McFarquhar (2011), Satellite-observed relationships between aerosol and trade-wind cumulus cloud properties over the Indian Ocean, Geophys Res Lett, 38, doi:10.1029/2010gl045588. Douglas, A., and T. L'Ecuyer (2019), Quantifying variations in shortwave aerosol–cloud–radiation interactions using local meteorology and cloud state constraints, Atmospheric Chemistry and Physics, 19(9), 6251-6268, doi:10.5194/acp-19-6251-2019. Duong, H. T., A. Sorooshian, G. Feingold (2011), Investigating potential biases in observed and modeled metrics of aerosol-cloud-precipitation interactions. Atmospheric Chemistry and Physics, 11(9), 4027-4037, doi: 10.5194/acp-11-4027-2011. Etling, D., and R. A. Brown (1993), Roll vortices in the planetary boundary layer: A review, Bound-Lay Meteorol, 65(3), 215-248, doi:10.1007/bf00705527. Fan, J., Y. Wang, D. Rosenfeld, and X. Liu (2016), Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges, Journal of the Atmospheric Sciences, 73(11), 4221-4252, doi:10.1175/jas-d-16-0037.1. Feingold, G. (2003), Modeling of the first indirect effect: Analysis of measurement requirements, Geophys Res Lett, 30(19), doi:10.1029/2003gl017967. Feingold, G., H. L. Jiang, and J. Y. Harrington (2005), On smoke suppression of clouds in Amazonia, Geophys Res Lett, 32(2), doi:10.1029/2004gl021369. Feingold, G., A. McComiskey, D. Rosenfeld, and A. Sorooshian (2013), On the relationship between cloud contact time and precipitation susceptibility to aerosol, Journal of Geophysical Research: Atmospheres, 118(18), 10,544-510,554, doi:10.1002/jgrd.50819. Feingold, G., A. McComiskey, T. Yamaguchi, J. S. Johnson, K. S. Carslaw, and K. S. Schmidt (2016), New approaches to quantifying aerosol influence on the cloud radiative effect, Proc Natl Acad Sci U S A, 113(21), 5812-5819, doi:10.1073/pnas.1514035112. Feingold, G., and H. Siebert (2009), Cloud-aerosol interactions from the micro to the cloud scale, Clouds in the perturbed climate system: Their relationship to energy balance, atmospheric dynamics, and precipitation, 2, 319-338. Fielder, B. H. (1984), The Mesoscale Stability of Entrainment into Cloud-Topped Mixed Layers, Journal of the Atmospheric Sciences, 41(1), 92-101, doi:10.1175/1520-0469(1984)041<0092:Tmsoei>2.0.Co;2. Fletcher, J., S. Mason, and C. Jakob (2016), The Climatology, Meteorology, and Boundary Layer Structure of Marine Cold Air Outbreaks in Both Hemispheres, J Climate, 29(6), 1999-2014, doi:10.1175/Jcli-D-15-0268.1. Fu, T.-M. (2002), Microphysical stability analyses in the stratocumulus-topped marine boundary layer., National Taiwan University. Fulton, S. R., and W. H. Schubert (1985), Vertical Normal Mode Transforms: Theory and Application, Mon Weather Rev, 113(4), 647-658, doi:10.1175/1520-0493(1985)113<0647:Vnmtta>2.0.Co;2. Gardiner, B. G. (1987), Solar radiation transmitted to the ground through cloud in relation to surface albedo, Journal of Geophysical Research, 92(D4), 4010-4018, doi:10.1029/JD092iD04p04010. Geoffroy, O., J. L. Brenguier, and I. Sandu (2008), Relationship between drizzle rate, liquid water path and droplet concentration at the scale of a stratocumulus cloud system, Atmospheric Chemistry and Physics, 8(16), 4641-4654, doi:DOI 10.5194/acp-8-4641-2008. Goren, T., and D. Rosenfeld (2015), Extensive closed cell marine stratocumulus downwind of Europe-A large aerosol cloud mediated radiative effect or forcing?, Journal of Geophysical Research: Atmospheres, 120(12), 6098-6116, doi:10.1002/2015jd023176. Goren, T., D. Rosenfeld, O. Sourdeval, and J. Quaas (2018), Satellite Observations of Precipitating Marine Stratocumulus Show Greater Cloud Fraction for Decoupled Clouds in Comparison to Coupled Clouds, Geophys Res Lett, 45(10), 5126-5134, doi:10.1029/2018gl078122. Grossmann, A., and J. Morlet (1984), Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape, SIAM Journal on Mathematical Analysis, 15(4), 723-736, doi:10.1137/0515056. Gryspeerdt, E., T. Goren, O. Sourdeval, J. Quaas, J. Mülmenstädt, S. Dipu, C. Unglaub, A. Gettelman, and M. Christensen (2019), Constraining the aerosol influence on cloud liquid water path, Atmospheric Chemistry and Physics, 19(8), 5331-5347, doi:10.5194/acp-19-5331-2019. Hansen, J., M. Sato, and R. Ruedy (1997): Radiative forcing and climate response, J. Geophys. Res., 102, 6831–6864, doi:10.1029/96JD03436. Hazra, A., H. S. Chaudhari, M. Ranalkar, and J.-P. Chen (2017), Role of interactions between cloud microphysics, dynamics and aerosol in the heavy rainfall event of June 2013 over Uttarakhand, India, Quarterly Journal of the Royal Meteorological Society, 143(703), 986-998, doi:10.1002/qj.2983. Heiblum, R. H., et al. (2016), Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 1. Cloud tracking and phase space description, Journal of Geophysical Research: Atmospheres, 121(11), 6336-6355, doi:10.1002/2015jd024186. Hobbs, P. V. (1993), Aerosol-cloud-climate interactions, Academic Press. Holland, J. Z. (1972). Comparative evaluation of some BOMEX measurements of sea surface evaporation, energy flux and stress. Journal of Physical Oceanography, 2(4), 476-486, doi:10.1175/1520-0485(1972)002<0476:CEOSBM>2.0.CO;2. Hou, J.-P. (2006), Large-Eddy Simulation of Shallow convection over a heterogeneous surface, National Taiwan University, in Chinese. Hou, J.-P., C. H. Yu, C. S. Chang, L. Y. Chang, S. C. Tsai, Y. W. Lee, and T. S. Huang (2014), The Numerical Study of Cold Air Transfer Process on East Asia, Atmos. Sci., Meteor. Soc. R.O.C., 42(3), 273-300, in Chinese. Houze Jr., R. A. (2014), Cloud dynamics, 2nd ed., Academic Press. Huang, C. C., S. H. Chen, Y. C. Lin, K. Earl, T. Matsui, H. H. Lee, I. C. Tsai, J. P. Chen, and C. T. Cheng (2019), Impacts of Dust-Radiation versus Dust-Cloud Interactions on the Development of a Modeled Mesoscale Convective System over North Africa, Mon Weather Rev, 147(9), 3301-3326, doi:10.1175/Mwr-D-18-0459.1. Jiang, H., G. Feingold, and A. Sorooshian (2010), Effect of Aerosol on the Susceptibility and Efficiency of Precipitation in Warm Trade Cumulus Clouds, Journal of the Atmospheric Sciences, 67(11), 3525-3540, doi:10.1175/2010jas3484.1. Jiang, H. L., G. Feingold, and I. Koren (2009), Effect of aerosol on trade cumulus cloud morphology, J Geophys Res-Atmos, 114, doi:10.1029/2009jd011750. Jiang, H. L., H. W. Xue, A. Teller, G. Feingold, and Z. Levin (2006), Aerosol effects on the lifetime of shallow cumulus, Geophys Res Lett, 33(14), doi:10.1029/2006gl026024. Jung, E., B. A. Albrecht, A. Sorooshian, P. Zuidema, and H. H. Jonsson (2016), Precipitation susceptibility in marine stratocumulus and shallow cumulus from airborne measurements, Atmospheric Chemistry and Physics, 16(17), 11395-11413, doi:10.5194/acp-16-11395-2016. Kang, S. D., ; Ahn, J. B. (2008), Numerical study on the formation and maintenance mechanisms of cloud street in the East Sea during cold air outbreak., Asia-Pac J Atmos Sci, 44(2), 105-119. Kim, J. H., S. S. Yum, Y.-G. Lee, and B.-C. Choi (2009), Ship measurements of submicron aerosol size distributions over the Yellow Sea and the East China Sea, Atmospheric Research, 93(4), 700-714, doi:10.1016/j.atmosres.2009.02.011. Kim, Y., S. W. Kim, S. C. Yoon, M. H. Kim, and K. H. Park (2014), Aerosol properties and associated regional meteorology during winter pollution event at Gosan climate observatory, Korea, Atmos Environ, 85, 9-17, doi:10.1016/j.atmosenv.2013.11.041. Koch, D. and A. D. Del Genio (2010): Black carbon semi-direct effects on cloud cover: review and synthesis, Atmos. Chem. Phys., 10, 7685–7696, doi:10.5194/acp-10-7685-2010. Koren, I., G. Dagan, and O. Altaratz (2014), From aerosol-limited to invigoration of warm convective clouds, science, 344(6188), 1143-1146, doi:10.1126/science.1252595. Koren, I., and G. Feingold (2011), Aerosol-cloud-precipitation system as a predator-prey problem, Proc Natl Acad Sci U S A, 108(30), 12227-12232, doi:10.1073/pnas.1101777108. Koren, I., G. Feingold, H. Jiang, and O. Altaratz (2009), Aerosol effects on the inter-cloud region of a small cumulus cloud field, Geophys Res Lett, 36(14), doi:10.1029/2009gl037424. Kostinski, A. B. (2008), Drizzle rates versus cloud depths for marine stratocumuli, Environ Res Lett, 3(4), doi:10.1088/1748-9326/3/4/045019. L'Ecuyer, T. S., W. Berg, J. Haynes, M. Lebsock, and T. Takemura (2009), Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds, Journal of Geophysical Research, 114(D9), doi:10.1029/2008jd011273. Labat, D., R. Ababou, and A. Mangin (2000), Rainfall–runoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses, Journal of Hydrology, 238(3-4), 149-178, doi:10.1016/s0022-1694(00)00322-x. Lebo, Z. J., and G. Feingold (2014), On the relationship between responses in cloud water and precipitation to changes in aerosol, Atmospheric Chemistry and Physics, 14(21), 11817-11831, doi:10.5194/acp-14-11817-2014. Lee, S.-S., G. Feingold, and P. Y. Chuang (2012a), Effect of Aerosol on Cloud–Environment Interactions in Trade Cumulus, Journal of the Atmospheric Sciences, 69(12), 3607-3632, doi:10.1175/jas-d-12-026.1. Lee, S. S., G. Feingold, and P. Y. Chuang (2012b), Effect of Aerosol on Cloud-Environment Interactions in Trade Cumulus, Journal of the Atmospheric Sciences, 69(12), 3607-3632, doi:10.1175/Jas-D-12-026.1. Lenschow, D. H., and E. M. Agee (1976), Preliminary Results from the Air Mass Transformation Experiment (AMTEX), Bulletin of the American Meteorological Society, 57(11), 1346-1355, doi:10.1175/1520-0477-57.11.1346. Li, Z. X., Huiwen, J.-P. Chen, and W.-C. Wang (2016), Meteorological and Aerosol Effects on Marine Stratocumulus, Journal of the Atmospheric Sciences, 73(2), 807-820, doi:10.1175/jas-d-15-0101.1. Lilly, D. K. (1968), Models of cloud-topped mixed layers under a strong inversion, Quarterly Journal of the Royal Meteorological Society, 94(401), 292-309, doi:10.1002/qj.49709440106. Liu, Y., and P. H. Daum (2002), Anthropogenic aerosols. Indirect warming effect from dispersion forcing, Nature, 419(6907), 580-581, doi:10.1038/419580a. Lo, M.-H. (2001), Aerosol and Stratocumulus interaction, National Taiwan University. Lu, M. L., and J. H. Seinfeld (2005), Study of the aerosol indirect effect by large-eddy simulation of marine stratocumulus, Journal of the Atmospheric Sciences, 62(11), 3909-3932, doi:Doi 10.1175/Jas3584.1. Lu, M. L., and J. H. Seinfeld (2006), Effect of aerosol number concentration on cloud droplet dispersion: A large-eddy simulation study and implications for aerosol indirect forcing, J Geophys Res-Atmos, 111(D2), doi: 10.1029/2005jd006419. Ma, P. L., P. J. Rasch, H. Chepfer, D. M. Winker, and S. J. Ghan (2018), Observational constraint on cloud susceptibility weakened by aerosol retrieval limitations, Nat Commun, 9(1), 2640, doi:10.1038/s41467-018-05028-4. Mann, J. A. L., J. Christine Chiu, R. J. Hogan, E. J. O'Connor, T. S. L'Ecuyer, T. H. M. Stein, and A. Jefferson (2014), Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments, Journal of Geophysical Research: Atmospheres, 119(7), 4136-4148, doi:10.1002/2013jd021339. Martin, G. M., D. W. Johnson, and A. Spice (1994), The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds, Journal of the Atmospheric Sciences, 51(13), 1823-1842, doi:Doi 10.1175/1520-0469(1994)051<1823:Tmapoe>2.0.Co;2. Meador, W., and W. Weaver (1980), Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement, Journal of the atmospheric sciences, 37(3), 630-643, doi:10.1175/1520-0469(1980)037<0630:TSATRT>2.0.CO;2. Melfi, S. H., and S. P. Palm (2012), Estimating the Orientation and Spacing of Midlatitude Linear Convective Boundary Layer Features: Cloud Streets, Journal of the Atmospheric Sciences, 69(1), 352-364, doi:10.1175/Jas-D-11-070.1. Meyer, K., S. Platnick, L. Oreopoulos, and D. M. Lee (2013), Estimating the direct radiative effect of absorbing aerosols overlying marine boundary layer clouds in the southeast Atlantic using MODIS and CALIOP, J Geophys Res-Atmos, 118(10), 4801-4815, doi:10.1002/jgrd.50449. Michibata, T., K. Suzuki, Y. Sato, and T. Takemura (2016), The source of discrepancies in aerosol–cloud–precipitation interactions between GCM and A-Train retrievals, Atmospheric Chemistry and Physics, 16(23), 15413-15424, doi:10.5194/acp-16-15413-2016. Miura, Y. (1986), Aspect Ratios of Longitudinal Rolls and Convection Cells Observed during Cold Air Outbreaks, Journal of the Atmospheric Sciences, 43(1), 26-39, doi:Doi 10.1175/1520-0469(1986)043<0026:Arolra>2.0.Co;2. Moeng, C.-H., and P. P. Sullivan (1994), A Comparison of Shear- and Buoyancy-Driven Planetary Boundary Layer Flows, Journal of the Atmospheric Sciences, 51(7), 999-1022, doi:10.1175/1520-0469(1994)051<0999:Acosab>2.0.Co;2. Moeng, C. H., B. Stevens, and P. P. Sullivan (2005), Where is the Interface of the Stratocumulus-Topped PBL?, Journal of the Atmospheric Sciences, 62(7), 2626-2631, doi:10.1175/jas3470.1. Nitta, T., and S. Esbensen (1974). Heat and moisture budget analyses using BOMEX data. Monthly Weather Review, 102(1), 17-28, doi:10.1175/1520-0493(1974)102<0017:HAMBAU>2.0.CO;2. Pawlowska, H., and J. L. Brenguier (2003), An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations, J Geophys Res-Atmos, 108(D15), doi: 10.1029/2002jd002679. Payne, R. E. (1972), Albedo of the Sea Surface, Journal of the Atmospheric Sciences, 29(5), 959-970, doi:10.1175/1520-0469(1972)029<0959:Aotss>2.0.Co;2. Pedersen, J. G., S. P. Malinowski, and W. W. Grabowski (2016), Resolution and domain-size sensitivity in implicit large-eddy simulation of the stratocumulus-topped boundary layer, Journal of Advances in Modeling Earth Systems, 8(2), 885-903, doi:10.1002/2015ms000572. Petters, M. D., J. R. Snider, B. Stevens, G. Vali, I. Faloona, and L. M. Russell (2006), Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer, J Geophys Res-Atmos, 111(D2), doi:10.1029/2004jd005694. Pincus, R., and M. B. Baker (1994), Effect of Precipitation on the Albedo Susceptibility of Clouds in the Marine Boundary-Layer, Nature, 372(6503), 250-252, doi:DOI 10.1038/372250a0. Platnick, S., S. Ackerman, M. King, K. Meyer, W. Menzel, R. Holz, B. Baum, and P. Yang (2015), MODIS atmosphere L2 cloud product (06_L2), NASA MODIS Adaptive Processing System, Goddard Space Flight Center, 10, 1-53, doi:10.5067/MODIS/MYD06_L2.006. Platnick, S., and S. Twomey (1994), Remote sensing the susceptibility of cloud albedo to changes in drop concentration, Atmospheric Research, 34(1-4), 85-98, doi:10.1016/0169-8095(94)90082-5. Purdy, J. C., G. L. Austin, A. W. Seed, and I. D. Cluckie (2005), Radar evidence of orographic enhancement due to the seeder feeder mechanism, Meteorological Applications, 12(03), 199-206, doi:10.1017/s1350482705001672. Quaas, J., et al. (2009), Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data, Atmospheric Chemistry and Physics, 9(22), 8697-8717, doi:10.5194/acp-9-8697-2009. Renfrew, I. A., and G. W. K. Moore (1999), An extreme cold-air outbreak over the Labrador Sea: Roll vortices and air-sea interaction, Mon Weather Rev, 127(10), 2379-2394, doi:Doi 10.1175/1520-0493(1999)127<2379:Aecaoo>2.0.Co;2. Rosenfeld, A., and J. L. Pfaltz (1966), Sequential operations in digital picture processing, Journal of the ACM (JACM), 13(4), 471-494. Rosenfeld, D. (2000), Suppression of rain and snow by urban and industrial air pollution, Science, 287(5459), 1793-1796, doi:10.1126/science.287.5459.1793. Rosenfeld, D., Y. Zhu, M. Wang, Y. Zheng, T. Goren, and S. Yu (2019), Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds, Science, 363(6427), doi:10.1126/science.aav0566. Rothermel, J., and E. M. Agee (1980), Aircraft Investigation of Mesoscale Cellular Convection during Amtex-75, Journal of the Atmospheric Sciences, 37(5), 1027-1040, doi:Doi 10.1175/1520-0469(1980)037<1027:Aiomcc>2.0.Co;2. Salesky, S. T., M. Chamecki, and E. Bou-Zeid (2016), On the Nature of the Transition Between Roll and Cellular Organization in the Convective Boundary Layer, Bound-Lay Meteorol, 163(1), 41-68, doi:10.1007/s10546-016-0220-3. Savic-Jovcic, V., and B. Stevens (2008), The structure and mesoscale organization of precipitating stratocumulus, Journal of the Atmospheric Sciences, 65(5), 1587-1605, doi:10.1175/2007jas2456.1. Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox (1979a), Marine Stratocumulus Convection. Part I: Governing Equations and Horizontally Homogeneous Solutions, Journal of the Atmospheric Sciences, 36(7), 1286-1307, doi:10.1175/1520-0469(1979)036<1286:Mscpig>2.0.Co;2. Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox (1979b), Marine Stratocumulus Convection. part II: Horizontally Inhomogeneous Solutions, Journal of the Atmospheric Sciences, 36(7), 1308-1324, doi:10.1175/1520-0469(1979)036<1308:Mscpih>2.0.Co;2. Seifert, A., T. Heus, R. Pincus, and B. Stevens (2015), Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection, Journal of Advances in Modeling Earth Systems, 7(4), 1918-1937, doi:10.1002/2015ms000489. Seigel, R. B. (2014), Shallow Cumulus Mixing and Subcloud-Layer Responses to Variations in Aerosol Loading, Journal of the Atmospheric Sciences, 71(7), 2581-2603, doi:10.1175/Jas-D-13-0352.1. Seinfeld, John H., Gregory R. Carmichael, Richard Arimoto, William C. Conant, Frederick J. Brechtel, Timothy S. Bates, Thomas A. Cahill, Antony D. Clarke, Sarah J. Doherty, Piotr J. Flatau, Barry J. Huebert, Jiyoung Kim, Krzysztof M. Markowicz, Patricia K. Quinn, Lynn M. Russell, Philip B. Russell, Atsushi Shimizu, Yohei Shinozuka, Chul H. Song, Youhua Tang, Itsushi Uno, Andrew M. Vogelmann, Rodney J. Weber, Jung-Hun Woo, and Xiao Y. Zhang. (2004). ACE-ASIA: Regional Climatic and Atmospheric Chemical Effects of Asian Dust and Pollution, Bulletin of the American Meteorological Society, 85(3), 367-380, doi:10.1175/BAMS-85-3-367. Sheu, P. J., and E. M. Agee (1977), Kinematic Analysis and Air-Sea Heat-Flux Associated with Mesoscale Cellular Convection during Amtex-75, Journal of the Atmospheric Sciences, 34(5), 793-801, doi:Doi 10.1175/1520-0469(1977)034<0793:Kaaash>2.0.Co;2. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers (2008), A description of the Advanced Research WRF version 3. NCAR Technical note-475+ STR, doi:10.5065/D68S4MVH. Slingo, A. (1990), Sensitivity of the Earth's radiation budget to changes in low clouds, Nature, 343(6253), 49-51, doi:10.1038/343049a0. Small, J. D., P. Y. Chuang, G. Feingold, and H. Jiang (2009), Can aerosol decrease cloud lifetime?, Geophys Res Lett, 36(16), doi:10.1029/2009gl038888. Sorooshian, A., G. Feingold, M. D. Lebsock, H. Jiang, and G. L. Stephens (2009), On the precipitation susceptibility of clouds to aerosol perturbations, Geophys Res Lett, 36(13), doi:10.1029/2009gl038993. Sorooshian, A., G. Feingold, M. D. Lebsock, H. Jiang, and G. L. Stephens (2010), Deconstructing the precipitation susceptibility construct: Improving methodology for aerosol-cloud precipitation studies, Journal of Geophysical Research, 115(D17), doi:10.1029/2009jd013426. Stevens, B., W. R. Cotton, G. Feingold, and C.-H. Moeng (1998), Large-Eddy Simulations of Strongly Precipitating, Shallow, Stratocumulus-Topped Boundary Layers, Journal of the Atmospheric Sciences, 55(24), 3616-3638, doi:10.1175/1520-0469(1998)055<3616:Lesosp>2.0.Co;2. Stevens, B., and G. Feingold (2009), Untangling aerosol effects on clouds and precipitation in a buffered system, Nature, 461(7264), 607-613, doi:10.1038/nature08281. Stevens, B., G. Vali, K. Comstock, R. Wood, M. C. van Zanten, P. H. Austin, C. S. Bretherton, and D. H. Lenschow (2005), Pockets of open cells and drizzle in marine stratocumulus, Bulletin of the American Meteorological Society, 86(1), 51-57, doi:10.1175/Bams-86-1-51. Stull, R. B. (1988), An Introduction to Boundary Layer Meteorology, doi:10.1007/978-94-009-3027-8. Su, S.-H. (2001), Air-Sea Interaction in the Marine Stratocumulus-topped Boundary Layer, National Taiwan University. Tai, J.-H. (2010), Numerical Simulation of the Development of the Convective Boundary Layer over the Ocean adjacent of Taiwan in Winter, doi:10.6342/NTU.2010.01765. Takeda, T., K. Isono, Y. Iwasaka, Y. Fujiyoshi, M. Wada, and Y. Ishizaka (1979), Observational Study of Precipitation around the Southwest Islands during AMTEX Periods in 1974 and 1975, Journal of the Meteorological Society of Japan. Ser. II, 57(1), 52-63, doi:10.2151/jmsj1965.57.1_52. Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang (2012), Impact of aerosols on convective clouds and precipitation, Rev Geophys, 50(2), doi:10.1029/2011rg000369. Tao, W.-k., J. Simpson, and S.-T. Soong (1987), Statistical Properties of a Cloud Ensemble: A Numerical Study, Journal of the Atmospheric Sciences, 44(21), 3175-3187, doi:10.1175/1520-0469(1987)044<3175:Spoace>2.0.Co;2. Terai, C. R., R. Wood, and T. L. Kubar (2015), Satellite estimates of precipitation susceptibility in low‐level marine stratiform clouds, Journal of Geophysical Research: Atmospheres, 120(17), 8878-8889, doi:10.1002/2015jd023319. Terai, C. R., R. Wood, D. C. Leon, and P. Zuidema (2012), Does precipitation susceptibility vary with increasing cloud thickness in marine stratocumulus?, Atmospheric Chemistry and Physics, 12(10), 4567-4583, doi:10.5194/acp-12-4567-2012. Toll, V., M. Christensen, J. Quaas, and N. Bellouin (2019), Weak average liquid-cloud-water response to anthropogenic aerosols, Nature, 572(7767), 51-55, doi:10.1038/s41586-019-1423-9. Torrence, C., and G. P. Compo (1998), A Practical Guide to Wavelet Analysis, Bulletin of the American Meteorological Society, 79(1), 61-78, doi:10.1175/1520-0477(1998)079<0061:Apgtwa>2.0.Co;2. Townsend, A. A. (1965), Excitation of Internal Waves by a Turbulent Boundary Layer, J Fluid Mech, 22, 241- , doi:Doi 10.1017/S002211206500071x. Tsai, I. C., W. Y. Chen, J. P. Chen, and M. C. Liang (2019), Kinetic mass-transfer calculation of water isotope fractionation due to cloud microphysics in a regional meteorological model, Atmospheric Chemistry and Physics, 19(3), 1753-1766, doi:10.5194/acp-19-1753-2019. Twomey, S. (1974), Pollution and the planetary albedo, Atmospheric Environment (1967), 8(12), 1251-1256, doi:10.1016/0004-6981(74)90004-3. Twomey, S. (1977), The Influence of Pollution on the Shortwave Albedo of Clouds, Journal of the Atmospheric Sciences, 34(7), 1149-1152, doi:10.1175/1520-0469(1977)034<1149:Tiopot>2.0.Co;2. Twomey, S. (1991), Aerosols, clouds and radiation, Atmospheric Environment. Part A. General Topics, 25(11), 2435-2442, doi:10.1016/0960-1686(91)90159-5. Uchida, J., C. S. Bretherton, and P. N. Blossey (2010), The sensitivity of stratocumulus-capped mixed layers to cloud droplet concentration: do LES and mixed-layer models agree?, Atmospheric Chemistry and Physics, 10(9), 4097-4109, doi:10.5194/acp-10-4097-2010. Vial, J., S. Bony, B. Stevens, and R. Vogel (2017), Mechanisms and model diversity of trade-wind shallow cumulus cloud feedbacks: a review, Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity, 159-181, doi:10.1007/978-3-319-77273-8_8. Walter, B. A., and J. E. Overland (1984), Observations of Longitudinal Rolls in a near Neutral Atmosphere, Mon Weather Rev, 112(1), 200-208, doi:Doi 10.1175/1520-0493(1984)112<0200:Oolria>2.0.Co;2. Wang, M., et al. (2012), Constraining cloud lifetime effects of aerosols using A………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81010-
dc.description.abstract本研究以WRF模式模擬西北太平洋面因冷空氣潰流而形成之雲街所呈現的氣膠間接效應。搭配了對氣膠敏感的雙矩量雲微物理參數法,在一公里的水平解析度下,雲街結構被合理地呈現。當海表面溫度比近地面空氣高3 K時,雲街現象即可產生;當海氣溫差擴大到9 K以上時,層積雲將過渡成較具對流性的雲種。相較太平洋東側的海洋性層積雲,雲街仰賴海面供給能量與水氣,對雲頂輻射冷的驅動依賴較低,因而使日夜變化不顯著。強海面可感熱通量能配合風切在低層初步產生渦流使邊界層混合,當雲形成於舉升凝結高度之上,潛熱加熱上部邊界層將進一步幫助雲層與邊界層的發展。 本研究設計一組氣膠濃度涵蓋乾淨背景到高度污染大氣狀況的數值實驗,檢測雲街系統對於氣膠在微觀與巨觀尺度的反應。由於雲街系統處於過渡狀態上,對氣膠的反應相當敏感;其反應雖符合Twomey效應,但與Albrecht效應有部分不符合的情形,特別在較為乾淨的環境中。與Albrecht效應相違來自於氣膠減弱了毛毛雨的形成,因而抑制毛毛雨在雲下蒸發所造成的邊界層穩定化,進而造成的動力上影響。當氣膠濃度上升,降水的機制式微,邊界層不穩度提升使對流加強,因而提高雲頂和上方自由大氣的交互作用使乾空氣逸入增強,個別的雲塊中逸入所消耗的雲水將與來自下方海面的水氣補充競爭。雖然雲塊內雲水含量上升,但使個別雲塊與整體雲覆量縮小。雖單一雲塊內的雲水量提升如Albrecht效應預期,使雲反照率提升,加強Twomey效應;但雲覆量隨氣膠粒子數量濃度降低而降低,在全天空反照率的計算上抵銷些許Twomey效應。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:26:01Z (GMT). No. of bitstreams: 1
U0001-3108202113560400.pdf: 35895516 bytes, checksum: 60877f99913ce177e059a465f21b04ec (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 (Acknowledgment) i Abstract ii 中文摘要 (Abstract in Chinese) iv Contents vi List of Tables viii List of Figures ix Chapter 1 Introduction 1 Chapter 2 Methodology 7 2.1 Model setup 7 2.2 Microphysical scheme 8 2.3 Case description 11 2.4 Definition of key parameters 12 2.4.1 Cloud definition 12 2.4.2 Turbulence 13 2.4.3 Wavelength of the cloud streets and roll vortices 14 2.4.4 Susceptibility 15 Chapter 3 Cloud-streets Structure and Interaction with the Environment 18 3.1 Macrophysical characteristics 18 3.2 Microphysical structures 21 3.3 The role of cloud latent heating 23 3.4 The role of sea-surface forcing 26 3.5 The role of radiative forcing 32 3.6 Summary 34 Chapter 4 Aerosol Effects on the Roll-type Stratocumulus Clouds 36 4.1 Microphysical Aspects 36 4.2 Macrophysical Aspects 42 4.2.1 Cloud vertical dimension 42 4.2.2 Drizzle evaporation effects 44 4.2.3 Dynamic responses: roll spacing and the aspect ratio 51 4.2.4 Susceptibility 56 Comparison with the Type II and VI maritime stratiform clouds 62 Chapter 5 Discussion 71 5.1 Effect of model resolution 71 5.2 Effect of boundary layer scheme 73 5.3 Effect of the radiation schemes 75 5.4 Cloud definition and the weak clouds 77 Chapter 6 Conclusion and Future Work 80 6.1 Conclusion 80 6.2 Future Work 82 References 84 Tables 107 Figures 111
dc.language.isoen
dc.subject雲街zh_TW
dc.subject海洋性邊界層zh_TW
dc.subject冷空氣潰流zh_TW
dc.subject層積雲zh_TW
dc.subject氣膠間接效應zh_TW
dc.subjectstratocumulus clouden
dc.subjectcold-air outbreaken
dc.subjectaerosol indirect effecten
dc.subjectmarine planet boundary layeren
dc.subjectcloud streeten
dc.title西北太平洋雲街氣膠間接效應之模擬研究zh_TW
dc.titleSimulation of the Aerosol Indirect Effect on Cloud Streets over the Northwestern Pacific Oceanen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭鴻基(Hsin-Tsai Liu),王維強(Chih-Yang Tseng),隋中興,吳健銘,羅敏輝,傅宗玫,陳怡均
dc.subject.keyword雲街,氣膠間接效應,層積雲,冷空氣潰流,海洋性邊界層,zh_TW
dc.subject.keywordcloud street,aerosol indirect effect,stratocumulus cloud,cold-air outbreak,marine planet boundary layer,en
dc.relation.page184
dc.identifier.doi10.6342/NTU202102881
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
U0001-3108202113560400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
35.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved