Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80994
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾國芳(Kuo-Fang Chung)
dc.contributor.authorWei-Shin Tsaien
dc.contributor.author蔡維欣zh_TW
dc.date.accessioned2022-11-24T03:25:18Z-
dc.date.available2027-02-05
dc.date.available2022-11-24T03:25:18Z-
dc.date.copyright2022-02-16
dc.date.issued2022
dc.date.submitted2022-02-07
dc.identifier.citationAndermann, T., M. F. T. Jimenez, P. Matos-Maravi, R. Batista, J. L. Blanco-Pastor, A. L. S. Gustafsson, L. Kistler, et al. 2020. A guide to carrying out a phylogenomic target sequence capture project. Frontiers in Genetics 10: e1407. Andrews, S. 2010. FastQC: a quality control tool for high throughput sequence data. Website http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [accessed 6 July 2020]. Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19: 455–477. Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. Brennan, A. C., S. Bridgett, M. Shaukat Ali, N. Harrison, A. Matthews, J. Pellicer, A. D. Twyford, and C. A. Kidner. 2012. Genomic resources for evolutionary studies in the large, diverse, tropical genus, Begonia. Tropical Plant Biology 5: 261–276. Capella-Gutiérrez, S., J. M. Silla-Martínez, and T. Gabaldón. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973. Carter, K. A., A. Liston, N. V. Bassil, L. A. Alice, J. M. Bushakra, B. L. Sutherland, T. C. Mockler, et al. 2019. Target capture sequencing unravels Rubus evolution. Frontiers in Plant Science 10: e1615. Chan, K. M. A., and S. A. Levin. 2005. Leaky prezygotic isolation and porous genomes: rapid introgression of maternally inherited DNA. Evolution 59: 720–729. Chen, Y. K. 1988. A systemic study of Begonia L. (Begoniaceae) of Taiwan. Master Thesis, Chinese Culture University, Taipei, Taiwan. Christenhusz, M. J. M., and J. W. Byng. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261: 201–217. Cronn, R., B. J. Knaus, A. Liston, P. J. Maughan, M. Parks, J. V. Syring, and J. Udall. 2012. Targeted enrichment strategies for next-generation plant biology. American Journal of Botany 99: 291–311. Das, S., and H. Vikalo. 2015. SDhaP: haplotype assembly for diploids and polyploids via semi-definite programming. BMC Genomics 16: e260. Degnan, J. H., and N. A. Rosenberg. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology Evolution 24: 332–340. Dewitte, A., T. Eeckhaut, J. Van Huylenbroeck, and E. Van Bockstaele. 2009. Occurrence of viable unreduced pollen in a Begonia collection. Euphytica 168: 81–94. Dewitte, A., T. Eeckhaut, J. Van Huylenbroeck, and E. Van Bockstaele. 2010. Meiotic aberrations during 2n pollen formation in Begonia. Heredity 104: 215–223. Dewitte, A., A. D. Twyford, D. C. Thomas, C. A. Kidner, and J. Van Huylenbroeck. 2011. The origin of diversity in Begonia: genome dynamism, population processes and phylogenetic patterns. In O. Grillo and G. Venora [eds.], The Dynamical Processes of Biodiversity-Case Studies of Evolution and Spatial Distribution, vol. 1, 27–52. InTech. Eriksson, J. S., F. de Sousa, Y. J. K. Bertrand, A. Antonelli, B. Oxelman, and B. E. Pfeil. 2018. Allele phasing is critical to revealing a shared allopolyploid origin of Medicago arborea and M. strasseri (Fabaceae). BMC Evolutionary Biology 18: e9. Forrest, L. L., M. L. Hart, M. Hughes, H. P. Wilson, K. F. Chung, Y. H. Tseng, and C. A. Kidner. 2019. The limits of Hyb-Seq for herbarium specimens: impact of preservation techniques. Frontiers in Ecology and Evolution 7: e439. Frodin, D. G. 2004. History and concepts of big plant genera. Taxon 53: 753–776. Givnish, T. J., D. Spalink, M. Ames, S. P. Lyon, S. J. Hunter, A. Zuluaga, W. J. D. Iles, et al. 2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proceedings of the Royal Society B: Biological Sciences 282: e1553. Hodges, E., Z. Xuan, V. Balija, M. Kramer, M. N. Molla, S. W. Smith, C. M. Middle, et al. 2007. Genome-wide in situ exon capture for selective resequencing. Nature Genetics 39: 1522–1527. Hughes, M., R. R. Rubite, P. Blanc, K. F. Chung, and C. I. Peng. 2015. The Miocene to Pleistocene colonization of the Philippine archipelago by Begonia sect. Baryandra (Begoniaceae). American Journal of Botany 102: 695–706. Hughes, M., P. W. Moonlight, A. Jara-Muñoz, M. C. Tebbitt, H. P. Wilson, and M. Pullan. 2015–. Begonia Resource Centre. Website https://padme.rbge.org.uk/Begonia/home [accessed 10 December 2021]. Jiao, Y. N., N. J. Wickett, S. Ayyampalayam, A. S. Chanderbali, L. Landherr, P. E. Ralph, L. P. Tomsho, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97–110. Jin, J. J., W. B. Yu, J. B. Yang, Y. Song, C. W. dePamphilis, T. S. Yi, and D. Z. Li. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21: e241. Johnson, M. G., E. M. Gardner, Y. Liu, R. Medina, B. Goffinet, A. J. Shaw, N. J. C. Zerega, and N. J. Wickett. 2016. HybPiper: Extracting coding sequence and introns for phylogenetics from high-throughput sequencing reads using target enrichment. Applications in Plant Sciences 4: e1600016. Jones, M. R., and J. M. Good. 2016. Targeted capture in evolutionary and ecological genomics. Molecular Ecology 25: 185–202. Kalyaanamoorthy, S., B. Q. Minh, T. K. Wong, A. von Haeseler, and L. S. Jermiin. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. Kamneva, O. K., J. Syring, A. Liston, and N. A. Rosenberg. 2017. Evaluating allopolyploid origins in strawberries (Fragaria) using haplotypes generated from target capture sequencing. BMC Evolutionary Biology 17: e180. Katoh, K., and D. M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. Kihara, H., and T. Ono. 1926. Chromosomenzahlen und systematische gruppierung der Rumex-arten. Zeitschrift für Zellforschung und Mikroskopische Anatomie 4: 475–481. Kono, Y., C. I. Peng, K. Oginuma, R. R. Rubite, Y. H. Tseng, H. A. Yang, and K. F. Chung. 2021. Cytological study of Begonia Sect. Baryandra (Begoniaceae). Cytologia 86: 133–141. Kozarewa, I., J. Armisen, A. F. Gardner, B. E. Slatko, and C. L. Hendrickson. 2015. Overview of target enrichment strategies. Current Protocols in Molecular Biology 112: 7.21.21–27.21.23. Kyriakidou, M., H. H. Tai, N. L. Anglin, D. Ellis, and M. V. Strömvik. 2018. Current strategies of polyploid plant genome sequence assembly. Frontiers in Plant Science 9: e1660. Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [Preprint]. Li, P., G. Lou, X. Cai, B. Zhang, Y. Cheng, and H. Wang. 2020. Comparison of the complete plastomes and the phylogenetic analysis of Paulownia species. Scientific Reports 10: e2225. Liu, S.-H., H.-A. Yang, Y. Kono, P. C. Hoch, J. C. Barber, C.-I Peng, and K.-F. Chung. 2020. Disentangling reticulate evolution of north temperate haplostemonous Ludwigia (Onagraceae). Annals of the Missouri Botanical Garden 105: 163–182. Liu, S. H., Y. H. Tseng, D. Zure, R. R. Rubite, T. D. Balangcod, C. I. Peng, and K. F. Chung. 2019. Begonia balangcodiae sp. nov. from northern Luzon, the Philippines and its natural hybrid with B. crispipila, B. × kapangan nothosp. nov. Phytotaxa 407: 5–21. Liu, S. L. 1999. Origins of Begonia formosana complex inferred from chloroplast DNA and nuclear DNA variation. Master's thesis, National Cheng-Kung University, Tainan, Taiwan. Lohse, K., and L. A. Frantz. 2014. Neandertal admixture in Eurasia confirmed by maximum-likelihood analysis of three genomes. Genetics 196: 1241–1251. Mabberley, D. J. 2017. Mabberley's plant-book: a portable dictionary of plants, their classification and uses., 4th ed. Cambridge University Press, Cambridge. Martin, G., F. C. Baurens, C. Cardi, J. M. Aury, and A. D’Hont. 2013. The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution. PLoS ONE 8: e67350. Mason, A. S., and J. F. Wendel. 2020. Homoeologous exchanges, segmental allopolyploidy, and polyploid genome evolution. Frontiers in Genetics 11: e1014. McCann, J., T. S. Jang, J. Macas, G. M. Schneeweiss, N. J. Matzke, P. Novák, T. F. Stuessy, et al. 2018. Dating the species network: allopolyploidy and repetitive DNA evolution in American Daisies (Melampodium sect. Melampodium, Asteraceae). Systematic Biology 67: 1010–1024. McCormack, J. E., S. M. Hird, A. J. Zellmer, B. C. Carstens, and R. T. Brumfield. 2013. Applications of next-generation sequencing to phylogeography and phylogenetics. Molecular Phylogenetics and Evolution 66: 526–538. Melo, W. A., C. G. Freitas, C. D. Bacon, and R. G. Collevatti. 2018. The road to evolutionary success: insights from the demographic history of an Amazonian palm. Heredity 121: 183–195. Michel, T., Y.-H. Tseng, H. Wilson, K.-F. Chung, and C. Kidner. Under review. A hybrid capture bait set for Begonia. Edinburgh Journal of Botany. Minh, B. Q., M. W. Hahn, and R. Lanfear. 2020a. New methods to calculate concordance factors for phylogenomic datasets. Molecular Biology and Evolution 37: 2727–2733. Minh, B. Q., H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. von Haeseler, and R. Lanfear. 2020b. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530–1534. Moonlight, P. W., W. H. Ardi, L. A. Padilla, K. F. Chung, D. Fuller, D. Girmansyah, R. Hollands, et al. 2018. Dividing and conquering the fastest-growing genus: Towards a natural sectional classification of the mega-diverse genus Begonia (Begoniaceae). Taxon 67: 267–323. Nakamura, K., Y.-F. Wang, M.-J. Ho, K.-F. Chung, and C.-I Peng. 2015. New distribution record of Begonia grandis (Begoniaceae, section Diploclinium) from Taiwan, with subspecies assignment based on morphology and molecular phylogeny. Taiwania 60: 49–53. Nakamura, K., R. R. Rubite, Y. Kono, J. V. Macabasco, A. D. Talaña, G. J. D. Alejandro, M. J. Ho, et al. 2021. Begonia × dinglensis, a natural hybrid of Philippine Begonia section Baryandra, as evidenced by morphological, phylogenetic and cytological data. Phytotaxa 494: 151–164. Nauheimer, L., N. Weigner, E. Joyce, D. Crayn, C. Clarke, and K. Nargar. 2021. HybPhaser: A workflow for the detection and phasing of hybrids in target capture data sets. Applications in Plant Sciences 9: e11441. Neale, S., W. Goodall-Copestake, and C. Kidner. 2006. The evolution of diversity in Begonia. In J. A. T. d. Silva [ed.], Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues, 606–611, Isleworth, UK. Nicholls, J. A., R. T. Pennington, E. J. M. Koenen, C. E. Hughes, J. Hearn, L. Bunnefeld, K. G. Dexter, et al. 2015. Using targeted enrichment of nuclear genes to increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae: Mimosoideae). Frontiers in Plant Science 6: e710. Oginuma, K., and C. I. Peng. 2002. Karyomorphology of Taiwanese Begonia (Begoniaceae): taxonomic implications. Journal of Plant Research 115: 225–235. Palmer, J. D. 1985. Comparative organization of chloroplast genomes. Annual Review of Genetics 19: 325–354. Panchy, N., M. Lehti-Shiu, and S. H. Shiu. 2016. Evolution of gene duplication in plants. Plant Physiology 171: 2294–2316. Peng, C. -I, and Y. K. Chen. 1991. Hybridity and parentage of Begonia buimontana Yamamoto (Begoniaceae) from Taiwan. Annals of the Missouri Botanical Garden 78: 995–1001. Peng, C. -I, and C. Y. Sue. 2000. Begonia ×taipeiensis (Begoniaceae), a new natural hybrid in Taiwan. Botanical Bulletin of Academia Sinica 41: 151–158. Peng, C. -I, and S. M. Ku. 2009. Begonia ×chungii (Begoniaceae), a new natural hybrid in Taiwan. Botanical Studies 50: 241–250. Peng, C. -I, Y. Liu, S. M. Ku, Y. Kono, and K. F. Chung. 2010. Begonia ×breviscapa (Begoniaceae), a new intersectional natural hybrid from limestone areas in Guangxi, China. Botanical Studies 51: 107–117. Schrinner, S. D., R. S. Mari, J. Ebler, M. Rautiainen, L. Seillier, J. J. Reimer, B. Usadel, et al. 2020. Haplotype threading: accurate polyploid phasing from long reads. Genome Biology 21: e252. Shaw, J., E. B. Lickey, J. T. Beck, S. B. Farmer, W. Liu, J. Miller, K. C. Siripun, et al. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92: 142–166. Silvestro, D., C. D. Bacon, W. Ding, Q. Zhang, P. C. J. Donoghue, A. Antonelli, and Y. Xing. 2021. Fossil data support a pre-Cretaceous origin of flowering plants. Nature Ecology and Evolution 5: 449–457. Soltis, D. E., R. J. A. Buggs, W. B. Barbazuk, S. Chamala, M. Chester, J. P. Gallagher, P. S. Schnable, and P. S. Soltis. 2012. The early stages of polyploidy: rapid and repeated evolution in Tragopogon. In P. Soltis and D. Soltis [eds.], Polyploidy and Genome Evolution, 271–292. Springer, Berlin, Heidelberg. Stegemann, S., M. Keuthe, S. Greiner, and R. Bock. 2012. Horizontal transfer of chloroplast genomes between plant species. Proceedings of the National Academy of Sciences of the United States of America 109: 2434–2438. Tebbitt, M. C. 2005. Begonias: cultivation, identification and natural history. Timber Press, Portland, Oregon. Teo, L. L., and R. Kiew. 1999. First record of a natural Begonia hybrid in Malaysia. Gardens’ Bulletin Singapore 51: 103–118. Tseng, Y. H., H. Y. Huang, W. B. Xu, H. A. Yang, Y. Liu, C. I. Peng, and K. F. Chung. 2017. Development and characterization of EST-SSR markers for Begonia luzhaiensis (Begoniaceae). Applications in Plant Sciences 5: e1700024. Van de Peer, Y., E. Mizrachi, and K. Marchal. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics 18: 411–424. Viruel, J., M. Conejero, O. Hidalgo, L. Pokorny, R. F. Powell, F. Forest, M. B. Kantar, et al. 2019. A target capture-based method to estimate ploidy from herbarium specimens. Frontiers in Plant Science 10: e937. Wagner, N. D., L. He, and E. Hörandl. 2020. Phylogenomic relationships and evolution of polyploid Salix species revealed by RAD sequencing data. Frontiers in Plant Science 11: e1077. Wang, N., L. J. Kelly, H. A. McAllister, J. Zohren, and R. J. A. Buggs. 2021. Resolving phylogeny and polyploid parentage using genus-wide genome-wide sequence data from birch trees. Molecular Phylogenetics and Evolution 160: e107126. Wang, W. G., A. Randi, C. X. L. Wang, J. Y. Shen, X. D. Ma, J. P. Shi, T. Xu, and S. Z. Zhang. 2020. Begonia daunhitam, a new species of Begonia (Begoniaceae) from West Kalimantan, Indonesia. Taiwania 65: 27–32. Wendel, J. F. 2015. The wondrous cycles of polyploidy in plants. American Journal of Botany 102: 1753–1756. Wicke, S., G. M. Schneeweiss, C. W. dePamphilis, K. F. Müller, and D. Quandt. 2011. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Molecular Biology 76: 273–297. Wysocki, W. P., L. G. Clark, L. Attigala, E. Ruiz-Sanchez, and M. R. Duvall. 2015. Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis. BMC Evolutionary Biology 15: e50. Xie, M., Q. Wu, J. Wang, and T. Jiang. 2016. H-PoP and H-PoPG: heuristic partitioning algorithms for single individual haplotyping of polyploids. Bioinformatics 32: 3735–3744. Yang, H. A. 2011. Hybridization and polyploidization of Taiwanese Begonias. Master Thesis, National Taiwan University, Taipei, Taiwan. Zhang, H., J. Jin, M. J. Moore, T. Yi, and D. Li. 2018. Plastome characteristics of Cannabaceae. Plant Diversity 40: 127–137. Zhang, Q., Y. Liu, and Sodmergen. 2003. Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant and Cell Physiology 44: 941–951. Zhang, X., R. Wu, Y. Wang, J. Yu, and H. Tang. 2020. Unzipping haplotypes in diploid and polyploid genomes. Computational and Structural Biotechnology Journal 18: 66–72.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80994-
dc.description.abstract"雜交事件是開花植物同域種化主要的演化動力,同時也是多倍體物種形成的主要原因。然而,由於多倍體攜帶著多個擁有各自演化歷史的基因體,使得重建演化關係面臨許多挑戰。秋海棠屬內有高度多倍體化的現象,種間雜交頻繁,其中臺灣的扁果組秋海棠不僅有4個天然雜交種的報導,組內12種秋海棠的染色體數目變化也很大(2n = 22, 38, 52, 60, 64及82)。另外,在臺灣的野外還觀察到許多未知的秋海棠,這些秋海棠在形態上及染色體數目上與已知物種相左。雖根據細胞學的研究發現他們的倍體數很高,但因為細胞學技術上的困境,秋海棠的染色體數目很難取得,因此本研究嘗試使用新的定相工具(HybPhaser)定相由標靶基因獲取取得877核基因DNA序列,並使用定相的等位基因和由基因體略讀取得的序列資料組裝而成的質體基因體,以5個疑似雜交起源的樣本為例,用兩個親緣關係樹解開臺灣未知秋海棠的親緣關係。實驗取樣一共13種臺灣原生秋海棠、4個天然雜交種,以及5個疑似為雜交起源的物種。使用最大似然法建立的質體基因體樹與核基因樹均顯示,除了秋海棠組 (Sect. Diploclinium) 的岩生秋海棠(2n = 36) 與菲律賓秋海棠組 (Sect. Baryandra) 的蘭嶼秋海棠 (2n = 28),其餘的扁果組 (Sect. Platycentrum) 秋海棠均被分為四個支序。等位基因歧異度 (allele divergence, AD) 和等位基因雜合度 (locus heterozygosity, LH) 顯示,除了蘭嶼秋海棠 (2n = 26) 與扁果組的圓果秋海棠 (2n = 22) 和裂葉秋海棠 (2n = 22),其餘種類均為多倍體或雜交種。根據母系遺傳的質體基因樹與定相的核基因樹,參酌樣本染色體數目,本研究支持楊巽安 (2011) 提出之『台灣原生秋海棠之雜交起源與多倍體種化』假說,我們的結果支持臺灣秋海棠 (2n = 38) 為以圓果秋海棠(A支序)為母本與未知的C支序物種為父本的異源四倍體,其餘四種2n = 38的溪頭秋海棠複合群 (溪頭秋海棠、九九峰秋海棠、坪林秋海棠、南臺灣秋海棠) 為未知的B支序與D支序物種雜交的異源四倍體,2n = 60的水鴨腳為以BD異源四倍體為母本與圓果秋海棠雜交的異源六倍體,而2n = 52的鹿谷秋海棠、出雲山秋海棠,與2n = 82的藤枝秋海棠則為以臺灣秋海棠為母本與溪頭秋海棠複合群為父本之異源八倍體或更高倍體數的多倍體。此外,疑似雜交種B. sp_73 (2n = 52) 推測是由產生未減數配子的裂葉秋海棠(E支序)為母本與水鴨腳為父本的雜交子代,而B. sp_85 (2n = 41) 是水鴨腳為母本、裂葉秋海棠為父本的雜交子代,B. sp_77 (2n = 76) 推測為臺灣秋海棠的同源八倍體。B. sp_82 (2n = 49) 推測是由臺灣秋海棠 (2n = 38) 與溪頭秋海棠複合群 (2n = 38) 雜交形成的多倍體 (2n = 76) 為母本與裂葉秋海棠為父本的雜交子代,而B. sp_83 (2n = 52) 帶有與分佈在臺灣中部和南部的鹿谷秋海棠及出雲山秋海棠幾乎相同的質體基因組與核基因,可能是偶然被傳播至北部的鹿谷秋海棠或出雲山秋海棠。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:25:18Z (GMT). No. of bitstreams: 1
U0001-0302202211352300.pdf: 7550448 bytes, checksum: ce1afc7eae02e3ec0f86912b9f178cbe (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 i Abstract iii 1 Introduction 1 1.1 Begonia of Taiwan 2 1.2 Target capture and Allele phasing 7 1.3 Plastome 9 1.4 Research objectives 10 2 Material and Method 10 2.1 DNA extraction and Library preparation 10 2.2 Plastome assembly 13 2.3 Target capture bait design 13 2.4 Identification of putative hybrid taxa 14 2.5 Haplotype assembly 14 2.6 Molecular phylogenetic analysis 20 3 Results 20 3.1 Plastome analysis 20 3.2 Hybrid detection 23 3.3 Allele phasing analysis 26 4 Discussion 29 5 Conclusion 35 Reference 36
dc.language.isoen
dc.subject標靶基因獲取zh_TW
dc.subject定相zh_TW
dc.subject染色體細胞學zh_TW
dc.subject基因體略讀zh_TW
dc.subject雜交zh_TW
dc.subject次世代定序zh_TW
dc.subject質體基因體zh_TW
dc.subject多倍體zh_TW
dc.subjectchromosome cytologyen
dc.subjectplastomeen
dc.subjectnext-generation sequencing (NGS)en
dc.subjecthybridizationen
dc.subjectgenome skimmingen
dc.subjectallele phasingen
dc.subjecttarget captureen
dc.subjectpolyploidyen
dc.title以基因體資料解開臺灣多倍體秋海棠的網狀親緣關係zh_TW
dc.titleUntangling reticulated evolutionary relationships of Taiwanese Begonia using genome dataen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.coadvisor劉世慧(Shih-Hui Liu)
dc.contributor.oralexamcommittee李承叡(Yung-Jen Hsu),曾妤馨(Tian-Li Yu),趙怡姍(Tsung-Che Chiang),(Chun-Feng Liao)
dc.subject.keyword定相,染色體細胞學,基因體略讀,雜交,次世代定序,質體基因體,多倍體,標靶基因獲取,zh_TW
dc.subject.keywordallele phasing,chromosome cytology,genome skimming,hybridization,next-generation sequencing (NGS),plastome,polyploidy,target capture,en
dc.relation.page45
dc.identifier.doi10.6342/NTU202200270
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-02-09
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
dc.date.embargo-lift2027-02-05-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
U0001-0302202211352300.pdf
  未授權公開取用
7.37 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved