Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80992
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成(Chien-Cheng Chang)
dc.contributor.authorXuan Lien
dc.contributor.author李宣zh_TW
dc.date.accessioned2022-11-24T03:25:13Z-
dc.date.available2021-09-11
dc.date.available2022-11-24T03:25:13Z-
dc.date.copyright2021-09-11
dc.date.issued2021
dc.date.submitted2021-09-03
dc.identifier.citation[1] H. E. G. Murdock, Duncan Andre, Thomas Sawin, 'Renewables 2020 - Global status report,” France, 978-3-948393-00-7, 2020. [2] R. B. Jackson, C. Le Quéré, R. M. Andrew, J. G. Canadell, G. P. Peters, 'Warning signs for stabilizing global CO 2 emissions,” Environmental Research Letters, vol. 12, no. 11, p. 110202, 2017, doi: 10.1088/1748-9326/aa9662. [3] P. Schwarzbözl, R. Buck, C. Sugarmen, A. Ring, M. J. Marcos Crespo, 'Solar gas turbine systems: Design, cost and perspectives,” Solar Energy, vol. 80, no. 10, pp. 1231-1240, 2006, doi: 10.1016/j.solener.2005.09.007. [4] B. Parida, S. Iniyan, and R. Goic, 'A review of solar photovoltaic technologies,” Renewable and Sustainable Energy Reviews, vol. 15, no. 3, pp. 1625-1636, 2011, doi: 10.1016/j.rser.2010.11.032. [5] L. M. Fraas, 'History of Solar Cell Development,” in Low-Cost Solar Electric Power, 2014, ch. Chapter 1, pp. 1-12. [6] D. E. Carlson and C. R. Wronski, 'Amorphous silicon solar cell,” Applied Physics Letters, vol. 28, no. 11, pp. 671-673, 1976, doi: 10.1063/1.88617. [7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang , 'Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666-669, 2004. [8] E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, 'Highly efficient GaAs solar cells by limiting light emission angle,” Light: Science Applications, vol. 2, no. 1, pp. e45-e45, 2013, doi: 10.1038/lsa.2013.1. [9] J. Palm, V. Probst, and F. H. Karg, 'Second generation CIS solar modules,” Solar Energy, vol. 77, no. 6, pp. 757-765, 2004, doi: 10.1016/j.solener.2004.05.011. [10] M. Kaelin, D. Rudmann, and A. N. Tiwari, 'Low cost processing of CIGS thin film solar cells,” Solar Energy, vol. 77, no. 6, pp. 749-756, 2004, doi: 10.1016/j.solener.2004.08.015. [11] M. Shakeel Ahmad, A. K. Pandey, and N. Abd Rahim, 'Advancements in the development of TiO 2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review,” Renewable and Sustainable Energy Reviews, vol. 77, pp. 89-108, 2017, doi: 10.1016/j.rser.2017.03.129. [12] A. Mohammad Bagher, 'Types of Solar Cells and Application,” American Journal of Optics and Photonics, vol. 3, no. 5, 2015, doi: 10.11648/j.ajop.20150305.17. [13] M. Jeong, I. W. Choi, E. M. Go, Y. Cho, M. Kim , 'Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss,” Science, vol. 369, no. 6511, pp. 1615-1620, 2020, doi: 10.1126/science.abb7167. [14] A. Goetzberger, J. Knobloch, and B. Voß, 'The Physics of Solar Cells,” Crystalline Silicon Solar Cells, https://doi.org/10.1002/9781119033769.ch5 pp. 67-86, 2014/08/11 2014, doi: https://doi.org/10.1002/9781119033769.ch5. [15] N.-G. Park, 'Perovskite solar cells: an emerging photovoltaic technology,” Materials Today, vol. 18, no. 2, pp. 65-72, 2015, doi: 10.1016/j.mattod.2014.07.007. [16] A. A. Zhumekenov, M. I. Saidaminov, M. A. Haque, E. Alarousu, S. P. Sarmah, 'Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length,” ACS Energy Letters, vol. 1, no. 1, pp. 32-37, 2016, doi: 10.1021/acsenergylett.6b00002. [17] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, 'Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3,” Science, vol. 342, no. 6156, pp. 344-347, 2013, doi: 10.1126/science.1243167. [18] M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, 'Perovskite energy funnels for efficient light-emitting diodes,” Nature Nanotechnology, vol. 11, no. 10, pp. 872-877, 2016, doi: 10.1038/nnano.2016.110. [19] G. Murtaza and I. Ahmad, 'First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M=Cl, Br, I),” Physica B: Condensed Matter, vol. 406, no. 17, pp. 3222-3229, 2011/09/01/ 2011, doi: https://doi.org/10.1016/j.physb.2011.05.028. [20] M. Stylianakis, T. Maksudov, A. Panagiotopoulos, G. Kakavelakis, and K. Petridis, 'Inorganic and Hybrid Perovskite Based Laser Devices: A Review,' Materials, vol. 12, no. 6, p. 859, 2019, doi: 10.3390/ma12060859. [21] H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, 'Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,' Science, vol. 350, no. 6265, pp. 1222-1225, 2015, doi: 10.1126/science.aad1818. [22] S. Sharma, K. K. Jain, and A. Sharma, 'Solar cells: in research and applications—a review,' Materials Sciences and Applications, vol. 6, no. 12, p. 1145, 2015. [23] NREL, 'best research cell efficiencies,' ed. National Renewable Energy Laboratory, Golden, CO., 2020. [24] A. R. Chakhmouradian and R. H. Mitchell, 'Compositional variation of perovskite-group minerals from the Khibina Complex, Kola Peninsula, Russia,' The Canadian Mineralogist, vol. 36, no. 4, pp. 953-969, 1998. [25] V. M. Goldschmidt, 'Die Gesetze der Krystallochemie,' Die Naturwissenschaften, vol. 14, no. 21, pp. 477-485, 1926, doi: 10.1007/bf01507527. [26] Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, and K. Zhu, 'Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys,' Chemistry of Materials, vol. 28, no. 1, pp. 284-292, 2016, doi: 10.1021/acs.chemmater.5b04107. [27] S. Luo and W. A. Daoud, 'Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design,' Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8992-9010, 2015, doi: 10.1039/c4ta04953e. [28] S. F. Hoefler, G. Trimmel, and T. Rath, 'Progress on lead-free metal halide perovskites for photovoltaic applications: a review,' Monatshefte für Chemie - Chemical Monthly, vol. 148, no. 5, pp. 795-826, 2017, doi: 10.1007/s00706-017-1933-9. [29] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, 'Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,' Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009, doi: 10.1021/ja809598r. [30] L. K. Ono, E. J. Juarez-Perez, and Y. Qi, 'Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions,' ACS Applied Materials Interfaces, vol. 9, no. 36, pp. 30197-30246, 2017, doi: 10.1021/acsami.7b06001. [31] M. Deepa, M. Salado, L. Calio, S. Kazim, S. M. Shivaprasad, and S. Ahmad, 'Cesium power: low Cs+levels impart stability to perovskite solar cells,' Physical Chemistry Chemical Physics, vol. 19, no. 5, pp. 4069-4077, 2017, doi: 10.1039/c6cp08022g. [32] O. A. Syzgantseva, M. Saliba, M. Grätzel, and U. Rothlisberger, 'Stabilization of the Perovskite Phase of Formamidinium Lead Triiodide by Methylammonium, Cs, and/or Rb Doping,' The Journal of Physical Chemistry Letters, vol. 8, no. 6, pp. 1191-1196, 2017, doi: 10.1021/acs.jpclett.6b03014. [33] S. Wang, J. Jin, Y. Qi, P. Liu, Y. Xia, 'δ‐CsPbI 3 Intermediate Phase Growth Assisted Sequential Deposition Boosts Stable and High‐Efficiency Triple Cation Perovskite Solar Cells,' Advanced Functional Materials, vol. 30, no. 7, p. 1908343, 2020, doi: 10.1002/adfm.201908343. [34] C. K. Møller, 'Crystal Structure and Photoconductivity of Cæsium Plumbohalides,' Nature, vol. 182, no. 4647, pp. 1436-1436, 1958, doi: 10.1038/1821436a0. [35] Z. Liu, Y. Bekenstein, X. Ye, S. C. Nguyen, J. Swabeck, 'Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted Cs4PbBr6 Nanocrystals,' Journal of the American Chemical Society, vol. 139, no. 15, pp. 5309-5312, 2017, doi: 10.1021/jacs.7b01409. [36] S. Iyer, C. Sengupta, and A. Velumani, 'Lead toxicity: An overview of prevalence in Indians,' Clinica Chimica Acta, vol. 451, pp. 161-164, 2015, doi: 10.1016/j.cca.2015.09.023. [37] S. Shao, J. Liu, G. Portale, H.-H. Fang, G. R. Blake, 'Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency,' Advanced Energy Materials, vol. 8, no. 4, p. 1702019, 2018, doi: 10.1002/aenm.201702019. [38] B. Suarez, V. Gonzalez-Pedro, T. S. Ripolles, R. S. Sanchez, L. Otero, and I. Mora-Sero, 'Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells,” The Journal of Physical Chemistry Letters, vol. 5, no. 10, pp. 1628-1635, 2014, doi: 10.1021/jz5006797. [39] H. F. Zarick, N. Soetan, W. R. Erwin, and R. Bardhan, 'Mixed halide hybrid perovskites: a paradigm shift in photovoltaics,' Journal of Materials Chemistry A, vol. 6, no. 14, pp. 5507-5537, 2018, doi: 10.1039/c7ta09122b. [40] E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, and M. D. McGehee, 'Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics,' Chemical Science, vol. 6, no. 1, pp. 613-617, 2015, doi: 10.1039/c4sc03141e. [41] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, 'Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells,' Nano Letters, vol. 13, no. 4, pp. 1764-1769, 2013, doi: 10.1021/nl400349b. [42] J. Gong, K. Sumathy, Q. Qiao, and Z. Zhou, 'Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends,' Renewable and Sustainable Energy Reviews, vol. 68, pp. 234-246, 2017/02/01/ 2017, doi: https://doi.org/10.1016/j.rser.2016.09.097. [43] M. Wang, Y. Feng, J. Bian, H. Liu, and Y. Shi, 'A comparative study of one-step and two-step approaches for MAPbI3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell,' Chemical Physics Letters, vol. 692, pp. 44-49, 2018, doi: 10.1016/j.cplett.2017.12.012. [44] K. Liang, D. B. Mitzi, and M. T. Prikas, 'Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique,' Chemistry of Materials, vol. 10, no. 1, pp. 403-411, 1998, doi: 10.1021/cm970568f. [45] Q. Ma, S. Huang, X. Wen, M. A. Green, and A. W. Y. Ho-Baillie, 'Hole Transport Layer Free Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation,' Advanced Energy Materials, vol. 6, no. 7, p. 1502202, 2016, doi: 10.1002/aenm.201502202. [46] Y. Vaynzof, 'The Future of Perovskite Photovoltaics—Thermal Evaporation or Solution Processing?,' Advanced Energy Materials, vol. 10, no. 48, p. 2003073, 2020, doi: 10.1002/aenm.202003073. [47] A. Uddin, M. Upama, H. Yi, and L. Duan, 'Encapsulation of Organic and Perovskite Solar Cells: A Review,' Coatings, vol. 9, no. 2, p. 65, 2019, doi: 10.3390/coatings9020065. [48] S. D. Stranks, P. K. Nayak, W. Zhang, T. Stergiopoulos, and H. J. Snaith, 'Formation of Thin Films of Organic-Inorganic Perovskites for High-Efficiency Solar Cells,' Angewandte Chemie International Edition, vol. 54, no. 11, pp. 3240-3248, 2015, doi: 10.1002/anie.201410214. [49] J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho, and N.-G. Park, 'Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell,' Advanced Energy Materials, vol. 5, no. 20, p. 1501310, 2015, doi: 10.1002/aenm.201501310. [50] P. Luo, S. Zhou, Y. Zhou, W. Xia, L. Sun , 'Fabrication of CsxFA1–xPbI3 Mixed-Cation Perovskites via Gas-Phase-Assisted Compositional Modulation for Efficient and Stable Photovoltaic Devices,' ACS Applied Materials Interfaces, vol. 9, no. 49, pp. 42708-42716, 2017, doi: 10.1021/acsami.7b12939. [51] M. T. Neukom, S. Züfle, E. Knapp, M. Makha, R. Hany, and B. Ruhstaller, 'Why perovskite solar cells with high efficiency show small IV-curve hysteresis,' Solar Energy Materials and Solar Cells, vol. 169, pp. 159-166, 2017, doi: 10.1016/j.solmat.2017.05.021. [52] D. Bartesaghi, I. D. C. Pérez, J. Kniepert, S. Roland, M. Turbiez, 'Competition between recombination and extraction of free charges determines the fill factor of organic solar cells,' Nature Communications, vol. 6, no. 1, p. 7083, 2015, doi: 10.1038/ncomms8083. [53] L. Hu, K. Sun, M. Wang, W. Chen, B. Yang, 'Inverted Planar Perovskite Solar Cells with a High Fill Factor and Negligible Hysteresis by the Dual Effect of NaCl-Doped PEDOT:PSS,' ACS Applied Materials Interfaces, vol. 9, no. 50, pp. 43902-43909, 2017, doi: 10.1021/acsami.7b14592. [54] M. I. Asghar, J. Zhang, H. Wang, and P. D. Lund, 'Device stability of perovskite solar cells – A review,' Renewable and Sustainable Energy Reviews, vol. 77, pp. 131-146, 2017, doi: 10.1016/j.rser.2017.04.003. [55] F. Noé, A. Tkatchenko, K.-R. Müller, and C. Clementi, 'Machine Learning for Molecular Simulation,' Annual Review of Physical Chemistry, vol. 71, no. 1, pp. 361-390, 2020, doi: 10.1146/annurev-physchem-042018-052331. [56] T. Jesper Jacobsson, J.-P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, 'Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells,' Energy Environmental Science, vol. 9, no. 5, pp. 1706-1724, 2016, doi: 10.1039/c6ee00030d. [57] H. A. Chen and C. W. Pao, 'Fast and Accurate Artificial Neural Network Potential Model for MAPbI3 Perovskite Materials,' ACS Omega, vol. 4, no. 6, pp. 10950-10959, Jun 30 2019, doi: 10.1021/acsomega.9b00378. [58] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, 'Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,' Energy Environmental Science, vol. 9, no. 6, pp. 1989-1997, 2016, doi: 10.1039/c5ee03874j. [59] J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, 'Highly efficient planar perovskite solar cells through band alignment engineering,' Energy Environmental Science, vol. 8, no. 10, pp. 2928-2934, 2015, doi: 10.1039/c5ee02608c. [60] C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, 'Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells,' Energy Environmental Science, vol. 9, no. 2, pp. 656-662, 2016, doi: 10.1039/c5ee03255e. [61] M. Born and J. R. Oppenheimer, 'On the quantum theory of molecules,' Сборник статей к мультимедийному электронному учебно-методическому комплексу по дисциплине «физика атома и атомных явлений»/отв. ред. Шундалов МБ; БГУ, Физический факультет, 1927. [62] V. Fock, 'Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems,' Zeitschrift für Physik, vol. 61, no. 1-2, pp. 126-148, 1930. [63] R. G. Parr, 'Density functional theory of atoms and molecules,' in Horizons of quantum chemistry: Springer, 1980, pp. 5-15. [64] L. H. Thomas, 'The calculation of atomic fields,' Mathematical Proceedings of the Cambridge Philosophical Society, vol. 23, no. 5, pp. 542-548, 1927, doi: 10.1017/S0305004100011683. [65] P. Hohenberg and W. Kohn, 'Inhomogeneous Electron Gas,' Physical Review, vol. 136, no. 3B, pp. B864-B871, 1964, doi: 10.1103/PhysRev.136.B864. [66] W. Kohn and L. J. Sham, 'Self-Consistent Equations Including Exchange and Correlation Effects,' Physical Review, vol. 140, no. 4A, pp. A1133-A1138, 1965, doi: 10.1103/physrev.140.a1133. [67] M. Freyss, 'Density functional theory,' Nuclear Energy Agency of the OECD (NEA), 2015. [Online]. Available: http://inis.iaea.org/search/search.aspx?orig_q=RN:47032418 [68] P. A. M. Dirac, 'Note on Exchange Phenomena in the Thomas Atom,' Mathematical Proceedings of the Cambridge Philosophical Society, vol. 26, no. 3, pp. 376-385, 1930, doi: 10.1017/s0305004100016108. [69] S. J. Clark, C. J. Adam, G. J. Ackland, J. White, and J. Crain, 'Properties of liquid crystal molecules from first principles computer simulation,' Liquid Crystals, vol. 22, no. 4, pp. 469-475, 1997/04/01 1997, doi: 10.1080/026782997209199. [70] M. Fuchs, 'Comparison of exchange–correlation functionals: from LDA to GGA and beyond,' Density-Functional Theory Calculations for Modeling Materials and Bio-Molecular Properties and Functions-A Hands-On Computer Course, Los Angeles, 2005. [71] J. P. Perdew, K. Burke, and Y. Wang, 'Generalized gradient approximation for the exchange-correlation hole of a many-electron system,' Physical review B, vol. 54, no. 23, p. 16533, 1996. [72] P. Schwerdtfeger, 'The Pseudopotential Approximation in Electronic Structure Theory,' ChemPhysChem, https://doi.org/10.1002/cphc.201100387 vol. 12, no. 17, pp. 3143-3155, 2011/12/09 2011, doi: https://doi.org/10.1002/cphc.201100387. [73] A. Kebede, A. Amde, and W. Diaz, “Proceedings of the 4th Gondar School of Science and Technology, 3 – 5 January 2014,” University of Gondar, 2014. [74] N. W. Ashcroft and N. D. Mermin, 'Solid state physics,' ed: holt, rinehart and winston, new york London, 1976, pp. 133-135. [75] F. Attneave, M. B, and D. O. Hebb, 'The Organization of Behavior; A Neuropsychological Theory,' The American Journal of Psychology, vol. 63, no. 4, p. 633, 1950, doi: 10.2307/1418888. [76] SEER. 'Nerve Tissue.' NIH. https://training.seer.cancer.gov/anatomy/nervous/tissue.html (accessed. [77] R. Kumar, R. K. Aggarwal, and J. D. Sharma, 'Energy analysis of a building using artificial neural network: A review,' Energy and Buildings, vol. 65, pp. 352-358, 2013/10/01/ 2013, doi: https://doi.org/10.1016/j.enbuild.2013.06.007. [78] T. Szandała, 'Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks,' Springer Singapore, 2021, pp. 203-224. [79] A. Dey, 'Machine learning algorithms: a review,' International Journal of Computer Science and Information Technologies, vol. 7, no. 3, pp. 1174-1179, 2016. [80] Y. Xinghuo, M. O. Efe, and O. Kaynak, 'A general backpropagation algorithm for feedforward neural networks learning,' IEEE Transactions on Neural Networks, vol. 13, no. 1, pp. 251-254, 2002, doi: 10.1109/72.977323. [81] J. P. Davim, “Machining: fundamentals and recent advances,” Springer Science Business Media, 2008. [82] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, 'Learning representations by back-propagating errors,' Nature, vol. 323, no. 6088, pp. 533-536, 1986. [83] R. Bollapragada, J. Nocedal, D. Mudigere, H.-J. Shi, and P. T. P. Tang, 'A progressive batching L-BFGS method for machine learning,' in International Conference on Machine Learning, 2018: PMLR, pp. 620-629. [84] A. Khorshidi and A. A. Peterson, 'Amp: A modular approach to machine learning in atomistic simulations,' Computer Physics Communications, vol. 207, pp. 310-324, 2016, doi: 10.1016/j.cpc.2016.05.010. [85] J. Behler, 'Atom-centered symmetry functions for constructing high-dimensional neural network potentials,' The Journal of Chemical Physics, vol. 134, no. 7, p. 074106, Feb 21 2011, doi: 10.1063/1.3553717. [86] J. W. Gibbs, 'On the equilibrium of heterogeneous substances,' 1879. [87] E. Brochu, Vlad, and Nando, 'A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning,' arXiv pre-print server, 2010-12-12 2010, doi: None arxiv:1012.2599. [88] R. P. Adams, 'A tutorial on Bayesian optimization for machine learning,' Harvard University, 2014. [89] S. Gražulis, A. Daškevič, A. Merkys, D. Chateigner, L. Lutterotti , 'Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration,' Nucleic Acids Research, vol. 40, no. D1, pp. D420-D427, 2012, doi: 10.1093/nar/gkr900. [90] G. Kresse and J. Furthmüller, 'Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,' Computational Materials Science, vol. 6, no. 1, pp. 15-50, 1996, doi: 10.1016/0927-0256(96)00008-0. [91] S. Plimpton, 'Fast parallel algorithms for short-range molecular dynamics,' Journal of computational physics, vol. 117, no. 1, pp. 1-19, 1995. [92] K. Momma and F. Izumi, 'VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,' Journal of applied crystallography, vol. 44, no. 6, pp. 1272-1276, 2011. [93] J. Močkus, 'On Bayesian methods for seeking the extremum,' 1975 1975: Springer, pp. 400-404. [94] A. Stukowski, 'Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool,' Modelling and Simulation in Materials Science and Engineering, vol. 18, no. 1, p. 015012, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80992-
dc.description.abstract"近年來綠色能源是全世界都想要探索的方向,為了擺脫化石燃料,科學家往水力、風力、太陽能等不同的能量來轉換成作為發電的能量來源,而鈣鈦礦(Perovskite)是最近具有很大潛力的太陽能電池材料之一,其主要優點是優秀的光電轉換效率,被視為傳統的矽太陽能電池的接班者,其最大的優勢是製程上不需要像矽一樣做半導體製程,可大幅降低其製造成本,在商用上有很大的發展空間。 鈣鈦礦的晶格結構為ABX3,為了使光電效率提升且同時擁有更好的穩定性,現在的鈣鈦礦已經不再只是單一化合物,而是摻雜多種化學成分所組成的混摻物,在調整混合比例的過程中,微觀尺度的材料性質會有很大的改變,受限於量測技術和時間成本上,很難單靠實驗得到結果,純粹使用試誤法將會曠日費時且效果不彰。因此,吾人嘗試藉由原子尺度模擬以釐清其中各種因素。 第一原理計算(Ab initio calculation)是建立於量子力學理論下所做理論推導的模擬,以計算薛丁格方程式求出電子密度分佈來獲得整個系統的物理性質,其特色是精確度高,且不需要先經過實驗來得到材料之物理性質,所付出的代價是計算時間長,且需要大量的計算資源。故本研究將藉由第一原理計算的結果,使用人工神經網路建立擁有七種元素(C, H, N, Cs, Pb, I, Br)之鈣鈦礦勢能模型,以利快速計算出其他不同比例之鈣鈦礦物理性質,且計算不會因尺寸大小所侷限,該神經網路之勢能模型可以計算出系統性質以及結構優化,受惠於此模型計算速度比第一原理計算快速許多,故吾人可以計算範圍內所有不同摻雜比例的鈣鈦礦,藉此找出最穩定之摻雜比例。 最後,吾人將以貝葉斯優化法來找出特定摻雜比例,在此研究搜索目標為混合能,混合能可以判斷系統是否容易有分相的情況,以該方法可以在全比例中快速搜索出想要的比例。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:25:13Z (GMT). No. of bitstreams: 1
U0001-0209202115034100.pdf: 5954205 bytes, checksum: 989567e12d9e01ba9925c71f1da8cfbf (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"誌謝 I 摘要 II ABSTRACT III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 鈣鈦礦結構介紹 3 1.2.1 鈣鈦礦結構 3 1.2.2 鈣鈦礦原子種類 4 1.2.3 製程方式 6 1.2.4 鈣鈦礦太陽能性能 8 1.3 研究動機 9 1.4 文獻回顧 10 第二章 理論介紹與計算方法 15 2.1 第一原理方法 15 2.1.1 前言 15 2.1.2 薛丁格方程式 15 2.1.3 波恩-歐本海默近似(Born-Oppenheimer approximation) 17 2.1.4 密度泛函理論(Density Functional Theory, DFT) 19 2.1.5 局部密度近似(Local Density Approximation, LDA) 22 2.1.6 廣義梯度近似(Generalized Gradient Approximation, GGA) 23 2.1.7 贋勢(Pseudopotential) 23 2.1.8 布洛赫定理(Bloch’s theorem) 24 2.1.9 自洽計算(Self-consistency) 26 2.2 人工神經網路 28 2.2.1 人工神經網路簡介 28 2.2.2 人工神經元模型 30 2.2.3 監督式學習(Supervised learning) 32 2.2.4 前饋式神經網路(Feedforward Neural Network) 33 2.2.5 反向傳播演算法(Backpropagation Algorithm) 34 2.2.6 高斯描述符(Gaussian descriptor) 38 2.3 其他 41 2.3.1 統計模型 (系綜) 41 2.3.2 貝葉斯優化(Bayesian optimization) 42 第三章 模擬流程與計算架構 47 3.1 模擬流程 47 3.1.1 鈣鈦礦結構建模 48 3.1.2 VASP結構優化 (Structure optimization ) 50 3.1.3 神經網路訓練 52 3.1.4 ANN勢能計算 55 3.2 混合能計算 56 3.2.1 貝葉斯優化過程 56 3.2.2 混合能計算 59 第四章 結果與討論 61 4.1 簡介 61 4.2 生成結構 61 4.3 VASP結構優化 64 4.4 ANN訓練 69 4.5 混合能 76 第五章 結論與未來展望 78 5.1 結論 78 5.2 未來展望 79 參考文獻 80"
dc.language.isozh-TW
dc.subject混合能zh_TW
dc.subject人工神經網路zh_TW
dc.subject分子勢能zh_TW
dc.subject第一原理zh_TW
dc.subject鈣鈦礦zh_TW
dc.subject貝葉斯優化zh_TW
dc.subjectMolecular potentialen
dc.subjectArtificial neural networken
dc.subjectPerovskiteen
dc.subjectBayesian optimizationen
dc.subjectMixing energyen
dc.subjectAb initio calculationen
dc.title人工神經網路於複雜鈣鈦礦材料之結構預測zh_TW
dc.titleArtificial neural network applied in the structure prediction of complex perovskitesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor包淳偉(Chun-Wei Pao)
dc.contributor.oralexamcommittee牛仰堯(Hsin-Tsai Liu),張家歐(Chih-Yang Tseng),趙聖德
dc.subject.keyword鈣鈦礦,第一原理,分子勢能,人工神經網路,貝葉斯優化,混合能,zh_TW
dc.subject.keywordPerovskite,Ab initio calculation,Molecular potential,Artificial neural network,Bayesian optimization,Mixing energy,en
dc.relation.page87
dc.identifier.doi10.6342/NTU202102956
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-0209202115034100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved