請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80991完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張建成(Chien-Cheng Chang) | |
| dc.contributor.author | Jin Lin | en |
| dc.contributor.author | 林瑨 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:25:09Z | - |
| dc.date.available | 2021-09-11 | |
| dc.date.available | 2022-11-24T03:25:09Z | - |
| dc.date.copyright | 2021-09-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-06 | |
| dc.identifier.citation | [1] J. Bernede, 'Organic photovoltaic cells: history, principle and techniques,' Journal of the Chilean Chemical Society, vol. 53, no. 3, pp. 1549-1564, 2008. [2] B. Parida, S. Iniyan, and R. Goic, 'A review of solar photovoltaic technologies,' Renewable and sustainable energy reviews, vol. 15, no. 3, pp. 1625-1636, 2011. [3] A. Goetzberger, C. Hebling, and H.-W. Schock, 'Photovoltaic materials, history, status and outlook,' Materials Science and Engineering: R: Reports, vol. 40, no. 1, pp. 1-46, 2003. [4] S. R. Das, 'Noble endeavors: An overview of Nobel prize-winning research at Bell Labs,' Bell Labs technical journal, vol. 5, no. 1, pp. 95-106, 2000. [5] L. J. Becker and C. Seligman, 'Welcome to the energy crisis,' Journal of Social Issues, vol. 37, no. 2, pp. 1-7, 1981. [6] J. Twidell and T. Weir, Renewable energy resources. Routledge, 2015. [7] L. Lakatos, G. Hevessy, and J. Kovács, 'Advantages and disadvantages of solar energy and wind-power utilization,' World Futures, vol. 67, no. 6, pp. 395-408, 2011. [8] M. A. Green, 'High efficiency silicon solar cells,' in Seventh EC Photovoltaic Solar Energy Conference, 1987: Springer, pp. 681-687. [9] M. A. Green, 'Solar cells: operating principles, technology, and system applications,' Englewood Cliffs, 1982. [10] J. Ramanujam et al., 'Flexible CIGS, CdTe and a-Si: H based thin film solar cells: A review,' Progress in Materials Science, vol. 110, p. 100619, 2020. [11] J. Ramanujam and U. P. Singh, 'Copper indium gallium selenide based solar cells–a review,' Energy Environmental Science, vol. 10, no. 6, pp. 1306-1319, 2017. [12] R. E. Smalley, 'Future global energy prosperity: the terawatt challenge,' Mrs Bulletin, vol. 30, no. 6, pp. 412-417, 2005. [13] O. Ellabban, H. Abu-Rub, and F. Blaabjerg, 'Renewable energy resources: Current status, future prospects and their enabling technology,' Renewable and sustainable energy reviews, vol. 39, pp. 748-764, 2014. [14] K. Yu and J. Chen, 'Enhancing solar cell efficiencies through 1-D nanostructures,' Nanoscale Research Letters, vol. 4, no. 1, pp. 1-10, 2009. [15] A. Ali, M. Kashif, M. T. A. Naz, and W. A. Syed, 'Compositional effect of antimony on physical properties of quaternary copper antimony tin sulfide nanoparticles,' Solid State Communications, vol. 326, p. 114175, 2021. [16] M. A. Green, E. D. Dunlop, J. Hohl‐Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, 'Solar cell efficiency tables (version 56),' Progress in Photovoltaics: Research and Applications, vol. 28, no. 7, pp. 629-638, 2020. [17] P. Nain and A. Kumar, 'Metal dissolution from end-of-life solar photovoltaics in real landfill leachate versus synthetic solutions: One-year study,' Waste Management, vol. 114, pp. 351-361, 2020. [18] N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, 'High‐efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),' Progress in Photovoltaics: Research and Applications, vol. 11, no. 7, pp. 437-443, 2003. [19] S. Pouladi, 'High-Efficiency Flexible Thin-Film Single-Crystal-Like GaAs Solar Cells Based on Cheap Metal Tape,' 2020. [20] R. Ornelas-Acosta, S. Shaji, D. Avellaneda, G. Castillo, T. D. Roy, and B. Krishnan, 'Thin films of copper antimony sulfide: a photovoltaic absorber material,' Materials Research Bulletin, vol. 61, pp. 215-225, 2015. [21] K. Pal, P. Singh, A. Bhaduri, and K. B. Thapa, 'Current challenges and future prospects for a highly efficient (> 20%) kesterite CZTS solar cell: A review,' Solar Energy Materials and Solar Cells, vol. 196, pp. 138-156, 2019. [22] D. B. Mitzi, O. Gunawan, T. K. Todorov, and D. A. R. Barkhouse, 'Prospects and performance limitations for Cu–Zn–Sn–S–Se photovoltaic technology,' Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 371, no. 1996, p. 20110432, 2013. [23] L. Schelhas et al., 'Point defects in Cu2ZnSnSe4 (CZTSe): Resonant X‐ray diffraction study of the low‐temperature order/disorder transition,' physica status solidi (b), vol. 254, no. 9, p. 1700156, 2017. [24] S. Schorr, 'The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study,' Solar Energy Materials and Solar Cells, vol. 95, no. 6, pp. 1482-1488, 2011. [25] W. Xiao et al., 'Intrinsic defects and Na doping in Cu2ZnSnS4: A density-functional theory study,' Solar Energy, vol. 116, pp. 125-132, 2015. [26] L. E. Valle Rios, 'Structural trends in off-stoichiometric kesterite type compound Cu2ZnSnSe4 semiconductor,' 2017. [27] G. Gurieva, D. M. Többens, S. Levcenco, T. Unold, and S. Schorr, 'Cu/Zn disorder in stoichiometric Cu2ZnSn (S1-xSex) 4 semiconductors: A complementary neutron and anomalous X-ray diffraction study,' Journal of Alloys and Compounds, vol. 846, p. 156304, 2020. [28] C. J. Bouwkamp, 'Diffraction theory,' Reports on progress in physics, vol. 17, no. 1, p. 35, 1954. [29] J. M. Cowley, Diffraction physics. Elsevier, 1995. [30] C. Hammond and C. Hammond, The basics of cristallography and diffraction. Oxford, 2001. [31] D. L. Bish and J. E. Post, Modern powder diffraction. Walter de Gruyter GmbH Co KG, 2018. [32] A. Le Bail et al., Powder diffraction: theory and practice. Royal society of chemistry, 2008. [33] M. Eckert, 'Max von Laue and the discovery of X‐ray diffraction in 1912,' ed: WILEY‐VCH Verlag Berlin, 2012. [34] B. E. Warren, X-ray Diffraction. Courier Corporation, 1990. [35] M. A. Krivoglaz, X-ray and neutron diffraction in nonideal crystals. Springer Science Business Media, 2012. [36] A. Ritscher, M. Hoelzel, and M. Lerch, 'The order-disorder transition in Cu2ZnSnS4–A neutron scattering investigation,' Journal of Solid State Chemistry, vol. 238, pp. 68-73, 2016. [37] G. Shirane, R. Pepinsky, and B. Frazer, 'X-ray and neutron diffraction study of ferroelectric PbTiO2,' Acta Crystallographica, vol. 9, no. 2, pp. 131-140, 1956. [38] R. McGreevy and L. Pusztai, 'Reverse Monte Carlo simulation: a new technique for the determination of disordered structures,' Molecular simulation, vol. 1, no. 6, pp. 359-367, 1988. [39] R. L. McGreevy, 'Reverse monte carlo modelling,' Journal of Physics: Condensed Matter, vol. 13, no. 46, p. R877, 2001. [40] M. G. Tucker, D. A. Keen, M. T. Dove, A. L. Goodwin, and Q. Hui, 'RMCProfile: reverse Monte Carlo for polycrystalline materials,' Journal of Physics: Condensed Matter, vol. 19, no. 33, p. 335218, 2007. [41] M. G. Tucker, M. T. Dove, and D. A. Keen, 'Application of the reverse Monte Carlo method to crystalline materials,' Journal of applied crystallography, vol. 34, no. 5, pp. 630-638, 2001. [42] R. Evans, 'Comment on reverse Monte Carlo simulation,' Molecular Simulation, vol. 4, no. 6, pp. 409-411, 1990. [43] G. Evrard and L. Pusztai, 'Reverse Monte Carlo modelling of the structure of disordered materials with RMC++: a new implementation of the algorithm in C++,' Journal of Physics: Condensed Matter, vol. 17, no. 5, p. S1, 2005. [44] O. Gereben and L. Pusztai, 'RMC_POT: A computer code for reverse monte carlo modeling the structure of disordered systems containing molecules of arbitrary complexity,' Journal of computational chemistry, vol. 33, no. 29, pp. 2285-2291, 2012. [45] A. Mellergård and R. McGreevy, 'Reverse Monte Carlo modelling of neutron powder diffraction data,' Acta Crystallographica Section A: Foundations of Crystallography, vol. 55, no. 5, pp. 783-789, 1999. [46] L. Ingber, 'Simulated annealing: Practice versus theory,' Mathematical and computer modelling, vol. 18, no. 11, pp. 29-57, 1993. [47] K. A. Dowsland and J. Thompson, 'Simulated annealing,' Handbook of natural computing, pp. 1623-1655, 2012. [48] D. Bertsimas and J. Tsitsiklis, 'Simulated annealing,' Statistical science, vol. 8, no. 1, pp. 10-15, 1993. [49] W. F. David, 'Routine determination of molecular crystal structures from powder diffraction data,' Chemical Communications, no. 8, pp. 931-932, 1998. [50] A. Coelho, 'Whole-profile structure solution from powder diffraction data using simulated annealing,' Journal of Applied Crystallography, vol. 33, no. 3, pp. 899-908, 2000. [51] W. I. David, K. Shankland, J. Van De Streek, E. Pidcock, W. S. Motherwell, and J. C. Cole, 'DASH: a program for crystal structure determination from powder diffraction data,' Journal of applied crystallography, vol. 39, no. 6, pp. 910-915, 2006. [52] R. J. Gdanitz, 'Prediction of molecular crystal structures by Monte Carlo simulated annealing without reference to diffraction data,' Chemical physics letters, vol. 190, no. 3-4, pp. 391-396, 1992. [53] A. Le Bail, 'ESPOIR: A program for solving structures by Monte Carlo analysis of powder diffraction data,' in Materials Science Forum, 2001, vol. 378, no. 1: Transtec Publications; 1999, pp. 65-70. [54] J. Sanders and E. Kandrot, CUDA by example: an introduction to general-purpose GPU programming. Addison-Wesley Professional, 2010. [55] P. Harish and P. J. Narayanan, 'Accelerating large graph algorithms on the GPU using CUDA,' in International conference on high-performance computing, 2007: Springer, pp. 197-208. [56] Z. Yang, Y. Zhu, and Y. Pu, 'Parallel image processing based on CUDA,' in 2008 International Conference on Computer Science and Software Engineering, 2008, vol. 3: IEEE, pp. 198-201. [57] Y. Liu, A. Wirawan, and B. Schmidt, 'CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions,' BMC bioinformatics, vol. 14, no. 1, pp. 1-10, 2013. [58] R. Suda, 'Investigation on the power efficiency of multi-core and GPU Processing Element in large scale SIMD computation with CUDA,' in International Conference on Green Computing, 2010: IEEE, pp. 309-316. [59] M. Billeter, O. Olsson, and U. Assarsson, 'Efficient stream compaction on wide SIMD many-core architectures,' in Proceedings of the conference on high performance graphics 2009, 2009, pp. 159-166. [60] M. Garland et al., 'Parallel computing experiences with CUDA,' IEEE micro, vol. 28, no. 4, pp. 13-27, 2008. [61] T. Shimobaba et al., 'Computational wave optics library for C++: CWO++ library,' Computer Physics Communications, vol. 183, no. 5, pp. 1124-1138, 2012. [62] D. Jacobsen, J. Thibault, and I. Senocak, 'An MPI-CUDA implementation for massively parallel incompressible flow computations on multi-GPU clusters,' in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010, p. 522. [63] T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, 'Real-time digital holographic microscopy using the graphic processing unit,' Optics express, vol. 16, no. 16, pp. 11776-11781, 2008. [64] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, 'Equation of state calculations by fast computing machines,' The journal of chemical physics, vol. 21, no. 6, pp. 1087-1092, 1953. [65] A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, and E. S. Aydil, 'Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments,' Journal of Applied Physics, vol. 111, no. 8, p. 083707, 2012. [66] V. F. Sears, 'Neutron scattering lengths and cross sections,' Neutron news, vol. 3, no. 3, pp. 26-37, 1992. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80991 | - |
| dc.description.abstract | CZTSe硒化銅錫鋅為研究中的新型化合物太陽能電池材料,該材料具有低汙染、低製程成本的優勢,是取代目前太陽能電池材料的理想方案。製備薄膜硒化銅鋅錫時,材料形成的晶格結構會影響太陽能電池的光電特性,因此,進一步研究硒化銅鋅錫的結構對於理解及合理設計太陽能電池設備非常重要。本研究實作應用於計算硒化銅鋅錫中子衍射強度的蒙地卡羅演算法,透過演算法隨機生成硒化銅鋅錫的結構並根據薛丁格方程式計算其中子衍射強度,達到對實驗材料晶格結構精算的目的。為模擬實驗製備的粉末材料,演算法必須對龐大的晶格結構進行運算,以單核心CPU的運算能力進行需要耗費大量的時間來完成,而演算法的隨機性質需要多次的迭代計算來尋找最佳解,因此本研究針對演算法的效率進行研究以及優化。本研究以平行運算架構加速模擬運算效率,並透過增加硬體設備、提高並行性以及演算法優化等等方式提升模擬計算的效能,使硒化銅鋅錫中子衍射模擬演算法具擁有極高的效率。 本研究首先使用單個圖形處理器處理演算法中耗時最多的內積運算,以Nvidia公司提供的統一計算架構(CUDA)作為應用程式介面平行化演算法的計算,成功獲得5516倍的效能優化(相較於CPU)。隨後本研究更進一步使用訊息傳遞介面(MPI)將演算法分配至不同的核心進行運算,並啟用多個圖形處理器提高演算法的並行性;接著以不同的方式嘗試優化經過平行化的演算法,最佳化的使用各個硬體中的資源,使演算法能夠在對短的時間內完成。 最終本研究最佳化硒化銅鋅錫演算法,使模擬效能進一步提升至42678倍 (相較於CPU),大幅提升演算法的效率。此外,本研究透過擴充數個功能提高演算法的可靠度,包括添加數值演算法—模擬退火(Simulated annealing)法,使演算法能夠在龐大的解空間中有規則的尋找全域最佳解;實作物件導向版本的演算法,增加程式的可讀性以及安全性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:25:09Z (GMT). No. of bitstreams: 1 U0001-0209202115352000.pdf: 5164253 bytes, checksum: 84b7fc0a46a8189e1bcb2d36cb83b748 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 前言 1 1.2 CZTSe硒化銅鋅錫 2 1.3 衍射 3 1.4 Reverse Monte Carlo 5 1.5 Simulated Annealing 6 1.6 Compute Unified Device Architecture 6 第二章 理論介紹 9 2.1 廣義的薛丁格方程式 9 2.2 定態薛丁格方程式 11 2.3 動量空間 12 2.4 玻恩定則 13 2.5 中子彈性衍射 13 第三章 模擬環境 15 3.1 中央處理單元 15 3.1.1 記憶體 16 3.1.2 CPU位元數 18 3.1.3 核心數量 19 3.1.4 工作時脈 21 3.2 圖形處理器 21 3.2.1 硬體架構 21 3.2.2 統一計算架構 28 3.3 應用程式介面 31 3.3.1 C語言 31 3.3.2 C++ 32 3.3.3 訊息傳遞介面(Message passing interface) 32 第四章 演算法介紹 35 4.1 逆向蒙地卡羅方法 35 4.2 模擬退火演算法 37 第五章 結果與討論 39 5.1 演算法架構 39 5.2 演算法優化 47 5.2.1 模擬晶格結構尺寸 47 5.2.2 圖形處理器運用 51 5.2.3 內核結構優化 54 5.2.4 MPI與多圖形處理器優化 57 5.2.5 平均計算量優化 60 5.2.6 非同步運算優化 62 5.2.7 循環展開優化 64 5.2.8 鎖定內存優化 66 5.2.9 程式語言模板化 67 5.3 模擬結果與誤差分析 69 5.4 結論 76 第六章 未來展望 77 第七章 參考文獻 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 中子衍射 | zh_TW |
| dc.subject | 平行運算 | zh_TW |
| dc.subject | CUDA | zh_TW |
| dc.subject | 硒化銅鋅錫 | zh_TW |
| dc.subject | 模擬退火法 | zh_TW |
| dc.subject | RMC演算法 | zh_TW |
| dc.subject | neutron diffraction | en |
| dc.subject | RMC algorithm | en |
| dc.subject | high performance computing | en |
| dc.subject | simulated annealing | en |
| dc.subject | CZTSe | en |
| dc.subject | CUDA | en |
| dc.title | 硒化銅鋅錫中子衍射模擬演算法開發及優化 | zh_TW |
| dc.title | Development and Optimization of CZTSe Neutron Scattering Simulation Algorithm | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 包淳偉(Chun-Wei Pao) | |
| dc.contributor.oralexamcommittee | 林真真(Hsin-Tsai Liu),牛仰堯(Chih-Yang Tseng),張家歐 | |
| dc.subject.keyword | 硒化銅鋅錫,中子衍射,RMC演算法,模擬退火法,平行運算,CUDA, | zh_TW |
| dc.subject.keyword | CZTSe,neutron diffraction,RMC algorithm,simulated annealing,high performance computing,CUDA, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU202102958 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0209202115352000.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
