請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8098完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭智馨(Chih-Hsin Cheng) | |
| dc.contributor.author | Yu-Hsiang Liu | en |
| dc.contributor.author | 劉宇祥 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:48:53Z | - |
| dc.date.available | 2025-10-01 | |
| dc.date.available | 2021-05-20T00:48:53Z | - |
| dc.date.copyright | 2020-10-20 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-10-06 | |
| dc.identifier.citation | 中華民國國家標準國家標準 (1998) CNS 3691 A2046結構混凝土用之輕質粒料。經濟部標準檢驗局。台北。台灣。 李中原 (2008) 「綠屋頂介紹:觀念與案例」。綠屋頂推廣交流討論會資料,台北市錫瑠環境綠化基金會編。台北。台灣。 江康鈺、簡光勵、黃淑貞、陳宜晶 (2005) 水庫淤泥燒結製磚之可行性研究。環境保護28(1):1-13。 汪建民等 (1994) 陶瓷技術手冊。中華民國產業科技發展促進會/粉末冶金協會出版。台北。台灣。 林大方 (2013) 生物炭材料與熱解溫度對其農藝性能的影響。臺灣大學森林環境暨資源學研究所學位論文。台北。台灣。 洪盟峰、黃兆龍、顏聰、蕭江碧、陳豪吉、王和源、葉祥海 (2005) 台灣水庫淤泥燒製輕質骨材可行性之探討。中國土木水利工程學刊 17(3):413-424。 洪盟峰 (2016) 模擬商業用旋窯預燒和燒結的停留時間和溫度對人造輕質骨料的性能影響。科技部補助專題研究計畫成果報告。台北。台灣。 胡趙原 (2004) 下水污泥灰試體成型壓力對燒成輕質骨材之影響。中央大學環境工程研究所學位論文。中壢。台灣。 施朝桂 (2019) 水熱菱角殼製備高比表面積活性碳及其應用。崑山科技大學材料工程研究所學位論文。台南。台灣。 孫承源 (1992) 陶瓷製造技術。陶瓷研究學會。台北。台灣。 高憲彰、鍾明劍、邱顯晉、許秀真、王瑋 (2009) 水庫淤泥資源再利用與市場評估-以石門水庫為例。環境永續國際論壇。 黃忠良 (1998) 精密陶瓷材料概論。復漢出版社。台北。台灣。 黃坤祥 (2001) 粉末冶金學。中華民國粉金協會。台北。台灣。 黃玲瑛 (2003) 地工沙腸管淤泥處理系統之效益評估。成功大學土木工程學系碩士在職專班學位論文。台南。台灣。 黄兆龙、洪盟峰 (2005) 台灣石門水庫淤泥燒制輕骨料的可行性研究。建築材料學報 8(5):467-473。 黃春翔 (2007) 具保水性顆粒介質之燒製與物理性質。成功大學土木工程學系學位論文。台南。台灣。 黃偉綸、潘毅倫、劉禹宏、郭梓淵、賴進華 (2017) 水庫淤泥再利用為混凝土材料之探討:以白河水庫為例。高苑學報 22:45-50。 陳豪吉 (2000) 以水庫淤泥製造輕質骨材及輕質混凝土之研究。國科會報告。台北。台灣。 陈烈芳 (2005) 燒脹粉煤灰陶粒的膨脹機理研究。磚瓦11:7-11。 張孟弘 (2004) 利用水庫淤泥造粒燒製濾料之研究。中央大學環境工程研究所學位論文。中壢。台灣。 葉哲智 (2012) 霧社水庫淤泥再製輕質骨材可行性研究。中興大學土木工程學系所學位論文。台中。台灣。 經濟部水利署 (2012) 台灣地區民國101年蓄水設施水量營運統計報告。經濟部水利署各項用水資料庫。台北。台灣。 楊全成 (2009) usb介面之土壤力學試驗自動化研究 - 以改良土為研究材料。正修科技大學土木與空間資訊系研究報告。高雄。台灣。 蔡佳儒、吳耿東 (2013) 木質材料製備之生物炭應用對植物生長機制之探討。林產工業 32(3):169-178。 蔡長泰、王文江 (2006) 水庫淤泥應用於國土保育之研究 (3/3)。 劉懿賢 (2019) 石門水庫淤泥燒製陶粒對硝酸鹽及磷酸鹽之吸脫附研究。中興大學環境工程學系所學位論文。台中。台灣。 蕭博仰 (2006) 水庫淤泥輕質骨材之膨脹氣體生成研析。中興大學土木工程學系所學位論文。台中。台灣。 簡士濠、江介倫、王建昇、張庠睿 (2012)。添加生物炭對酸性紅壤肥力之影響。農業工程學報 58(4):15-22。 顏聰、黃兆龍 (2003) 水庫淤泥輕質骨材產製及輕質骨材混凝土應用與推廣。內政部建築研究所補助研究報告。台北。台灣。 Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., Usman, A. R. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374-379. Beck, D. A., Johnson, G. R., Spolek, G. A. (2011). Amending greenroof soil with biochar to affect runoff water quantity and quality. Environmental Pollution, 159(8-9), 2111-2118. Berndtsson, J. C. (2010). Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36(4), 351-360. Bliss, D. J., Neufeld, R. D., Ries, R. J. (2009). Storm water runoff mitigation using a green roof. Environmental Engineering Science, 26(2), 407-418. Brady, N. C., Weil, R. R., Weil, R. R. (2008). The nature and properties of soils (Vol. 13, pp. 662-710). Upper Saddle River, New Jersy, NJ : Prentice Hall. Cao, C. T., Farrell, C., Kristiansen, P. E., Rayner, J. P. (2014). Biochar makes green roof substrates lighter and improves water supply to plants. Ecological Engineering, 71, 368-374. Chen, C. P., Cheng, C. H., Huang, Y. H., Chen, C. T., Lai, C. M., Menyailo, O. V., ... Yang, Y. W. (2014). Converting leguminous green manure into biochar: changes in chemical composition and C and N mineralization. Geoderma, 232, 581-588. Chiang, K. Y., Chou, P. H., Hua, C. R., Chien, K. L., Cheeseman, C. (2009). Lightweight bricks manufactured from water treatment sludge and rice husks. Journal of Hazardous Materials, 171(1-3), 76-82. Cultrone, G., Sebastián, E., Elert, K., De la Torre, M. J., Cazalla, O., Rodriguez–Navarro, C. (2004). Influence of mineralogy and firing temperature on the porosity of bricks. Journal of the European Ceramic Society, 24(3), 547-564. David, D. J. (1960). The determination of exchangeable sodium, potassium, calcium and magnesium in soils by atomic-absorption spectrophotometry. Analyst, 85(1012), 495-503. Dogan, A. U., Dogan, M., Onal, M., Sarikaya, Y., Aburub, A., Wurster, D. E. (2006). Baseline studies of the clay minerals society source clays: specific surface area by the Brunauer Emmett Teller (BET) method. Clays and Clay Minerals, 54(1), 62-66. Dondi, M., Ercolani, G., Guarini, G., Marsigli, M., Venturi, I. (1995). Evoluzione della microstruttora durante la cottura rapida di impasti per piastrelle porose. Ceramurgia, 25, 301-314. Farías, R. D., Martínez-García, C., Cotes Palomino, T., Martínez Arellano, M. (2017). Effects of wastes from the brewing industry in lightweight aggregates manufactured with clay for green roofs. Materials, 10(5), 527. Gancedo, J. R., Gracia, M., Marco, J. F., Palacios, J. (1988). Mössbauer spectroscopic and SEM Study of Campanian and Terra Sigillata pottery from Spain. Hyperfine Interactions, 41(1), 791-794. Giovannini, C., Lucchesi, S., Giachetti, M. (1990). Effects of heating on some chemical parameters related to soil fertility and plant growth. Soil Science, 149(6), 344-350. Hatch, C. D., Wiese, J. S., Crane, C. C., Harris, K. J., Kloss, H. G., Baltrusaitis, J. (2012). Water adsorption on clay minerals as a function of relative humidity: application of BET and Freundlich adsorption models. Langmuir, 28(3), 1790-1803. Huang, C., Pan, J. R., Liu, Y. (2005). Mixing water treatment residual with excavation waste soil in brick and artificial aggregate making. Journal of Environmental Engineering, 131(2), 272-277. Jaisi, D. P., Dong, H., Liu, C. (2007). Influence of biogenic Fe (II) on the extent of microbial reduction of Fe (III) in clay minerals nontronite, illite, and chlorite. Geochimica et Cosmochimica Acta, 71(5), 1145-1158. Jin, Y., Huang, S., Wang, Q., Gao, M., Ma, H. (2019). Ceramsite production from sediment in Beian River: characterization and parameter optimization. Royal Society Open Science, 6(8), 190197. Kizinievič, O., Kizinievič, V., Pundiene, I., Molotokas, D. (2018). Eco-friendly fired clay brick manufactured with agricultural solid waste. Archives of Civil and Mechanical Engineering, 18, 1156-1165. Kuoppamäki, K., Hagner, M., Lehvävirta, S., Setälä, H. (2016). Biochar amendment in the green roof substrate affects runoff quality and quantity. Ecological Engineering, 88, 1-9. Lehmann, J. (2007). Bio‐energy in the black. Frontiers in Ecology and the Environment, 5(7), 381-387. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B., ... Neves, E. G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719-1730. Liao, Y. C., Huang, C. Y. (2011). Effects of CaO addition on lightweight aggregates produced from water reservoir sediment. Construction and Building Materials, 25(6), 2997-3002. Liu, M., Wang, C., Bai, Y., Xu, G. (2018). Effects of sintering temperature on the characteristics of lightweight aggregate made from sewage sludge and river sediment. Journal of Alloys and Compounds, 748, 522-527. Maritan, L., Nodari, L., Mazzoli, C., Milano, A., Russo, U. (2006). Influence of firing conditions on ceramic products: experimental study on clay rich in organic matter. Applied Clay Science, 31(1-2), 1-15. Nishita, H., Haug, R. M., Hamilton, M., Alexander, G. V. (1969). Influence of soil heating on the growth and elemental composition of bean plants (No. UCLA-12-731). California Univ., Los Angeles. Lab. of Nuclear Medicine and Radiation Biology. Nishita, H., Haug, R. M. (1971). Some physical and chemical characteristics of heated soils (No. UCLA-12-819). California Univ., Los Angeles. Lab. of Nuclear Medicine and Radiation Biology. Önal, M. (2007). Swelling and cation exchange capacity relationship for the samples obtained from a bentonite by acid activations and heat treatments. Applied Clay Science, 37(1-2), 74-80. Orts, M. J., Escardino, A., Amorós, J. L., Negre, F. (1993). Microstructural changes during the firing of stoneware floor tiles. Applied Clay Science, 8(2-3), 193-205. Peters, T., Iberg, R., (1978). Mineralogical changes during firing ofcalcium-rich brick clays. American Ceramic Society Bulletin 57(5), 503–509. Pontikes, Y., Rathossi, C., Nikolopoulos, P., Angelopoulos, G. N., Jayaseelan, D. D., Lee, W. E. (2009). Effect of firing temperature and atmosphere on sintering of ceramics made from Bayer process bauxite residue. Ceramics International, 35(1), 401-407. Qi, Y., Yue, Q., Han, S., Yue, M., Gao, B., Yu, H., Shao, T. (2010). Preparation and mechanism of ultra-lightweight ceramics produced from sewage sludge. Journal of Hazardous Materials, 176(1-3), 76-84. Riley, C. M. (1951). Relation of chemical properties to the bloating of clays. Journal of the American Ceramic Society, 34(4), 121-128. Sertsu, S. M., Sánchez, P. A. (1978). Effects of heating on some changes in soil properties in relation to an Ethiopian land management practice. Soil Science Society of America Journal, 42(6), 940-944. Sun, F., Lu, S. (2014). Biochars improve aggregate stability, water retention, and pore‐space properties of clayey soil. Journal of Plant Nutrition and Soil Science, 177(1), 26-33. Viani, A., Cultrone, G., Sotiriadis, K., Ševčík, R., Šašek, P. (2018). The use of mineralogical indicators for the assessment of firing temperature in fired-clay bodies. Applied Clay Science, 163, 108-118. Wang, X., Jin, Y., Wang, Z., Mahar, R. B., Nie, Y. (2008). A research on sintering characteristics and mechanisms of dried sewage sludge. Journal of Hazardous Materials, 160(2-3), 489-494. Wu, H., Zhang, T., Pan, R., Chun, Y., Zhou, H., Zhu, W., Peng, H., Zhang, Q. (2018). Sintering-free preparation of porous ceramsite using low-temperature decomposing pore former and its sound-absorbing performance. Construction and Building Materials, 171, 367-376. Xu, G. R., Zou, J. L., Li, G. B. (2008). Effect of sintering temperature on the characteristics of sludge ceramsite. Journal of Hazardous Materials, 150(2), 394-400. Yu, X. Y., Ying, G. G., Kookana, R. S. (2009). Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere, 76(5), 665-671. Yuan, S., Chen, X. L., Li, J., Wang, F. C. (2011). CO2 gasification kinetics of biomass char derived from high-temperature rapid pyrolysis. Energy and Fuels, 25(5), 2314-2321. Zheng, H., Wang, Z., Deng, X., Zhao, J., Luo, Y., Novak, J., ... Xing, B. (2013). Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresource Technology, 130, 463-471. Zou, J. L., Xu, G. R., Li, G. B. (2009). Ceramsite obtained from water and wastewater sludge and its characteristics affected by Fe2O3, CaO, and MgO. Journal of Hazardous Materials, 165(1-3), 995-1001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8098 | - |
| dc.description.abstract | 本研究以水庫底泥與有機資材製成一種具有保水性的新型生物炭陶粒介質,並探討燒結溫度(600℃、800℃與1000℃)、有機資材添加比例(0%、5%、10%與15%)與燒結氣氛(空氣燒結與氮氣燒結)對生物炭陶粒各項理化性質的影響。實驗結果與商用介質(發泡煉石與火山岩屑)比較,提出最適生產條件與栽培介質配方。 實驗結果發現燒結溫度愈高,陶粒燒結作用變得明顯,其燒結過程的粉體熔融、礦物改變與孔隙分布等改變,致使陶粒之機械強度增加,降低陶粒水份持留與養分含量。燒結氣氛的不同,造成對有機資材添加的明顯差異,在空氣燒結樣本中,有機資材添加主要作為發泡劑增加孔隙,增加孔隙可造成陶粒機械強度降低,但增加水份持留;在氮氣燒結生物炭陶粒樣本中,添加有機資材以生物炭形式留存,雖同樣因孔隙生成使機械強度下降,但不僅碳氮養分明顯留存,其保水能力亦較空氣燒結陶粒更具優勢。 相較於商用陶粒,生物炭陶粒抗壓強度介於0.2 MPa 至10.0 MPa 之間,兩種商用介質則分別是1.2 MPa 與 1.6 MPa,雖然大部分生物炭陶粒抗壓強度相對較差,但仍具一定物理穩定結構。生物炭陶粒的植物可利用水分介於 8.6 %至 46.1 % 之間,兩種商用介質的植物可利用水分僅為 2.3%,且生物炭陶粒對植物可利用水分的保留時間可達商用介質的3倍。生物炭陶粒的氮含量介於 0.02 % 至 0.2 % 之間,兩種商用介質皆無法檢測出氮含量。因此,利用生物炭陶粒做為栽培介質,可較市面上的商用介質更具保水與養分提供之栽培優勢。 綜合以上結果,生物炭陶粒的最適配方可以分為兩種情況,一為常用盆栽栽植環境,建議可以800℃混合10%有機資材之生物炭陶粒使用,在此條件下,生物炭陶粒可提供更佳的養分含量以及水分持留能力;另一情況則是需求長期使用,就如大樓樓頂的綠屋頂環境,此時建議1000℃混合15%有機資材之生物炭陶粒使用,高溫生物炭陶粒可提供如商用陶粒之穩定結構,且因生物炭混入而具明顯養分含量與水份持留優勢。 | zh_TW |
| dc.description.abstract | In this study, a new type of biochar-based cermasite with water-retentive properties was produced from reservoir sediment and organic materials. The sintering temperature (600℃, 800℃ and 1000℃), the proportion of organic materials (0%, 5%, 10% and 15%) and the sintering atmosphere (air sintered and nitrogen sintered) were investigated to determine the effects of these factors on the physicochemical properties of the biochar-based ceramsite. The experimental results were compared with commercial media (commercial ceramsite(Com-1) and volcanic rock(Com-2)), and the optimal production conditions were suggested. The results indicated that the increase of sintering temperature led to a series of changes of biochar-based cermasite, including powder melting, pore size distribution, mineral composition, etc. High sintering temperatures improved mechanical strength but reduced water retention and nutrient contents. Differences in the sintering atmosphere had different effects on the organic materail amendments. In the aerobic sintering ceramsite, the organic material would be burned out and thus increased the pore volume of ceramsite, reduced the mech-anical strength but increased water retention capacity. In the anaerobic sintering ceramsite, the organic materials would be pyrolysised as biochar, and thus reduced mechanic strength as well but increasing water retention capacity and carbon and nitrogen nutrients. The compressive mechanic strength of biochar-based cermasite was between 0.2 MPa and 10.0 MPa, while the two commercial media were at 1.2 MPa and 1.6 MPa, respectively. Although most of the biochar-based cermasite had lower mechanic strength, they still maintain-ned an adequate strength. The plant-available water content of biochar-based cermasite ranged from 8.6% to 46.1%. In comparison, the plant-available water content in commercial media was only 2.3 %. The plant-available water retention time of biochar-based cermasite was up to three times of the commercial media. The nitrogen content of biochar-based cermasite was bet-ween 0.02% and 0.2%, while no nitrogen content could be detected in the commercial media. Therefore, the biochar-based cermasite had advantages over commercial media, particularly water retention and nutrient contents, over the commercial media. We proposed two types that the most suitable sintering conditions for making growing media. First, the sediment ceramasite, mixed with 10% organic material at 800℃, would provide better nutrient content and water retention capacity for the potted plants. Second, the sediment ceranmsite, mixed with 10% organic material at sintering at 1000℃, would be suitable for long-term use, such as green roof. Thus, the biochar-based cermasite should have advantages over the commercial media, particularly in nutrient contents and water retention. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:48:53Z (GMT). No. of bitstreams: 1 U0001-0510202016590300.pdf: 5477946 bytes, checksum: 73a11d2491135ae4588d3c3952f2357e (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 謝誌 i 摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 ix 1.前言 1 1.1水庫底泥的來源 1 1.2水庫底泥再利用 1 1.3多孔材料的製備 2 1.4 生物炭 3 1.5 研究目的 4 2.材料方法 5 2.1 原料製備 5 2.2 生物炭陶粒製作 5 2.3 生物炭陶粒性質分析: 6 2.3.1基本性質分析 6 2.3.2物理性質分析 7 2.3.3化學性質分析 8 2.3.4保水能力試驗 9 2.3.5生物炭陶粒微結構 10 2.4 統計方法 13 3.實驗結果 14 3.1 原料性質分析 14 3.2 生物炭陶粒物理性質 14 3.2.1外觀 14 3.2.2抗壓強度與堆積密度 14 3.2.3摩擦損失率與團粒穩定度 16 3.3生物炭陶粒化學性質 18 3.3.1 pH 18 3.3.2 碳氮元素分析 19 3.3.3 CEC 19 3.3.4 可交換性陽離子 20 3.4生物炭陶粒保水能力 21 3.4.1最大保水能力 21 3.4.2 水分特定曲線 22 3.4.3 保水-時間曲線 23 3.4.4 植物可利用水 24 3.5生物炭陶粒微結構 24 3.5.1 BET 24 3.5.2 SEM-EDX 24 3.5.3 XRD 26 4.討論 27 4.1燒結定義 27 4.2生物炭陶粒的物理性質 27 4.2.1生物炭陶粒外觀 27 4.2.2抗壓強度與堆積密度 28 4.2.3摩擦損失率與團粒穩定度 29 4.3陶粒化學性質 30 4.4陶粒保水特性 32 4.5生物碳陶粒微結構 35 4.5.1 比表面積 35 4.5.2 XRD 35 4.6 與商用陶粒的比較 36 5.結論 38 6.參考文獻 39 | |
| dc.language.iso | zh-TW | |
| dc.title | 以水庫底泥與花生殼製作生物炭陶粒之研究 | zh_TW |
| dc.title | Producing biochar-based Ceramsite from Reservoir Sediment and Peanut shell | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建德(Chien-Ten Chen),吳耿東(Keng-Tung Wu) | |
| dc.subject.keyword | 生物炭,陶粒,水庫底泥,農業廢棄物,栽培介質, | zh_TW |
| dc.subject.keyword | biochar,ceramsite,reservoir sediment,agricultural waste,growing media, | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU202004239 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-10-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-10-01 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0510202016590300.pdf | 5.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
