Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80983
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉仲基(Chung-Kee Yeh)
dc.contributor.authorWen-Ko Hsuen
dc.contributor.author徐文科zh_TW
dc.date.accessioned2022-11-24T03:24:48Z-
dc.date.available2022-02-16
dc.date.available2022-11-24T03:24:48Z-
dc.date.copyright2022-02-16
dc.date.issued2022
dc.date.submitted2022-02-07
dc.identifier.citation1. Adams, S., and A. O. Acheampong. 2019. Reducing carbon emissions: The role of renewable energy and democracy. J. Clean. Prod., 240, 118245. 2. Alkhalidi, M. A., S. K. Al-Dabbous, S. Neelamani, and H. A. Aldashti. 2019. Wind energy potential at coastal and offshore locations in the state of Kuwait. Renewable Energy 135: 529–539. 3. Arrambide, I., I. Zubia, and A. Madariaga. 2019. Critical review of offshore wind turbine energy production and site potential assessment. Electric Power System Research 167: 39–47. 4. Barthelmie R. J., T. J. Shepherd, J. A. Aird, and S. C. Pryor. 2020. Power and wind shear implications of large wind turbine scenarios in the US central plains. Energies 13: 4269; doi:10.3390/en13164269. 5. Bechrakis, D.A., J. P. Deane, and E.J. McKeogh. 2004. Wind resource assessment of an area using short term data correlated to a long term data set. Sol. Energy 76: 725–732. 6. Billinton, R., and H. Chen. 1997. Effect of wind turbine parameters on the capacity adequacy of generating systems using wind energy. Power and Computing WESCANEX’97 Proceedings, Winnipeg, MB, pp. 47-52. 7. Caglayan, I., I. Tikiz, A. C. Turkmen, C. Celik, and G. Soyhan. 2019.Analysis of wind energy potential; A case study of Kocaeli University campus. Fuel 253: 1333–1341. 8. Carta, J.A., P. Ramírez, and C. Bueno. 2008. A joint probability density function of wind speed and direction for wind energy analysis. Energy Convers. Manag. 49: 1309–1320. 9. Clive, P. J. M. 2008.Non-Linearity in MCP with Weibull Distributed Wind Speeds. Wind Eng., 32: 319–323. 10. Golding, E. W. 1995. Generator of Electricity by Wind Power. E.&F.N.Spon, London. 11. Dedecca, J. G., R. A. Hakvoort, and J. R. Ortt. 2016. Market strategies for offshore wind in Europe: A development and diffusion perspective. Renew. Sustain. Energy Rev. 66: 286–296. 12. Dhunny, A. Z., M. R. Lollchund, and S. D. D. V. Rughooputh. 2017. Wind energy evaluation for a highly complex terrain using Computational Fluid Dynamics (CFD). Renew. Energy 101: 1–9. 13. Hanif, S., X. Liu, Z. Lin, and S. Lotfian. 2020. A Critical Review of wind power forecasting methods- past, present and future. Energies 13: 3764; doi:10.3390/en13153764. 14. Hansen, A. D. 2005. Wind Power in Power System: Generator and Power Electronics for Wind Turbines. John Wiley & Sons, West Sussex. 15. Hu, S. Y., and J. H. Cheng. 2007. Performance evaluation of pairing between sites and wind turbines. Renewable Energy 32: 1934-1947. 16. Ibrahim, R. 2020. Effective Algorithms for Real-Time Wind Turbine Condition Monitoring and Fault-Detection; Loughborough University: Loughborough, UK. 17. Jangamshetti, S. H., and V. G. Rau. 1999. Site matching of wind turbine generators: A case study. IEEE Transactions Energy Conversion 14: 1537-1543. 18. Johnson, G. L. 1994. Wind Energy Systems. Gary L. Johnson: Manhattan, KS, USA. 19. Jung, S., O. Arda Vanli, and S. D. Kwon. 2013. Wind energy potential assessment considering the uncertainties due to limited data. Applied Energy 102: 1492–1503. 20. Kalmikov, A. 2017. Chapter 2 Wind Power Fundamentals. In Wind Energy Engineering; Letcher, T. M., Ed.; Academic Press: Cambridge, MA, USA, pp. 17–24. 21. Kaldellis, John K., and D. Zafirakis. 2011.The wind energy (r)evolution: A short review of a long history, Renewable Energy 36 (7): 1887-190. 22. Landberg, L., and N.G. Mortensen. 1993. A comparison of physical and statistical methods for estimating the wind resource at a site. In Proceedings of 15th British Wind Energy Association Conference, York, UK. pp. 119–125. 23. Li, Y., X. Huang, K. F. Tee, Q. Li, and X. P. Wu. 2020. Comparative study of onshore and offshore wind characteristics and wind energy potentials: A case study for southeast coastal region of China. Sustainable Energy Technolgies Assessments 39: 100711. 24. Lin, Z., X. Liu, and M. Collu.2020. Wind power prediction based on high-frequency SCADA data along with isolation forest and deep learning neural networks. Int. J. Electr. Power Energy Syst. 118, 105835. 25. Masters, G. M. 2013. Renewable and Efficient Electric Power Systems,. John Wiley and Sons Co. 26. Mathew, S., K. P. Pandey, and A. Kumar. 2002. Analysis of wind regimes for energy estimation. Renewable Energy 25: 381-399. 27. Manwell, J. F., J.G. McGowan, and A L. Rogers. 2002. Wind Energy Explained: Theory, Design and Application. Wiley, Chichester; New York. 28. Monfared, M., H. Rastegar, and H.M. Kojabadi. 2009.A new strategy for wind speed forecasting using artificial intelligent methods. Renew. Energy 34: 845–848. 29. Oh, K. Y., W. Nam, M. S. Ryu, J.Y. Kim, and B. I. Epureanu. 2018. A review of foundations of offshore wind energy convertors: Current status and future perspectives. Renew. Sustain. Energy Rev. 88: 16–36. 30. Rogers, A. L., J. W. Rogers, and J. F. Manwell. 2005. Comparison of the performance of four measure–correlate–predict algorithms. J. Wind Eng. Ind. Aerodyn. 93: 243–264. 31. Palma, J. M., L. M. Castro, F. A. Ribeiro, L. F. Rodrigues, and A. H. Pinto. 2008. Linear and nonlinear models in wind resource assessment and wind turbine micro-siting in complex terrain. J. Wind Eng. Ind. Aerodyn. 96: 2308–2326. 32. Romo Perea, A., J. Amezcua, and O. Probst. 2011. Validation of three new measure-correlate-predict models for the long-term prospection of the wind resource. J. Renew. Sustain Energy 3, 023105. 33. Sedaghat, A., F. Alkhatib, A. Eilaghi, M. Sabati, L. Borvayeh, and A. Mostafaeipour. 2019. A new strategy for wind turbine selection using optimization based on rated wind speed. Energy Procedia 160: 582–589. 34. Serban, A., L. S. Paraschiv, and S. Paraschiv. 2020. Assessment of wind energy potential based on Weibull and Rayleigh distribution models. Energy Reports 6: 250–267. 35. Siderato, G. S., and N. D. Hatziargyrious. 2007. An advanced statistical method for wind power forecasting. IEEE Transactions Power Systems 22 (1): 258-265. 36. Shu, Z. R., Q. S. Li, and P. W. Chan. 2015. Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function. Applied Energy 156: 362–373. 37. Tavner, P. J., G. J. W van Bussel, and F. Spinato. 2006. Machine and Converter Reliabilities in Wind Turbines, 3rd International IEE Conference, Power Electrics Machines and Drives, Dublin, 6 pp. 38. Tozzi, P., and J. H. Jo. 2017. A comparative analysis of renewable energy simulation tools: Performance simulation model vs. system optimization. Renew. Sustain. Energy Rev. 80: 390–398. 39. Velázquez, S, J. A. Carta, and J. M. Matías. 2011. Comparison between ANNs and linear MCP algorithms in the long-term estimation of the cost per kWh produced by a wind turbine at a candidate site: A case study in the Canary Islands. Appl. Energy 88: 3869–3881. 40. Weekes, S. M., and A. S. Tomlin. 2014. Comparison between the bivariate Weibull probability approach and linear regression for assessment of the long-term wind energy resource using MCP. Renew. Energy 68: 529–539. 41. Woods, J. C., and S. J. Watson. 1997 A new matrix method of predicting long-term wind roses with MCP. J. Wind Eng. Ind. Aerodyn. 66: 85–94. 42. Yeh, T. H., and L. Wang. 2008. A study on generator capacity for wind turbines under various tower heights and rated wind speeds using Weibull distribution. IEEE Transactions Energy Conversion 23 (2): 592-602. 43. Zhang, P., J. Lee, G. Kang, Y. Li, D. Yang, B. Pang, and Y. Zhang. 2018. Disparity of nitrate and nitrite in vivo in cancer villages as compared to other areas in Huai River Basin, China. Sci. Total Environ. 612: 966–974.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80983-
dc.description.abstract"本研究探討台灣中西部外海離岸風場之風能潛勢,藉由鄰近陸域風力機運轉資訊(Wind Turbine Generator SCADA Data)及光達(Light Detection and Ranging, LiDAR)量測之資料,搭配量測推估法(Measure-Correlated-Predict, MCP)推估出離岸風場區域之風力分佈,將可據以進行風能潛勢分析。 首先統計分析離岸海氣象觀測塔(Met Mast)之觀測資訊,來了解台灣中西部外海近岸地區離岸風能密度大小與分佈情形,後續透過常見風力發電機性能曲線(Power Curve)來進行產能評估,包含年發電量 (Annual Energy Production)與容量因數(Capacity Factor)等,並以本區域風能分佈情形來評估潛在機組的產能評估與其適應性。 其次以鄰近海氣象觀測塔之陸域風力發電機運轉資訊,配合光達 (LiDAR)量測比對,以量測推估(MCP)法取得風能分佈情形,光達可同時量測特定高層風速,進而取得所需高層風能分佈,並藉由比對海氣象觀測塔資料風力發電機產能評估,來確認推估方式取得風能分佈之可行性。 本研究所提以風力發電機運轉資訊配合光達進行量測推估之風能調查方法實屬可行,可有效縮短風能分佈取得所需時間及降低成本,對後續離岸風能開發將有所助益。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:24:48Z (GMT). No. of bitstreams: 1
U0001-0302202212444400.pdf: 3025040 bytes, checksum: 67a9243b971956c414d2410a2678e9d5 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 ix 符號說明 x 第一章、前言與研究目的 1 1.1 前言 1 1.2 研究目的 4 第二章、文獻探討 5 2.1 風力發電發展 5 2.2 風能介紹 7 2.2.1 風能評估 7 2.2.2 風能分佈 8 2.3 風力發電機 12 2.3.1 風力發電機出力 12 2.3.2 性能曲線 13 2.3.3 風力發電機型式 14 2.3.4 固定轉速風力發電機 14 2.3.5 可變轉速風力發電機 16 2.3.6 永磁可變轉速風力發電機 17 2.3.7 感應式可變轉速風力發電機 18 2.3.8 雙饋感應式可變轉速風力發電機 18 2.3.9 直驅式可變轉速風力發電機 18 2.4 風力發電效能評估 21 2.4.1 年總發電量 21 2.4.2 容量因數 21 2.5 量測推估 22 第三章、材料與方法 24 3.1 海氣象觀測塔風能分佈實測 24 3.2 離岸風能分佈推估 26 3.3 產能評估 31 3.4 風能損失產能評估 32 第四章、結果與討論 33 4.1 海氣象觀測塔風能分佈實測 33 4.1.1 平均風速與風能密度 33 4.1.2 台灣中西部實測風速模型 34 4.2 離岸風能分佈推估 37 4.2.1 風力發電機資料 37 4.2.2 光達比對資料 39 4.2.3 67m實測與推估風能分佈比較 42 4.2.4 95m實測與推估風況比較 43 4.3 產能評估 46 4.4 風能損失產能評估 53 4.4.1 陸域比對風能損失 53 4.4.2 六款風力發電機風能損失 54 第五章、結論與建議 58 參考文獻 60 附錄 64
dc.language.isozh-TW
dc.subject量測推估法zh_TW
dc.subject風力發電機運轉資訊zh_TW
dc.subject海氣象觀測塔zh_TW
dc.subject性能曲線zh_TW
dc.subject年發電量zh_TW
dc.subject容量因數zh_TW
dc.subject光達zh_TW
dc.subjectAnnual Energy Productionen
dc.subjectPower Curveen
dc.subjectCapacity Factoren
dc.subjectMet Masten
dc.subjectMeasure-Correlated-Predict (MCP)en
dc.subjectLight Detection and Ranging (LiDAR)en
dc.subjectWind Turbine Generator SCADA Dataen
dc.title台灣中西部離岸風能潛勢評估之研究zh_TW
dc.titleOffshore Wind Potential Assessment of West Central Taiwanen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.oralexamcommittee黃振康(Chun-Chung Chen),陳洵毅(Wen-Nang Tsan),吳剛智,林連雄
dc.subject.keyword風力發電機運轉資訊,光達,量測推估法,海氣象觀測塔,性能曲線,年發電量,容量因數,zh_TW
dc.subject.keywordWind Turbine Generator SCADA Data,Light Detection and Ranging (LiDAR),Measure-Correlated-Predict (MCP),Met Mast,Power Curve,Annual Energy Production,Capacity Factor,en
dc.relation.page64
dc.identifier.doi10.6342/NTU202200273
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-02-09
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-0302202212444400.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved