Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80956
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡政達(Jeng-Da Chai)
dc.contributor.authorChao-Yuan Changen
dc.contributor.author張肇元zh_TW
dc.date.accessioned2022-11-24T03:23:33Z-
dc.date.available2021-10-04
dc.date.available2022-11-24T03:23:33Z-
dc.date.copyright2021-10-04
dc.date.issued2021
dc.date.submitted2021-09-10
dc.identifier.citation[1] G. Britton. Structure and properties of carotenoids in relation to function. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 9(15):1551–1558, December 1995. [2] B. D. Ezell and M. S. Wilcox. The Ratio of Carotene to Carotenoid Pigments in Sweet­potato Varieties. Science, 103(2668):193–194, February 1946. [3] A. W. Johnson. Terpene Chemistry. Nature, 190(4770):18–19, April 1961. [4] Carotene and Allied Pigments*. Nature, 145(3669):286–288, February 1940. [5] Nazia Nisar, Li Li, Shan Lu, Nay Chi Khin, and Barry J. Pogson. Carotenoid Metabolism in Plants. Molecular Plant, 8(1):68–82, January 2015. [6] A. Vershinin. Biological functions of carotenoids – diversity and evolution. Biofactors, 10(2­3):99–104, 1999. [7] Dorothea Siefermann­Harms. The light­harvesting and protective functions of carotenoids in photosynthetic membranes. Physiologia Plantarum, 69(3):561–568, 1987. [8] Minjung Son, Stephanie M. Hart, and Gabriela S. Schlau­Cohen. Investigating carotenoid photophysics in photosynthesis with 2D electronic spectroscopy. Trends in Chemistry, page S2589597421001234, June 2021. [9] M. Calvin. Function of Carotenoids in Photosynthesis. Nature, 176(4495):1215– 1215, December 1955. [10] A. J. Young and G. M. Lowe. Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys, 385(1):20–7, 2001. [11] PaulineF.Conn,WolfgangSchalch,andT.GeorgeTruscott.Thesingletoxygenand carotenoid interaction. Journal of Photochemistry and Photobiology B: Biology, 17(1), 1993. [12] R. F. Hunter. The Conversion of Carotene Into Vitamin A. Nature, 158(4008):257– 260, August 1946. [13] P. Karlson. Carotene as provitamin A. Trends in Biochemical Sciences, 3(4):235– 236, October 1978. [14] J Beilby, G L Ambrosini, E Rossi, N H de Klerk, and A W Musk. Serum levels of folate, lycopene, β­carotene, retinol and vitamin E and prostate cancer risk. European Journal of Clinical Nutrition, 64(10):1235–1238, October 2010. [15] D. Umeno, A. V. Tobias, and F. H. Arnold. Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev, 69(1):51–78, 2005. [16] Claudia Schmidt­Dannert, Daisuke Umeno, and Frances H. Arnold. Molecular breeding of carotenoid biosynthetic pathways. Nature Biotechnology, 18(7):750– 753, July 2000. [17] Godfrey S. Beddard, R. Stephen Davidson, and Kenneth R. Trethewey. Quenching of chlorophyll fluorescence by β­carotene. Nature, 267(5609):373–374, May 1977. [18] Fernando Muzzopappa and Diana Kirilovsky. Changing Color for Photoprotection: The Orange Carotenoid Protein. Trends in Plant Science, 25(1):92–104, January 2020. [19] A.P. Shreve, J.K. Trautman, T.G. Owens, and A.C. Albrecht. Determination of the S2 lifetime of β­carotene. Chemical Physics Letters, 178(1):89–96, March 1991. [20] Kazuhiro Yanagi, Konstantin Iakoubovskii, Said Kazaoui, Nobutsugu Minami, Yu­ taka Maniwa, Yasumitsu Miyata, and Hiromichi Kataura. Light­harvesting function of β ­carotene inside carbon nanotubes. Physical Review B, 74(15):155420, October 2006. [21] Javier Cerezo, José Zúñiga, Adolfo Bastida, Alberto Requena, José Pedro Cerón­ Carrasco, and Leif A. Eriksson. Antioxidant Properties of β­Carotene Isomers and Their Role in Photosystems: Insights from Ab Initio Simulations. The Journal of Physical Chemistry A, 116(13):3498–3506, April 2012. [22] I. A. Yaroshevich, P. M. Krasilnikov, and A. B. Rubin. Functional interpretation of the role of cyclic carotenoids in photosynthetic antennas via quantum chemical calculations. Computational and Theoretical Chemistry, 1070:27–32, 2015. [23] OttoIslerandPaulZeller.TotalSynthesesofCarotenoids.InVitamins Hormones, volume 15, pages 31–71. Elsevier, 1957. [24] Joseph D. Surmatis and Alfred Ofner. A New Synthesis of trans­β­Carotene and Decapreno­β­carotene1. The Journal of Organic Chemistry, 26(4):1171–1173, 2002. [25] P.O.Andersson,T.Gillbro,A.E.Asato,andR.S.H.Liu.Dualsingletstateemission in a series of mini­carotenes. Journal of Luminescence, 51(1­3):11–20, 1992. [26] Debashree Ghosh, Johannes Hachmann, Takeshi Yanai, and Garnet Kin­Lic Chan. Orbital optimization in the density matrix renormalization group, with applications to polyenes and β­carotene. The Journal of Chemical Physics, 128(14):144117, April 2008. [27] M. Kleinschmidt, C. M. Marian, M. Waletzke, and S. Grimme. Parallel mul­ tireference configuration interaction calculations on mini­beta­carotenes and beta­ carotene. J Chem Phys, 130(4):044708, 2009. [28] Igor Lyskov, Martin Kleinschmidt, and Christel M. Marian. Redesign of the DFT/MRCI Hamiltonian. The Journal of Chemical Physics, 144(3):034104, Jan­ uary 2016. [29] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Physical Review, 136(3B):B864–B871, 1964. [30] W. Kohn and L. J. Sham. Self­Consistent Equations Including Exchange and Corre­ lation Effects. Physical Review, 140(4A):A1133–A1138, 1965. [31] J. D. Chai. Density functional theory with fractional orbital occupations. J Chem Phys, 136(15):154104, 2012. [32] Jeng­Da Chai and Martin Head­Gordon. Long­range corrected double­hybrid den­ sity functionals. The Journal of Chemical Physics, 131(17):174105, November 2009. [33] N.DavidMermin.ThermalPropertiesoftheInhomogeneousElectronGas.Physical Review, 137(5A):A1441–A1443, 1965. [34] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron­gas correlation energy. Phys Rev B Condens Matter, 45(23):13244–13249, 1992. [35] P. A. M. Dirac. Note on Exchange Phenomena in the Thomas Atom. Mathematical Proceedings of the Cambridge Philosophical Society, 26(3):376–385, 2008. [36] R.Ditchfield,W.J.Hehre,andJ.A.Pople.Self‐ConsistentMolecular‐OrbitalMeth­ ods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 54(2):724–728, 1971. [37] W. J. Hehre, R. Ditchfield, and J. A. Pople. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molec­ ular Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 56(5):2257–2261, 1972. [38] Dieter Wöhrle and Dieter Meissner. Organic Solar Cells. Advanced Materials, 3(3):129–138, March 1991. [39] HaraldHoppeandNiyaziSerdarSariciftci.Organicsolarcells:Anoverview.Journal of Materials Research, 19(7):1924–1945, July 2004. [40] Tracey M. Clarke and James R. Durrant. Charge Photogeneration in Organic Solar Cells. Chemical Reviews, 110(11):6736–6767, November 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80956-
dc.description.abstract在這篇論文中,我們以密度泛函理論研究三種類胡蘿蔔素 (Carotenoid),包含 β 胡蘿蔔素、茄紅素 (Lycopene) 與 γ 胡蘿蔔素與其相關的分子結構。然而,由於 傳統密度泛函在較大的共軛結構這類強關聯系統會出現誤差,導致無法準確地取 得能量,而高階第一原理計算在計算大分子系統又過度費時且不切實際。因此, 我們使用溫度輔助密度泛函理論 (Thermally­-Assisted­-Occupation density functional theory) 研究共軛鏈上有 1 到 12 個異戊二烯 (isoprene) 的類胡蘿蔔素衍生結構。 由 TAO­LDA 的計算結果顯示所有的類胡蘿蔔素及其衍生結構的基態都是單態, 且單態與三重態的能量差、游離能、基本能隙隨著鏈長的長度增加平緩減小;而 電子親和力和對稱化馮諾伊曼熵 (symmetrized von Neumann entropy) 則是逐漸地增 加。而這些分子基態的軌道佔據數 (orbital occupation number) 隨著系統的增大而 出現分數的軌道佔據數,這也指出了這些系統的多重自由基 (multi-­radical) 特性, 更加證實了由 TAO­DFT 計算的正當性。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T03:23:33Z (GMT). No. of bitstreams: 1
U0001-0909202120244500.pdf: 9447968 bytes, checksum: 435f41161388723aabe3fbb428e2db06 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"Chapter 1 Introduction 1 1.1 Carotenoids............................... 1 1.2 Motivation ............................... 2 Chapter 2 Theoretical background 7 2.1 KS­DFT ................................ 7 2.2 TAO­DFT................................ 9 Chapter 3 Computational detail . . . . . . . . . . . . . . . . . . . 15 Chapter 4 Result and discussion . . . . . . . . . . . . . . . . . . . 17 4.1 Singlet­-Triplet gap ........................... 17 4.2 Vertical ionization potential, vertical electron affinity, fundamental gap . . . . . . . . . . . . . . . . . . . 20 4.3 Symmetrized von Neumann entropy . . . . . . . . . . . . . . . . . . 21 4.4 Active Orbital Occupation Numbers . . . . . . . . . . . . . . . . . . 21 4.5 Visualization of the active orbitals . . . . . . . . . . . . . . . . . . . 26 Chapter 5 Summary . . . . . . . . . . . . . . . . . . . 37 References . . . . . . . . . . . . . . . . . . . 39 Appendix A — Singlet­Triplet gap . . . . . . . . . . . . . . . . . . . 45 Appendix B — Ionization potential, electron affinity, and fundamental gap . . . . . . . . . . . . . . . . . . . 49 Appendix C — Symmetrized von Neumann entropy . . . . . . . . . . . . . . . . . . . 53 Appendix D — Occupation numbers . . . . . . . . . . . . . . . . . . . 55"
dc.language.isoen
dc.subject密度泛函理論zh_TW
dc.subject電子親和力zh_TW
dc.subject游離能zh_TW
dc.subject類胡蘿蔔素zh_TW
dc.subjectDensity functional theoryen
dc.subjectelec­tron affinityen
dc.subjectionization potentialen
dc.subjectn­-carotenoiden
dc.subjectcarotenoiden
dc.title以密度泛函理論研究類胡蘿蔔素及其延伸系統之電子性質zh_TW
dc.titleTheoretical studies of electronic properties of carotenoids related systems using thermally­-assisted-occupation density functional theoryen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張秀華(Hsin-Tsai Liu),薛宏中(Chih-Yang Tseng)
dc.subject.keyword密度泛函理論,類胡蘿蔔素,游離能,電子親和力,zh_TW
dc.subject.keywordDensity functional theory,carotenoid,n­-carotenoid,ionization potential,elec­tron affinity,en
dc.relation.page57
dc.identifier.doi10.6342/NTU202103090
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-0909202120244500.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
9.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved