請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80956完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡政達(Jeng-Da Chai) | |
| dc.contributor.author | Chao-Yuan Chang | en |
| dc.contributor.author | 張肇元 | zh_TW |
| dc.date.accessioned | 2022-11-24T03:23:33Z | - |
| dc.date.available | 2021-10-04 | |
| dc.date.available | 2022-11-24T03:23:33Z | - |
| dc.date.copyright | 2021-10-04 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-10 | |
| dc.identifier.citation | [1] G. Britton. Structure and properties of carotenoids in relation to function. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 9(15):1551–1558, December 1995. [2] B. D. Ezell and M. S. Wilcox. The Ratio of Carotene to Carotenoid Pigments in Sweetpotato Varieties. Science, 103(2668):193–194, February 1946. [3] A. W. Johnson. Terpene Chemistry. Nature, 190(4770):18–19, April 1961. [4] Carotene and Allied Pigments*. Nature, 145(3669):286–288, February 1940. [5] Nazia Nisar, Li Li, Shan Lu, Nay Chi Khin, and Barry J. Pogson. Carotenoid Metabolism in Plants. Molecular Plant, 8(1):68–82, January 2015. [6] A. Vershinin. Biological functions of carotenoids – diversity and evolution. Biofactors, 10(23):99–104, 1999. [7] Dorothea SiefermannHarms. The lightharvesting and protective functions of carotenoids in photosynthetic membranes. Physiologia Plantarum, 69(3):561–568, 1987. [8] Minjung Son, Stephanie M. Hart, and Gabriela S. SchlauCohen. Investigating carotenoid photophysics in photosynthesis with 2D electronic spectroscopy. Trends in Chemistry, page S2589597421001234, June 2021. [9] M. Calvin. Function of Carotenoids in Photosynthesis. Nature, 176(4495):1215– 1215, December 1955. [10] A. J. Young and G. M. Lowe. Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys, 385(1):20–7, 2001. [11] PaulineF.Conn,WolfgangSchalch,andT.GeorgeTruscott.Thesingletoxygenand carotenoid interaction. Journal of Photochemistry and Photobiology B: Biology, 17(1), 1993. [12] R. F. Hunter. The Conversion of Carotene Into Vitamin A. Nature, 158(4008):257– 260, August 1946. [13] P. Karlson. Carotene as provitamin A. Trends in Biochemical Sciences, 3(4):235– 236, October 1978. [14] J Beilby, G L Ambrosini, E Rossi, N H de Klerk, and A W Musk. Serum levels of folate, lycopene, βcarotene, retinol and vitamin E and prostate cancer risk. European Journal of Clinical Nutrition, 64(10):1235–1238, October 2010. [15] D. Umeno, A. V. Tobias, and F. H. Arnold. Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev, 69(1):51–78, 2005. [16] Claudia SchmidtDannert, Daisuke Umeno, and Frances H. Arnold. Molecular breeding of carotenoid biosynthetic pathways. Nature Biotechnology, 18(7):750– 753, July 2000. [17] Godfrey S. Beddard, R. Stephen Davidson, and Kenneth R. Trethewey. Quenching of chlorophyll fluorescence by βcarotene. Nature, 267(5609):373–374, May 1977. [18] Fernando Muzzopappa and Diana Kirilovsky. Changing Color for Photoprotection: The Orange Carotenoid Protein. Trends in Plant Science, 25(1):92–104, January 2020. [19] A.P. Shreve, J.K. Trautman, T.G. Owens, and A.C. Albrecht. Determination of the S2 lifetime of βcarotene. Chemical Physics Letters, 178(1):89–96, March 1991. [20] Kazuhiro Yanagi, Konstantin Iakoubovskii, Said Kazaoui, Nobutsugu Minami, Yu taka Maniwa, Yasumitsu Miyata, and Hiromichi Kataura. Lightharvesting function of β carotene inside carbon nanotubes. Physical Review B, 74(15):155420, October 2006. [21] Javier Cerezo, José Zúñiga, Adolfo Bastida, Alberto Requena, José Pedro Cerón Carrasco, and Leif A. Eriksson. Antioxidant Properties of βCarotene Isomers and Their Role in Photosystems: Insights from Ab Initio Simulations. The Journal of Physical Chemistry A, 116(13):3498–3506, April 2012. [22] I. A. Yaroshevich, P. M. Krasilnikov, and A. B. Rubin. Functional interpretation of the role of cyclic carotenoids in photosynthetic antennas via quantum chemical calculations. Computational and Theoretical Chemistry, 1070:27–32, 2015. [23] OttoIslerandPaulZeller.TotalSynthesesofCarotenoids.InVitamins Hormones, volume 15, pages 31–71. Elsevier, 1957. [24] Joseph D. Surmatis and Alfred Ofner. A New Synthesis of transβCarotene and Decaprenoβcarotene1. The Journal of Organic Chemistry, 26(4):1171–1173, 2002. [25] P.O.Andersson,T.Gillbro,A.E.Asato,andR.S.H.Liu.Dualsingletstateemission in a series of minicarotenes. Journal of Luminescence, 51(13):11–20, 1992. [26] Debashree Ghosh, Johannes Hachmann, Takeshi Yanai, and Garnet KinLic Chan. Orbital optimization in the density matrix renormalization group, with applications to polyenes and βcarotene. The Journal of Chemical Physics, 128(14):144117, April 2008. [27] M. Kleinschmidt, C. M. Marian, M. Waletzke, and S. Grimme. Parallel mul tireference configuration interaction calculations on minibetacarotenes and beta carotene. J Chem Phys, 130(4):044708, 2009. [28] Igor Lyskov, Martin Kleinschmidt, and Christel M. Marian. Redesign of the DFT/MRCI Hamiltonian. The Journal of Chemical Physics, 144(3):034104, Jan uary 2016. [29] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Physical Review, 136(3B):B864–B871, 1964. [30] W. Kohn and L. J. Sham. SelfConsistent Equations Including Exchange and Corre lation Effects. Physical Review, 140(4A):A1133–A1138, 1965. [31] J. D. Chai. Density functional theory with fractional orbital occupations. J Chem Phys, 136(15):154104, 2012. [32] JengDa Chai and Martin HeadGordon. Longrange corrected doublehybrid den sity functionals. The Journal of Chemical Physics, 131(17):174105, November 2009. [33] N.DavidMermin.ThermalPropertiesoftheInhomogeneousElectronGas.Physical Review, 137(5A):A1441–A1443, 1965. [34] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electrongas correlation energy. Phys Rev B Condens Matter, 45(23):13244–13249, 1992. [35] P. A. M. Dirac. Note on Exchange Phenomena in the Thomas Atom. Mathematical Proceedings of the Cambridge Philosophical Society, 26(3):376–385, 2008. [36] R.Ditchfield,W.J.Hehre,andJ.A.Pople.Self‐ConsistentMolecular‐OrbitalMeth ods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 54(2):724–728, 1971. [37] W. J. Hehre, R. Ditchfield, and J. A. Pople. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molec ular Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 56(5):2257–2261, 1972. [38] Dieter Wöhrle and Dieter Meissner. Organic Solar Cells. Advanced Materials, 3(3):129–138, March 1991. [39] HaraldHoppeandNiyaziSerdarSariciftci.Organicsolarcells:Anoverview.Journal of Materials Research, 19(7):1924–1945, July 2004. [40] Tracey M. Clarke and James R. Durrant. Charge Photogeneration in Organic Solar Cells. Chemical Reviews, 110(11):6736–6767, November 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/80956 | - |
| dc.description.abstract | 在這篇論文中,我們以密度泛函理論研究三種類胡蘿蔔素 (Carotenoid),包含 β 胡蘿蔔素、茄紅素 (Lycopene) 與 γ 胡蘿蔔素與其相關的分子結構。然而,由於 傳統密度泛函在較大的共軛結構這類強關聯系統會出現誤差,導致無法準確地取 得能量,而高階第一原理計算在計算大分子系統又過度費時且不切實際。因此, 我們使用溫度輔助密度泛函理論 (Thermally-Assisted-Occupation density functional theory) 研究共軛鏈上有 1 到 12 個異戊二烯 (isoprene) 的類胡蘿蔔素衍生結構。 由 TAOLDA 的計算結果顯示所有的類胡蘿蔔素及其衍生結構的基態都是單態, 且單態與三重態的能量差、游離能、基本能隙隨著鏈長的長度增加平緩減小;而 電子親和力和對稱化馮諾伊曼熵 (symmetrized von Neumann entropy) 則是逐漸地增 加。而這些分子基態的軌道佔據數 (orbital occupation number) 隨著系統的增大而 出現分數的軌道佔據數,這也指出了這些系統的多重自由基 (multi-radical) 特性, 更加證實了由 TAODFT 計算的正當性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T03:23:33Z (GMT). No. of bitstreams: 1 U0001-0909202120244500.pdf: 9447968 bytes, checksum: 435f41161388723aabe3fbb428e2db06 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "Chapter 1 Introduction 1 1.1 Carotenoids............................... 1 1.2 Motivation ............................... 2 Chapter 2 Theoretical background 7 2.1 KSDFT ................................ 7 2.2 TAODFT................................ 9 Chapter 3 Computational detail . . . . . . . . . . . . . . . . . . . 15 Chapter 4 Result and discussion . . . . . . . . . . . . . . . . . . . 17 4.1 Singlet-Triplet gap ........................... 17 4.2 Vertical ionization potential, vertical electron affinity, fundamental gap . . . . . . . . . . . . . . . . . . . 20 4.3 Symmetrized von Neumann entropy . . . . . . . . . . . . . . . . . . 21 4.4 Active Orbital Occupation Numbers . . . . . . . . . . . . . . . . . . 21 4.5 Visualization of the active orbitals . . . . . . . . . . . . . . . . . . . 26 Chapter 5 Summary . . . . . . . . . . . . . . . . . . . 37 References . . . . . . . . . . . . . . . . . . . 39 Appendix A — SingletTriplet gap . . . . . . . . . . . . . . . . . . . 45 Appendix B — Ionization potential, electron affinity, and fundamental gap . . . . . . . . . . . . . . . . . . . 49 Appendix C — Symmetrized von Neumann entropy . . . . . . . . . . . . . . . . . . . 53 Appendix D — Occupation numbers . . . . . . . . . . . . . . . . . . . 55" | |
| dc.language.iso | en | |
| dc.subject | 密度泛函理論 | zh_TW |
| dc.subject | 電子親和力 | zh_TW |
| dc.subject | 游離能 | zh_TW |
| dc.subject | 類胡蘿蔔素 | zh_TW |
| dc.subject | Density functional theory | en |
| dc.subject | electron affinity | en |
| dc.subject | ionization potential | en |
| dc.subject | n-carotenoid | en |
| dc.subject | carotenoid | en |
| dc.title | 以密度泛函理論研究類胡蘿蔔素及其延伸系統之電子性質 | zh_TW |
| dc.title | Theoretical studies of electronic properties of carotenoids related systems using thermally-assisted-occupation density functional theory | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張秀華(Hsin-Tsai Liu),薛宏中(Chih-Yang Tseng) | |
| dc.subject.keyword | 密度泛函理論,類胡蘿蔔素,游離能,電子親和力, | zh_TW |
| dc.subject.keyword | Density functional theory,carotenoid,n-carotenoid,ionization potential,electron affinity, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU202103090 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-11 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0909202120244500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
